
Midterm Exam, Algorithms 2017-2018

• You are only allowed to have a handwritten A4 page written on both sides.

• Communication, calculators, cell phones, computers, etc... are not allowed.

• Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be such that a fellow
student can easily implement the algorithm following the description.

• You are allowed to refer to algorithms covered in class without reproving their proper-
ties.

• Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4

/ 27 points / 18 points / 28 points / 27 points

Total / 100

Page 1 (of 13)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



1 (27 pts) Basic questions. This problem consists of three subproblems.

1a (8 pts) Give tight asymptotic bounds for the following recurrences (assuming that T (1) =
Θ(1)):

(i) T (n) = 2T (n/4) + Θ(
√
n)

Follows by the Master Theorem:
a = 2, b = 4 and f(n) =

√
n⇒ T (n) =

Θ(
√
n log n)

(ii) T (n) = 4T (n1/8) + Θ(log n)
Let m = log n, and let S(m) = T (n).
After this substitution the recurrence
becomes S(m) = 4S(m8 ) + Θ(m), and
thus S(m) = Θ(m) by the Master the-
orem. Thus, T (n) = Θ(m) = Θ(log n)

(iii) T (n) = 2T (n− 2) + Θ(1)
Let m = n/2, and let S(m) = T (n).
Then we have S(m) = 2S(n − 1) +
Θ(1), and thus S(m) = Θ(2m). Thus,
T (n) = Θ(2n/2).

(iv) T (n) = 16T (n/4) + Θ(n2)
Follows by the Master Theorem:
a = 16, b = 4 and f(n) = n2, so
T (n) = Θ(n2 log n)

1b (9 pts) Answer true/false questions below (each question worth 1 point):

A binary tree of height h ≥ 1 has at most 2h nodes (recall that a tree with a single node
has height 0). True or False?
FALSE, a complete binary tree of height h has 2h+1 − 1 nodes, and this is larger than 2h

for all h ≥ 1.

The worst-case complexity for searching in a binary search tree is O(log n). True or False?
FALSE, it’s O(n) since a binary tree is not necessarily balanced

A max-heap can be built from an unsorted array A[1...n] in time O(n). True or False?
TRUE, we showed this in the lecture

Extracting the maximum element from a max-heap has worst-case runtime Ω(n). True or
False?
FALSE, it’s O(log n)

If f(n) = n2.1 and g(n) = n2 log n, then f(n) = ω(g(n)). True or False?
TRUE, n2.1 = n2n0.1 and n0.1 grows faster than log n

If f(n) = 2
√
logn and g(n) = log2 n, then f(n) = o(g(n)). True or False?

FALSE, g(n) = log2 n = 2log(log
2 n) = 22 log logn. Since log logn = o(

√
log n), f(n) grows

faster than g(n).

Page 2 (of 13)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



An array of size n which contains only zeros and ones can be sorted in linear time using a
constant amount of additional memory. True or False?
TRUE, one only needs to count 0s and 1s in linear time and constant memory. Say there
are u 0s and t 1s – then we output 0, ..., 0︸ ︷︷ ︸

u times

, 1, ..., 1︸ ︷︷ ︸
t times

.

If every node in a binary tree has either 0 or 2 children, then the tree has height O(log n).
True or False?
FALSE, restricting the number of children gives no guarantees on the height of the tree –
e.g., it can still only grow to the left

Running merge sort on a sorted array takes O(n) time. True or False?
FALSE, the asymptotic running time of merge sort only depends on the size of input, and
thus the runtime is still Ω(n log n) even on a sorted array

Page 3 (of 13)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



1c (10 pts) In this problem you are given the code of a function Unknown(str) that takes as
input a string and outputs true or false.

Unknown(str)

1. Initialize an empty stack S
2. n=str.length
3. for i=1 to n
4. if str[i]==’A’ or str[i]==’C’
5. Push(S, str[i])
6. else if str[i]==’B’
7. if Stack-Empty(S) or Pop(S)!=’A’
8. return false
9. else if str[i]==’D’
10. if Stack-Empty(S) or Pop(S)!=’C’
11. return false
12. if Stack-Empty(S)
13. return true
14. else
15. return false

What does Unknown output on inputs below?

