
Midterm Exam, Algorithms 2018-2019

• You are only allowed to have a handwritten A4 page written on both sides.

• Communication, calculators, cell phones, computers, etc... are not allowed.

• Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be such that a fellow
student can easily implement the algorithm following the description.

• You are allowed to refer to algorithms covered in class without reproving their proper-
ties.

• Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4

/ 22 points / 30 points / 28 points / 20 points

Total / 100

Page 1 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2018
Michael Kapralov



1 (22 pts) Basic questions.

1a (4 pts) Answer whether the following statements are true or false.

HeapSort requires Ω(n) extra space to sort an array of length n. True or false?
False.

If TH(n) and TB(n) denote the worst case runtime of extracting the maximum element from
a max heap and a binary search tree on n nodes respectively, then TH(n) = Θ(TB(n)).
True or false?
False. The depth of a max-heap is O(log n). Hence, the operation takes O(log n) time.
In a binary search tree, the depth can be Ω(n)(tree was formed by insertion of elements
sorted in increasing order.) In particular, the maximum element could be at the last level
of the tree. Hence the operation takes time Ω(n) in the worst case.

Running HeapSort on a sorted (in the correct order) array takes O(n) time. True or
false?
False.

BuildMaxHeap constructs a heap from an unsorted array of length n in time Θ(n). True
or false?
True.

1b (10 pts) Arrange the following functions in increasing order according to asymptotic growth.

n log2
(
n5 + n2

)
, (log2 log2 n)5, 5n log2 n, n!, n2 log n, 2n,

√
n3 + n4

Solution:

(log2 log2 n)5, n log2
(
n5 + n2

)
,
√
n3 + n4, n2 log n, 2n, n!, 5n log2 n

1c (8 pts) In every subproblem below you start with the same fixed binary search tree T .
You should answer yes or no for every subproblem, no explanation is needed. You should
answer yes for every claim below that is true for every starting tree T , and answer no if
there exists a tree T for which the claim is false.

• Take an element z with z.value distinct from all those already in the tree. Suppose
we perform TreeInsert(T, z) followed immediately by TreeDelete(T, z). Is the
new tree identical to T? Yes. Element z is inserted as a leaf in T. Hence, deleting z
in the new tree(after insert) gives us T.

• Suppose now that z is an element already contained in T . If we perform TreeDelete(T, z)
followed immediately by TreeInsert(T, z) is the new tree identical to T? No. Let
T consist of two nodes with values 1 and 2 with root as 1 and it’s child as 2. Now, if
we perform TreeDelete(T, 1) followed immediately by TreeInsert(T, 1), the new
tree is rooted at 2. No. Let T be an empty tree. Then in the first case the final tree
is rooted at z1, whereas in the second case the final tree is rooted at z2.

Page 2 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2018
Michael Kapralov



• We now have two new elements z1 and z2 with values z1.value and z2.value distinct
from each other and any already in the tree. Perform Tree-Insert(T, z1) followed
by TreeInsert(T, z2). Do we always get the same result if we insert them in the
other order? No. Let T be an empty tree. Then in the first case the final tree is
rooted at z1, whereas in the second case the final tree is rooted at z2.

• Suppose now we are given k new elements z1, z2, . . . , zk with values distinct from each
other’s and from any node already in the tree. We perform the following operations:

TreeInsert(T, z1)
TreeInsert(T, z2)
. . .
TreeInsert(T, zk)
TreeDelete(T, z1)
TreeDelete(T, z2)
. . .
TreeDelete(T, zk−1)

Is the resulting tree the same as if we had just inserted zk? Yes. Consider the modified
tree T

′ after the k inserts. Due to the property that each new node is inserted as a
leaf, we get that each root to leaf path in T

′ is some elements of the original tree T
followed by some of the newly inserted elements. Hence, if we delete all newly inserted
elements but zk, it doesn’t affect the structure of the elements in the original tree T.
Also observe that in both the cases, i.e. n inserts followed by n − 1 deletes and 1
insert, the path from root to zk is exactly the same if we only consider the part of the
path up to the old nodes. Both these observations prove the claim.

