
Midterm Exam, Algorithms 2015-2016

• You are only allowed to have a handwritten A4 page written on both sides.

• Communication, calculators, cell phones, computers, etc... are not allowed.

• Your explanations should be clear enough and in sufficient detail so that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be so that a fellow student
can easily implement the algorithm following the description.

• Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

/ 16 points / 15 points / 23 points / 23 points / 23 points

Total / 100

Page 1 (of 13)

CS-250 Algorithms, Midterm Exam • Autumn 2015
Ola Svensson

1 (16 pts) Recurrences and Stacks.

1a (8 pts) Give tight asymptotic bounds for the following recurrences (assuming that T (1) = Θ(1)).
You need not justify your answers.

(i) T (n) = 2T (n/4) + Θ(
√
n)

(ii) T (n) = 10T (n/3) + Θ(n)

(iii) T (n) = T (n/2) + T (n/3) + T (n/3) + Θ(n2)

Solution:

Page 2 (of 13)

CS-250 Algorithms, Midterm Exam • Autumn 2015
Ola Svensson

1b (8 pts) Consider the following procedure Unknown that takes as input an array A[1 . . . n]
consisting of n letters and returns true or false.

Unknown(A,n)

1. Let S be an empty stack
4. for i = 1 to bn/2c
5. Push(S,A[i])
6. for j = dn/2e+ 1 to n
7. if A[j] 6= Pop(S)
8. return false
9. return true

What does Unknown(A,n) return on input A = A B B A and n = 4?

Solution:

What does Unknown(A,n) return on input A = O L A and n = 3?

Solution:

In general, give a succinct characterization of the inputs for which the procedure returns
true.

Solution:

Page 3 (of 13)

CS-250 Algorithms, Midterm Exam • Autumn 2015
Ola Svensson

2 (15 pts) Divide and Conquer. The increasing popularity of the Merge-Sort algorithm is
largely due to it being parallelizable. This is a significant advantage when dealing with large
data sets. Here, we will analyze a new variant of merge-sort, called Merge-Sort-Delux, that
could potentially be even better for parallelization. Indeed, instead of partitioning the array
recursively into two subproblems, we will partition the array into

√
n subproblems (all of which

could potentially be sorted recursively on different computers). The pseudo-code is as follows.

Merge-Sort-Delux(A, p, r)

1. Let n = r − p + 1
2. if n > 1
3. k = d

√
ne

4. for i = 1 to k
5. Merge-Sort-Delux(A, p + bnk · (i− 1)c, p + bnk · ic − 1)
6. Merge the k sorted arrays

A
[
p . . .

(
p + bnk c − 1

)]
A
[(
p + bnk c

)
. . .
(
p + bnk · 2c − 1

)]
...

A
[(
p + bnk · (k − 1)c

)
. . . r

]
into one sorted array A[p . . . r].

Recall from the exercises that k sorted arrays containing n elements in total can be merged in
time Θ(n log k) and thus Step 6 takes time Θ(n log k). We also assume that

√
n can be calculated

in constant time.

2a (6 pts) Let T (n) be the time it takes to execute Merge-Sort-Delux(A, p, r) on a single
computer, where n = r−p+1 is the number of elements in the array. Give the recurrence
relation for T (n). To simplify notation, you may assume that

√
n and n/k are integers.

Solution:

Page 4 (of 13)

CS-250 Algorithms, Midterm Exam • Autumn 2015
Ola Svensson

2b (9 pts) Prove that T (n) = O(n log n) using the substitution method.

Solution:

Page 5 (of 13)

CS-250 Algorithms, Midterm Exam • Autumn 2015
Ola Svensson

3 (23 pts) Binary Search Trees.

3a (7 pts) We consider the task of reconstructing a binary search tree from the output of
a postorder walk. Illustrate/draw the binary search tree T for which the output of
Postorder-Tree-Walk(T.root) is 3, 2, 1, 9, 8, 13, 14, 19, 12, 5.

Solution:

Page 6 (of 13)

CS-250 Algorithms, Midterm Exam • Autumn 2015
Ola Svensson

3b (16 pts) Design and analyze an algorithm for the following problem:

Input: An array A[1 . . . n] consisting of n different integers.