1. Unknown("ABBA")= FALSE, returns through line 7 at i = 3 with S = {∅}

2. Unknown("ACBD")= FALSE, returns through line 7 at i = 3 with S = {A}

3. Unknown("ABCD")= TRUE, S = {∅}

4. Unknown("AAAABBBBAAAA")= FALSE, S = {A,A,A,A}

5. Unknown("ACDBABCDCDCCDD")= TRUE, S = {∅}

Page 4 (of 13)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



2 (18 pts) Recurrences. Consider the following algorithm Unknown that takes as input an
integer n:

Unknown(n):

1. if n < 10
2. return
3. Unknown(b4n/5c)
4. for i = 1 to n
5. for j = 1 to i
6. print “Almost done!”
7. Unknown(b3n/5c)
8. return

2a (4 pts) Let T (n) be the time it takes to execute Unknown(n). Give the recurrence
relation for T (n). To simplify notation, you may assume that n/5 always evaluates to an
integer.

Solution: If n < 50, the algorithm Unknown(n) takes Θ(1) time. Otherwise, it calls one
instance of Unknown with argument 4n/5, and one instance with argument 3n/5. In addition,
in lines 5 and 6 it runs two nested loops such that the number of times print is called is exactly∑n

i=1 i = Θ(n2). Thus, the loops take time Θ(n2).
This gives us the recurrence:

T (n) =

{
Θ(1) if n < 50,
T (4n/5) + T (3n/5) + Θ(n2) otherwise.

Page 5 (of 13)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



2b (14 pts) Prove tight asymptotic bounds on T (n). Specifically, show that T (n) = Θ(na log n)
for some integer a ≥ 0. You may simplify your calculations by assuming that bn/5c = n/5.

Solution: Let us first make an (educated) guess about a. In the inductive proof, we will have
an argument roughly like:

T (n) = T (3n/5) + T (4n/5) + Θ(n2)

≤ (3n/5)a log(3n/5) + (4n/5)a log(4n/5) + Θ(n2)

≤ na((3/5)a + (4/5)a) log n+ Θ(n2)

and for the inductive proof to work, we will at least need that

(3/5)a + (4/5)a = 1

(with equality because we need a tight bound). Equivalently, this is

3a + 4a = 5a.

After a hopefully short round of trial and error (or binary-searching on paper), we find that
a = 2 is the solution to this equation. We now formally prove that T (n) = Θ(n2 log n).

We prove T (n) = Θ(n2 log n):

Claim 1 There exists a positive constant d such that T (n) ≤ dn2 log n for all n ≥ 2.

Proof. The base case is trivial by selecting d sufficiently large.
Now consider the inductive step (with the induction hypothesis that T (m) ≤ dm2 logm for

all m < n):

T (n) = T (3n/5) + T (4n/5) + cn2

≤ d((3n/5)2 log(3n/5) + (4n/5)2 log(4n/5)) + cn2

= d((3n/5)2 log n+ (4n/5)2 log n)− dn2((3/5)2 log(5/3) + (4/5)2 log(5/4)) + cn2

≤ d((3n/5)2 + (4n/5)2) log n (by selecting d ≥ c/(((3/5)2 log(5/3) + (4/5)2 log(5/4))))

= dn2 log n

as required.
�

Claim 1 proves T (n) = O(n2 log n). For the lower bound, i.e. for T (n) = Ω(n2 log n), we show
the following:

Claim 2 There exists a positive constant d such that T (n) ≥ dn2 log n for all n ≥ 2.

Proof. Base case is trivial by selecting d small enough.
Now the inductive step (with the induction hypothesis that T (m) ≥ dm2 logm for allm < n):

T (n) = T (3n/5) + T (4n/5) + cn2

≥ d((3n/5)2 log(3n/5) + (4n/5)2 log(4n/5)) + cn2

= dn2 log n− dn2((3/5)2 log(5/3) + (4/5)2 log(5/4)) + cn2

≥ dn2 log n

as long as d < c/(((3/5)2 log(5/3) + (4/5)2 log(5/4))). �

We have shown that T (n) = O(n2 log n) and T (n) = Ω(n2 log n). Thus, T (n) = Θ(n2 log n).

Page 6 (of 13)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



3 (28 pts) Crater crossing. As you may (or may not) have heard in the news, the famous Fiery
Crater in the beautiful Swiss Alps has just been opened to the public, and naturally a number of
companies are now trying to establish Tyrolean routes across the crater. Each of the n companies
designated a pair of climbers to set up the route: for every i = 1, . . . , n, the i-th pair of climbers
occupies distinct positions si, ti along the rim of the crater. The rim of the crater is a perfect
circle, and si, ti ∈ [0, 2π) correspond to the angle that the climbers in the i-th pair are positioned
at (see Fig. 1). Every pair of climbers is connected by a tight rope (basically a straight line),
which is the candidate route. There is a major problem, however: the routes intersect! Since
nobody wants to be part of a mid-air collision above a sea of lava, the Swiss Alpine Guides
decided to open a subset of routes that do not intersect, and are hence considered safe. Each
route also has a non-negative fun parameter fi, i = 1, . . . , n, and the Mountain Guides would
like to open a non-intersecting subset of routes that maximizes the total fun. They need your
help.

