
Midterm Exam, Algorithms 2017-2018

• You are only allowed to have a handwritten A4 page written on both sides.

• Communication, calculators, cell phones, computers, etc... are not allowed.

• Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be such that a fellow
student can easily implement the algorithm following the description.

• You are allowed to refer to algorithms covered in class without reproving their proper-
ties.

• Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4

/ 27 points / 18 points / 28 points / 27 points

Total / 100

Page 1 (of 8)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



1 (27 pts) Basic questions. This problem consists of three subproblems.

1a (8 pts) Give tight asymptotic bounds for the following recurrences (assuming that T (1) =
Θ(1)):

(i) T (n) = 2T (n/4) + Θ(
√
n)

(ii) T (n) = 4T (n1/8) + Θ(log n)

(iii) T (n) = 2T (n− 2) + Θ(1)

(iv) T (n) = 16T (n/4) + Θ(n2)

1b (9 pts) Answer true/false questions below (each question worth 1 point):

A binary tree of height h ≥ 1 has at most 2h nodes (recall that a tree with a single node
has height 0). True or False?

The worst-case complexity for searching in a binary search tree is O(log n). True or False?

A max-heap can be built from an unsorted array A[1...n] in time O(n). True or False?

Extracting the maximum element from a max-heap has worst-case runtime Ω(n). True or
False?

If f(n) = n2.1 and g(n) = n2 log n, then f(n) = ω(g(n)). True or False?

If f(n) = 2
√
logn and g(n) = log2 n, then f(n) = o(g(n)). True or False?

An array of size n which contains only zeros and ones can be sorted in linear time using a
constant amount of additional memory. True or False?

If every node in a binary tree has either 0 or 2 children, then the tree has height O(log n).
True or False?

Running merge sort on a sorted array takes O(n) time. True or False?

Page 2 (of 8)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



1c (10 pts) In this problem you are given the code of a function Unknown(str) that takes as
input a string and outputs true or false.

Unknown(str)

1. Initialize an empty stack S
2. n=str.length
3. for i=1 to n
4. if str[i]==’A’ or str[i]==’C’
5. Push(S, str[i])
6. else if str[i]==’B’
7. if Stack-Empty(S) or Pop(S)!=’A’
8. return false
9. else if str[i]==’D’
10. if Stack-Empty(S) or Pop(S)!=’C’
11. return false
12. if Stack-Empty(S)
13. return true
14. else
15. return false

What does Unknown output on inputs below?

1. Unknown("ABBA")=

2. Unknown("ACBD")=

3. Unknown("ABCD")=

4. Unknown("AAAABBBBAAAA")=

5. Unknown("ACDBABCDCDCCDD")=

Page 3 (of 8)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



2 (18 pts) Recurrences. Consider the following algorithm Unknown that takes as input an
integer n:

Unknown(n):

1. if n < 10
2. return
3. Unknown(b4n/5c)
4. for i = 1 to n
5. for j = 1 to i
6. print “Almost done!”
7. Unknown(b3n/5c)
8. return

2a (4 pts) Let T (n) be the time it takes to execute Unknown(n). Give the recurrence
relation for T (n). To simplify notation, you may assume that n/5 always evaluates to an
integer.

2b (14 pts) Prove tight asymptotic bounds on T (n). Specifically, show that T (n) = Θ(na log n)
for some integer a ≥ 0. You may simplify your calculations by assuming that bn/5c = n/5.

Page 4 (of 8)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



3 (28 pts) Crater crossing. As you may (or may not) have heard in the news, the famous Fiery
Crater in the beautiful Swiss Alps has just been opened to the public, and naturally a number of
companies are now trying to establish Tyrolean routes across the crater. Each of the n companies
designated a pair of climbers to set up the route: for every i = 1, . . . , n, the i-th pair of climbers
occupies distinct positions si, ti along the rim of the crater. The rim of the crater is a perfect
circle, and si, ti ∈ [0, 2π) correspond to the angle that the climbers in the i-th pair are positioned
at (see Fig. 1). Every pair of climbers is connected by a tight rope (basically a straight line),
which is the candidate route. There is a major problem, however: the routes intersect! Since
nobody wants to be part of a mid-air collision above a sea of lava, the Swiss Alpine Guides
decided to open a subset of routes that do not intersect, and are hence considered safe. Each
route also has a non-negative fun parameter fi, i = 1, . . . , n, and the Mountain Guides would
like to open a non-intersecting subset of routes that maximizes the total fun. They need your
help.