Output: A binary search tree T of height blog2(n)c with the integers in A as keys
(the tree should contain exactly one key for each element of A).

Your algorithm should run in time O(n log n).

Solution:

Page 7 (of 13)

CS-250 Algorithms, Midterm Exam • Autumn 2015
Ola Svensson

Continuation of the solution to 3b:

Page 8 (of 13)

CS-250 Algorithms, Midterm Exam • Autumn 2015
Ola Svensson

4 (23 pts) Dynamic Programming. In this problem you are going to help Mourinho get the
Chelsea football club back on track. In particular, you should design an algorithm for buying
the cheapest set of players so that they form a “good team”: their sum of skills should be at least
a threshold T . In our abstract model, we assume that a player’s skill can be characterized by a
single integer. The formal definition of our problem is as follows:

INPUT: A set {1, 2, . . . , n} of n players where each player i is characterized by the fol-
lowing data:

• si ≥ 0 — an integer describing player i’s skill,

• pi ≥ 0 — an integer describing the price of buying player i.

In addition, we are given a non-negative integer T , which is the required sum of skills
of the new players.

OUTPUT: The smallest cost C such that there exists a subset P ⊆ {1, 2, . . . , n} of players
satisfying∑

i∈P
pi = C and

∑
i∈P

si ≥ T.

If no subset P with the required sum of skills exists, the algorithm should output ∞.

4a (13 pts) Let c[i, t] be the minimum cost of a solution to the instance consisting only of the
first i players {1, 2, . . . , i} and with total skill requirement t. In other words, c[i, t] is the
smallest cost such that there exists a subset P ⊆ {1, 2, . . . , i} satisfying∑

i∈P
pi = c[i, t] and

∑
i∈P

si ≥ t.

(Or, simply ∞ if no such subset P exists.)

Complete the recurrence relation for c[i, t] that can be used for dynamic programming.
Also motivate your answers by explaining your reasoning.

Solution:

Page 9 (of 13)

CS-250 Algorithms, Midterm Exam • Autumn 2015
Ola Svensson

Continuation of the solution to 4a:

Page 10 (of 13)

CS-250 Algorithms, Midterm Exam • Autumn 2015
Ola Svensson

4b (10 pts) Consider the following instance of our problem:

i 1 2 3 4 5 6

si 2 1 3 4 4 2
pi 3 1 7 7 6 2

n = 6 and T = 5.

Use the recurrence relation to return the optimal solution by filling in the table of c[i, t]
values below (in a bottom-up dynamic programming fashion). Also, in general, what is
the running time (in Θ-notation) of a bottom-up dynamic programming implementation
as a function of n and T?

Solution:

Table:

0 1 2 3 4 5

0

1

2

3

4

5

6

i
T

The asymptotic running time (as a function of n and T) of solving the problem in a bottom-up
fashion is

Θ

()

Page 11 (of 13)

CS-250 Algorithms, Midterm Exam • Autumn 2015
Ola Svensson

5 (23 pts) Homer Simpson’s crazy-lists. Homer Simpson is not exactly known as the Einstein
of Springfield. In spite of this and unfortunately for us, he has decided to design a linked-list
data structure, which we call crazy-lists. A crazy-list is like a single-linked list with the following
important exception: the last element’s pointer points to a previous element in the list instead
of being nil. Two examples of crazy-lists are as follows:

L.head

·H ·O ·M ·E ·R

L.head

·S ·I ·M ·P ·S ·O ·N

Design and analyze an algorithm that takes as input a crazy-list (i.e., a pointer L.head)
and outputs the number n of elements in that list. The algorithm is not allowed to modify the
input. In addition, your algorithm should run in time O(n) and use a constant amount of
extra space (not counting the memory for storing the list).

If you do not solve the whole problem, you are encouraged to write down your best (partial)
solution.

Hints: Use the “tortoise/turtle (slow) and hare (fast)” technique to detect the cycle. Then
calculate the length of the cycle. After that calculate the length of the path up to the cycle.

Solution:

Page 12 (of 13)

CS-250 Algorithms, Midterm Exam • Autumn 2015
Ola Svensson

Continuation of the solution to 5:

Page 13 (of 13)

CS-250 Algorithms, Midterm Exam • Autumn 2015
Ola Svensson