Input: A collection of n pairs si, ti ∈ [0, 2π) specifying positions of pairs of climbers
on the rim of the crater, for i = 1, . . . , n. The fun parameters fi, i = 1, . . . , n,
for each of the n routes. You can assume that no two climbers occupy the
same position on the rim of the crater.

Output: The maximum possible total fun (sum of fun parameters) achievable by a
non-intersecting subset of routes.

An example problem instance is given in Fig. 1 below. In this instance n = 4, and the fun
parameters of the 4 routes are f1 = f2 = 7, f3 = 1 and f4 = 10. The optimal solution opens
routes 1, 2 and 3, and the total fun is 7 + 7 + 1 = 15.

s1

t1

7

s2

t2

7

s3 t3

1

s4t4
10

Figure 1. Illustration of set of candidate routes si, ti, i = 1, . . . , 4, where s1 = 0, t1 = π/3,
s2 = 2π/3, t2 = π, s3 = 7π/6, t3 = 11π/6, s4 = π/6, t4 = 5π/6. The fun parameters are
f1 = f2 = 7, f3 = 1, f4 = 10. The optimal solution opens routes 1, 2 and 3, and the total fun is
7 + 7 + 1 = 15.

In the following we will design and analyze an efficient algorithm that finds the largest total
fun achievable by a non-intersecting subset of routes.

Page 7 (of 13)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



Let p1, . . . , p2n denote the 2n distinct positions that the climbers occupy along the rim of the
crater, in counterclockwise order starting from an arbitrary climber. In the example in Fig. 1,
if we start with s1 and traverse the positions of the climbers in counterclockwise order, we get
p1 = 0, p2 = π/6, p3 = π/3, p4 = 2π/3, p5 = 5π/6, p6 = π, p7 = 7π/6, p8 = 11π/6. For
every 1 ≤ i ≤ j ≤ 2n let c[i, j] denote the maximum total amount of fun that can be achieved
by opening a non-intersecting set of routes whose endpoints belong to the set {pi, pi+1, . . . , pj}.
Note that c[1, 2n] is the solution that you are asked to find.

3a (23 pts) Explain how to express c[i, j] recursively in terms of values c[a, b] for i < a ≤ b ≤ j.
Write down the recurrence relation together with the base case. You may assume that you
have access to a function Pair(i) that, given an index i ∈ {1, 2, . . . , 2n}, in O(1) time
outputs the index in p of the position of the climber that the climber in position pi is
paired to. In the example above Pair(2)=5 and Pair(5)=2, since the climber in position
2 is paired to the climber in position 5 (since p2 = π/6 = s4 and p5 = 5π/6 = t4).

Solution: For 1 ≤ i, j ≤ 2n, let fij equal the fun of the route connecting i and j if such a route
exists, and 0 otherwise. Such an array can be easily constructed in O(n2) time, not affecting the
runtime of our implementation – see solutions to part b below. Also, for simplicity we assume
that c[i, j] = 0 if i > j.

We now derive the recurrence relation. There are two cases to consider. If Pair(i) 6∈
{i+1, . . . j}, then c[i, j] = c[i+1, j]. Otherwise there are two options: either the route (i,Pair(i))
is part of the optimum, in which case we get fi,Pair(i) + c[i+ 1,Pair(i)− 1] + c[Pair(i) + 1, j],
or it is not, in which case we get c[i+ 1, j].

To summarize:

c[i, j] =

{
c[i+ 1, j] if Pair(i) 6∈ {i, . . . , j}
max

{
fi,Pair(i) + c[i+ 1,Pair(i)− 1] + c[Pair(i) + 1, j], c[i+ 1, j]

}
otherwise

The base case is c[i, j] = 0 for i ≥ j.

Page 8 (of 13)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



3b (5 pts) What is the runtime of the bottom-up implementation of the dynamic programming
solution to the problem that uses your recurrence from 3a? Justify your answer.

Solution:
We now show how to implement the recurrence in O(n2) time. First, sorting the points si, ti

and thus constructing the values p1, . . . , p2n takes O(n log n) time. The array fij as well as an
array that implements the function Pair can now be constructed in O(n2) time.