Input: A collection of n pairs si, ti ∈ [0, 2π) specifying positions of pairs of climbers
on the rim of the crater, for i = 1, . . . , n. The fun parameters fi, i = 1, . . . , n,
for each of the n routes. You can assume that no two climbers occupy the
same position on the rim of the crater.

Output: The maximum possible total fun (sum of fun parameters) achievable by a
non-intersecting subset of routes.

An example problem instance is given in Fig. 1 below. In this instance n = 4, and the fun
parameters of the 4 routes are f1 = f2 = 7, f3 = 1 and f4 = 10. The optimal solution opens
routes 1, 2 and 3, and the total fun is 7 + 7 + 1 = 15.

s1

t1

7

s2

t2

7

s3 t3

1

s4t4
10

Figure 1. Illustration of set of candidate routes si, ti, i = 1, . . . , 4, where s1 = 0, t1 = π/3,
s2 = 2π/3, t2 = π, s3 = 7π/6, t3 = 11π/6, s4 = π/6, t4 = 5π/6. The fun parameters are
f1 = f2 = 7, f3 = 1, f4 = 10. The optimal solution opens routes 1, 2 and 3, and the total fun is
7 + 7 + 1 = 15.

In the following we will design and analyze an efficient algorithm that finds the largest total
fun achievable by a non-intersecting subset of routes.

Page 5 (of 8)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



Let p1, . . . , p2n denote the 2n distinct positions that the climbers occupy along the rim of the
crater, in counterclockwise order starting from an arbitrary climber. In the example in Fig. 1,
if we start with s1 and traverse the positions of the climbers in counterclockwise order, we get
p1 = 0, p2 = π/6, p3 = π/3, p4 = 2π/3, p5 = 5π/6, p6 = π, p7 = 7π/6, p8 = 11π/6. For
every 1 ≤ i ≤ j ≤ 2n let c[i, j] denote the maximum total amount of fun that can be achieved
by opening a non-intersecting set of routes whose endpoints belong to the set {pi, pi+1, . . . , pj}.
Note that c[1, 2n] is the solution that you are asked to find.

3a (23 pts) Explain how to express c[i, j] recursively in terms of values c[a, b] for i < a ≤ b ≤ j.
Write down the recurrence relation together with the base case. You may assume that you
have access to a function Pair(i) that, given an index i ∈ {1, 2, . . . , 2n}, in O(1) time
outputs the index in p of the position of the climber that the climber in position pi is
paired to. In the example above Pair(2)=5 and Pair(5)=2, since the climber in position
2 is paired to the climber in position 5 (since p2 = π/6 = s4 and p5 = 5π/6 = t4).

Page 6 (of 8)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



3b (5 pts) What is the runtime of the bottom-up implementation of the dynamic programming
solution to the problem that uses your recurrence from 3a? Justify your answer.

Page 7 (of 8)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov



4 (27 pts) Tallest mountains. You are planning a hike in the beautiful Swiss Alps again, and
are facing a difficult choice: which mountain range should you go to to maximize opportunities
for fun hikes? In this problem you will design an algorithm for this challenging task.

A mountain range with n mountains can be represented by an array of mountain heights A
of length n, where A[i] for i = 1, . . . , n is the height of the i-th mountain on the horizon from
left to right – see Fig. 2 for an illustration.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Array A[1 . . . 8] = 1 8 4 3 2 7 5 6

Figure 2. Representation of a mountain range as an array A of mountain heights.

A mountain range with n mountains offers n(n+1)/2 different hikes: for every 1 ≤ i ≤ j ≤ n
you can start at the i-th mountain and then visit all mountains i, i + 1, . . . , j in a single trip.
The height hij of a hike from mountain i to mountain j ≥ i is the height of the tallest mountain
that you visit along the way, i.e. for 1 ≤ i ≤ j ≤ n we define

hij := max
i≤k≤j

A[k].

The total height of a mountain range is sum of heights of all hikes 1 ≤ i ≤ j ≤ n, i.e.∑n
i=1

∑n
j=i hij . Your task is to design and analyze an efficient algorithm for computing the

total height of a mountain range.

Input: An array A of integers of length n. You can assume that all elements of A
are distinct.

Output: The total height of A:
∑n

i=1

∑n
j=i hij , where hij = maxi≤k≤j A[k].

A solution that runs in O(n log n) time suffices for full credit (e.g. there exists a divide
and conquer approach similar to what is used for the maximum subarray problem). O(n) time
solutions also exist.

4a (22 pts) Design an efficient algorithm for computing the total height of an array A of n
integers.

4b (5 pts) Give a tight asymptotic bound on the runtime of your algorithm.

Page 8 (of 8)

CS-250 Algorithms, Midterm Exam • Fall 2017
Michael Kapralov