Page 3 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2018
Michael Kapralov



2 (30 pts) Recurrences. Consider the following algorithm Unknown that takes as input an
array A and two indices low and high in the array:

Unknown(A, low, high)
1. for i = low to high
2. print A[i]
3. if low = high
4. return
5. else
6. p = low + b(high− low)/

√
2c

7. q = b(low + high)/2c
8. Unknown(A, low, p)
9. Unknown(A, q + 1, high)
10. Unknown(A, low, q)
11. return

2a (10 pts) Let T (n) be the time it takes to execute Unknown(A, 1, n). Give the recur-
rence relation for T (n). To simplify notation, you may ignore floors and ceilings in your
recurrence.

Solution: The for loop starting in line 2 takes Θ(n) time to run. Let T (n) be the time to run
Unknown(A, low, high) for high − low = n. Clearly T (0) = Θ(1). The loop starting in line 1
takes Θ(n) time to execute. The algorithm further makes recursive calls to Unknown(A, low, p),
Unknown(A, q + 1, high) and Unknown(A, low, q). These take time T (n/

√
2), T (n/2) and

T (n/2) respectively to run. Therefore, the recurrence relation is

T (n) = Θ(n) + T (n/
√

2) + 2T (n/2).

2b (20 pts) Prove tight asymptotic bounds on T (n). Specifically, show that T (n) = Θ(na)
for some integer a ≥ 0.

Solution:
Let us guess the value of a. If T (n) ≈ na then the recursive calls combined would take

≈ na/(
√

2)a + 2na/2a = na ·
(
2−a/2 + 21−a

)
time. We want this to equal na, which happens

exactly at a = 2. Furthermore, in this case the Θ(n) is dominated by the recursive part, so this
seems like a good guess. Let us now prove that the guess is correct.

Let us specify that the Θ(n) term in the recurrence relation is more that bn and less than
cn. We first prove by induction that T (n) ≤ dn2 − en for some d and e:

T (n) ≤ cn + T (n/
√

2) + 2T (n/2)

≤ cn + d(n/
√

2)2 − e(n/
√

2) + 2d(n/2)2 − 2e(n/2)

= cn + dn2/2− en/
√

2 + dn2/2− en

≤ dn2 − en,

when e/
√

2 ≥ c.

Page 4 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2018
Michael Kapralov



Proof by induction that T (n) ≥ dn2 for some d:

T (n) ≥ bn + T (b/
√

2) + 2T (n/2)

≥ bn + d(n/
√

2)2 + 2d(n/2)2

= bn + dn2/2 + dn2/2

≥ dn2,

since b ≥ 0.
Therefore T (n) = Θ(n2).

Page 5 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2018
Michael Kapralov



3 (28 pts) Rod cutting revisited. You are given a rod of length n with m weak points on it at
distances a1, a2, . . . , am from one end. a1, a2, . . . , am are integers such that 0 < a1 < a2 <
. . . < am < n. You have to cut the rod at all weak points in some order. Each time you cut a
rod at some weak point it falls apart into two pieces and two smaller rods are created, so after
performing m cuts you will have m + 1 smaller rods.

The cost of cutting a rod is equal to its length, and you want to minimize the overall cost of
cutting the rod into m+1 pieces. In this problem your task is to design and analyze an algorithm
that, given the length n of the rod and the locations of the weak points, returns the cost of the
optimal solution.

Input: The length n of rod (an integer), the number m of weak points, and the
locations of the weak points 0 < a1 < a2 < . . . < am < n (the locations
ai, i = 1, . . . ,m are integers).

Output: The smallest possible cost of cutting the rod into m+1 pieces at the weak
points.

For example, if n = 7 and there are m = 2 weak points on the rod, with locations a1 = 4
and a2 = 6 respectively (see Fig. 1), the optimal solution is as follows. We first break the rod at
the first weak point a1 = 4, getting two rods, of length 4 and 3 respectively. We then break the
rod of length 3 at the second weak point into two rods, with lengths 2 and 1 respectively. The
total cost is 7 + 3 = 10.

first weak point at a1 = 4 second weak point at a2 = 6

Figure 1. A rod of length n = 7 with m = 2 weak points, at locations a1 = 4 and a2 = 6
respectively.

Design an efficient dynamic programming algorithm for this problem and analyze its run-
time.

Solution: For simplicity suppose that a0 = 0, am+1 = N , and for any 0 ≤ s ≤ t ≤ m + 1, let
c[s][t] denote the smallest possible cost of cutting the rod between as and at into t − s pieces.
Clearly the final solution is c[0][m + 1], and if t ≤ s + 1, then c[s][t] = 0.

If t > s + 1, then we consider all the subproblems of cutting the rod of endpoints as and at,
into all wak points between as and at, i.e., all ak’s such that s+ 1 ≤ k ≤ t− 1. The cost of c[s][t]
is given by at− as, added to the cost of the minimum subproblem. More formally, the algorithm
proceeds using the following formula

c[s][t] = at − as + min
s+1≤k≤t−1

{c[s][k] + c[k][t]}

We implement this recursive formulation using top-down with memoization approach.
The total space of the algorithm is Θ(m2), since we need to store c[s][t] for all 0 ≤ s ≤ t ≤

m+ 1. Moreover, the runtime of the algorithm is Θ(m3) since for any 1 ≤ s ≤ t ≤ m+ 1, as per

Page 6 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2018
Michael Kapralov



Algorithm 1 cost(s, t)
1: if c[s][t] 6=∞ then
2: return c[s][t]
3: else if t ≤ s + 1 then
4: c[s][t] = 0
5: else
6: for k = s + 1 to t− 1 do
7: c[s][t] = min(c[s][t],cost(s,k) + cost(k,t) + at − as)

return c[s][t]

line 6 of the algorithm, we run a for-loop over all k between s and t. Thus, the total runtime of
the algorithm is Θ(m3).

Page 7 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2018
Michael Kapralov



left track right track

side track

Figure 2. Lausanne Gare

4 (20 pts) Train sequences at Lausanne Gare. You and your friend are watching the trains
at Lausanne Gare. The tracks at Lausanne Gare form a ’T’ shape as shown in Fig. 2. You sit
at the left end of the tracks and see that n trains labeled 1, 2, . . . , n are lined up in increasing
order. Then the trains start moving to the right one by one, first train 1, then 2 and so on. Any
train may either turn onto the side track (the side track can hold an infinite number of trains)
or keep moving right and leave the station. At any point in time a train on the side track can
decide to leave the station through the right track if it’s not blocked in. However, the trains can
never go back to the left track.

Your friend sits at the right end of the tracks, observes the trains leaving one by one and
writes down their numbers in the order that they leave. Your task is to develop an efficient
algorithm that decides, given your friend’s notes, if that order of trains is possible or if your
friend had made a mistake.

Input: A permutation a1, a2, . . . , an of integers between 1 and n.

Output: YES if there exists a way for trains 1, 2, . . . , n to leave Lausanne Gare in
this order, and NO otherwise.

For example, suppose there are n = 3 trains. Then order 2, 1, 3 (i.e., a1 = 2, a2 = 1, a3 = 3)
is possible: the first trains turns onto the side track, the second train leaves, the first train exits
the side track and leaves and finally the third train leaves as well. However, the order 3, 1, 2 is
not possible.

Design an efficient algorithm for this problem and analyze its runtime.

Solution:
Let A be the list of trains as observed by your friend. Our plan is to store the positions of all

trains given that A has been correct so far. If we get to a contradiction we return false. More
specifically we need to store the first train (that is the train labeled by the lowest number) still
on the left side of the tracks (variable j in the pseudocode below) and we need to store the the
content of the spur track. Notice that because trains block each other in on the spur track, only

Page 8 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2018
Michael Kapralov



the most recent train to have arrived can leave at any time: the spur track behaves exactly like a
stack. Therefore, we store the contents of he spur track in a stack (variable s in the pseudocode
below).

For simplicity, we may pretend that all trains must enter the spur tracks before leaving the
station. So if the next train in the notes is A[i] we have two options: If the first train in the
stack is A[i], we pop it out. If it isn’t, we have only one choice, to put the next train from the
left of the tracks (j) into the stack. If we can’t do that because we’re out if trains, we’ve reached
a contradiction and the algorithm can return false.

Below is the pseudocode for this algorithm.

1: i← 1
2: j ← 1
3: Initialize empty stack S
4: while j ≤ N do
5: if S.head == A[i] then
6: S.pop()
7: i← i + 1
8: else
9: S.push(j)

10: j ← j + 1

11: return S.empty()

Page 9 (of 9)

CS-250 Algorithms, Midterm Exam • Autumn 2018
Michael Kapralov