Algorithm 1 Initializing arrays fun and pair
procedure InitializeArrays(s, t, f, n)

Allocate 2n by 2n array fun of zeroes
Allocate 2n array pair of zeroes
for r = 1 to n do . Loop over all candidate routes

idxS = 0, idxT = 0
for i = 1 to 2n do

if pi = sr then
idxS=i

if pi = tr then
idxT=i

pair[idxS] = idxT
pair[idxT ] = idxS
fun[idxS, idxT ] = fr
fun[idxT, idxS] = fr

return (pair, fun)

Now the actual code for solving the DP works in O(n2) time. Note that the array c needs to
be filled in the order of increasing j − i.

Algorithm 2 Initializing arrays fun and pair
procedure SolveDP(s, t, f, n)

Allocate 2n by 2n array c of zeroes
(pair, fun)← InitializeArrays(s, t, f, n)
for ` = 1 to 2n− 1 do

for i = 1 to 2n− ` do
j = i+ `
if pair[i] < i or pair[i] > j then

c[i, j] = c[i+ 1, j]
else

c[i, j] = max(fun[i, pair[i]] + c[i+ 1, pair[i]− 1] + c[pair[i] + 1, j], c[i+ 1, j])
return c[1, 2n]

Page 9 (of 13)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



4 (27 pts) Tallest mountains. You are planning a hike in the beautiful Swiss Alps again, and
are facing a difficult choice: which mountain range should you go to to maximize opportunities
for fun hikes? In this problem you will design an algorithm for this challenging task.

A mountain range with n mountains can be represented by an array of mountain heights A
of length n, where A[i] for i = 1, . . . , n is the height of the i-th mountain on the horizon from
left to right – see Fig. 2 for an illustration.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Array A[1 . . . 8] = 1 8 4 3 2 7 5 6

Figure 2. Representation of a mountain range as an array A of mountain heights.

A mountain range with n mountains offers n(n+1)/2 different hikes: for every 1 ≤ i ≤ j ≤ n
you can start at the i-th mountain and then visit all mountains i, i + 1, . . . , j in a single trip.
The height hij of a hike from mountain i to mountain j ≥ i is the height of the tallest mountain
that you visit along the way, i.e. for 1 ≤ i ≤ j ≤ n we define

hij := max
i≤k≤j

A[k].

The total height of a mountain range is sum of heights of all hikes 1 ≤ i ≤ j ≤ n, i.e.∑n
i=1

∑n
j=i hij . Your task is to design and analyze an efficient algorithm for computing the

total height of a mountain range.

Input: An array A of integers of length n. You can assume that all elements of A
are distinct.

Output: The total height of A:
∑n

i=1

∑n
j=i hij , where hij = maxi≤k≤j A[k].

A solution that runs in O(n log n) time suffices for full credit (e.g. there exists a divide
and conquer approach similar to what is used for the maximum subarray problem). O(n) time
solutions also exist.

4a (22 pts) Design an efficient algorithm for computing the total height of an array A of n
integers.

Solution:

Page 10 (of 13)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



For this problem, we propose two solutions. The first one uses stacks and runs in O(n) time,
and the second one is based on a modification of the O(n log n) time solution to the maximum
subarray problem presented in class.

O(n) time solution. First note that

n∑
i=1

n∑
j=i

hij =

n∑
k=1

A[k] · (next[k]− k) ∗ (prev[k]− k),

where next[k] is the smallest j > k such that A[j] > A[k] (we assume that A[0] = A[n+ 1] =∞
for simplicity), and prev[k] is the largest j < k such that A[j] > A[k].

How can we calculate, for example, the array prev? Initialize an empty stack, and push 0
onto the stack (recall we are assuming A[0] = ∞ for simplicity). The loop over i from 1 to n.
At each iteration first pop elements off the stack while the element at the top of the stack is
smaller than i. When we stop popping elements off the stack, set prev[i] to the index at the top
of the stack. Push i onto the stack and proceed. To compute next[i], use the same procedure,
but start by pushing n+ 1 onto the stack (recall we are assuming A[n+ 1] =∞ for simplicity),
and loop over i from n down to 1. We provide the code below.

Algorithm 3 Solve(A,n)
procedure Solve(A,n)

Array prev[n], next[n]
Stack S1, S2. Push 0 onto S1, n+ 1 onto S2.
for i = 1 to n do

while S1.top() 6= 0 and A[S1.top()] < A[i] do S1.pop()
prev[i] = S1.top()
S1.push(i)

for i = n downto 1 do
while S2.top() 6= n+ 1 and A[S2.top()] < A[i] do S.pop()
next[i] = S2.top()
S2.push(i)

Answer = 0
for i = 1 to n do

Answer = Answer +A[i] · (i− prev[i]) · (next[i]− i)
return Answer

Since every element is pushed onto the stack or popped off the stack exactly once in every
pass, runtime is O(n).

O(n log n) time solution.
We design a Divide-and-Conquer algorithm for this problem. First split the array into two

halves, and find the solution in each of them using recursive calls. Then we need to compute
the sum of heights hij of subarrays A[i...j] that cross the midpoint. The recursive solution is
similar to the maximum subarray problem, but we will need to design a new version of the merge
procedure that takes care of subarrays A[i...j] that cross the midpoint.

We now design the function Crossing(A, start, end,mid) that computes
∑

1≤i≤mid

∑
mid+1≤j≤n hij .

How do we compute this? Note that for every k between 1 and n the element A[k] contributes
to the sum above if it is the maximum for some subarray A[i...j] with i<=mid and j>=mid+1.
Which subarrays does a given index k contribute to? To find this, it suffices to start with a
left pointer leftIdx equal to k − 1 and a right pointer rightIdx equal to k + 1, and then keep
moving the left pointer left and the right pointer right while the elements that they are pointing

Page 11 (of 13)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



Algorithm 4 Solve(A, start, end)
1: procedure Solve(A, start, end)
2: if start = end then
3: return A[start]

4: mid = b start+end
2 c

5: answer = Solve(A, start,mid) + Solve(A,mid+ 1, end)
6: answer = answer + ComputeCrossing(A, start, end,mid)
7: return answer

to are smaller than A[k]. Then once both pointers stop, we know that A[k] is the maximum for
all arrays whose left endpoint is in [leftIdx+1...k] and the right endpoint is in [k...rightIdx-1].
There are exactly (rightIdx-k)*(k-leftIdx) such subarrays. Not all of these subarrays cross the
midpoint. If k ≥ mid + 1 and lefIdx≤ mid, then the number of crossing subarrays that k is
the maximum for is (mid-leftIdx)*(rightIdx-k). Similarly, if k ≤ mid and rightIdx≥mid+1, the
number of crossing subarrays that k is the maximum for is (k-leftIdx)*(rightIdx-(mid+1)).

How do we find all k’s that are maximum for at least one crossing subarray? Start with
k=mid if A[mid]>A[mid+1] and k=mid+1 otherwise. We then move the left and the right
pointers as above, and update the answer. Then move k to leftIdx or RightIdx, depending on
which of A[leftIdx] and A[rightIdx] was the smallest, and repeat. Suppose A[leftIdx] was the
smallest. If we were to repeat from scratch, we would need to set rightIdx to k+1, but we know
that all elements between k+1 and the current value of rightIdx are smaller than A[k], and in
particular smaller than A[leftIdx], so it suffices to only reset the left pointer. This is exactly
what leads to linear runtime for ComputeCrossing, and O(n log n) runtime overall.

Page 12 (of 13)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



Algorithm 5 ComputeCrossing(A, start, end,mid)
1: procedure ComputeCrossing(A, start, end,mid)
2: if A[mid]>A[mid+1] then
3: maxIdx=mid
4: else
5: maxIdx=mid+1
6: leftIdx=maxIdx-1, rightIdx=maxIdx+1
7: ans=0
8: while leftIdx>=start and rightIdx<=end do
9: while leftIdx>=start and A[leftIdx]<A[maxIdx] do

10: leftIdx=leftIdx-1 . Move left pointer while possible
11: while rightIdx<=end and A[rightIdx]<A[maxIdx] do
12: rightIdx=rightIdx+1 . Move right pointer while possible
13: if maxIdx>=mid+1 then
14: ans=ans+A[maxIdx]*(rightIdx-maxIdx)*(mid-leftIdx)
15: else
16: ans=ans+A[maxIdx]*(rightIdx-(mid+1))*(maxIdx-leftIdx)
17: if leftIdx<start and rightIdx<=end then
18: maxIdx=rightIdx, rightIdx=maxIdx+1
19: if leftIdx>=start and rightIdx>end then
20: maxIdx=leftIdx, leftIdx=maxIdx-1
21: if leftIdx>=start and rightIdx<=end then
22: if A[leftIdx]>A[rightIdx] then
23: maxIdx=rightIdx, rightIdx=maxIdx+1
24: else
25: maxIdx=leftIdx, leftIdx=maxIdx-1

return ans

4b (5 pts) Give a tight asymptotic bound on the runtime of your algorithm.

Solution: The running time of both solutions are described in the previous sub-problem.

Page 13 (of 13)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov


