=Pr-L

Midterm Exam, CS-250: Algorithms |, 2024

Do not turn the page before the start of the exam. This document is double-sided
and has 8 pages. Do not unstaple.

e The exam consists of three parts. The first part consists of multiple-choice questions
(Problem 1), the second part consists of a short open question (Problem 2), and the last
part consists of three open-ended questions (Problems 3, 4, 5).

e For the open-ended questions, your explanations should be clear enough and in sufficient
detail that a fellow student can understand them. In particular, do not only give pseu-
docode without explanations. A good guideline is that a description of an algorithm should
be such that a fellow student can easily implement the algorithm following the description.

e You are allowed to refer to material covered in the lectures including algorithms and the-
orems (without reproving them). You are however not allowed to simply refer to material
covered in exercises.

Good luck!

Page 1 (of 8)

CS-250 Algorithms | e Spring 2024
Michael Kapralov & Ola Svensson

Problem 1: Multiple Choice Questions (35 points)

For each question, select the correct alternative. Note that each question has exactly one cor-
rect answer. Wrong answers are not penalized with negative points.

la. Asymptotics (7 points). Let f: N\ {0} — R be a function from the positive integers to
the reals. Which of the following implications does not hold?

A. If f(n) =logyn + logy(1 + logy n) for all positive integers n, then f(n) = O(log3n).
B. If f(n) = logy(n!) for all positive integers n, then f(n) = ©(nlogyn).

C. If f(n) = n for all positive integers n, then f(n) = Q(1).

D. If f(n) = n for all positive integers n, then f(n) = O(1).

E. If f(n) = logjggoom for all positive integers n, then f(n) = O(logyn).

Solution. The answer is D. O

1b. Heaps (7 points). Consider the array A=[7[10[6|9 [4] 1] 2 |indexed from 1 to 7.
Which of the following arrays is the result of calling BUILDMAXHEAP on A as shown in class?
Recall that BUILDMAXHEAP works by sequentially calling MAXHEAPIFY.

A f10]9]7[6]4]2]1]

B.[7[10]6]9]4]1]2]

C.l10]7]6]9]4]1]2]

D.[1]2]4[6][7]9]10]

E.[10][9][6][7]4]1]2]

Solution. The answer is E. O

lc. Sorting (7 points). Consider the array B = indexed from 1 to 4. We sort
it using insertion sort by calling INSERTIONSORT(A,n) with A = B and n = 4 (see below for
pseudocode).

INSERTIONSORT(A, n)

1. for j=2,...,n

2: k<« A[j]

i j—1

while ¢ > 0 and A[i] > k
Ali + 1) + Afi]
11— 1

Ali+ 1]« k

print(A)

Page 2 (of 8)

CS-250 Algorithms | e Spring 2024
Michael Kapralov & Ola Svensson

Which of the following sequence of arrays corresponds to the outputs printed in line 87

A 3714, [1][3]7][4],[1]3][4]7]
B.[1]7]4]3],[1]7[3]4],[1]3]4]7]
C.l7[3]4af1],|7]4]3]1],[7][4]3]1]
D.|3[7[1]4],[1][7]3][4],[1]3][4]7]
E [7]4[3]1],[7]4]3]1],[7]4]3]1]
Solution. The answer is A. O

1d. Time analysis (7 points). Consider the following algorithms.

Algorithm I: it takes as input a positive integer n and an array A of n integers, performs opera-
tions that run in ©(1) time in total, computes ¢ = |n/3], calls itself recursively on A[l,...,q],
then performs other operations that run in ©(1) time in total, and finally returns.

Algorithm II: it takes as input a positive integer n and an array A of n integers, performs oper-
ations that run in ©(1) time in total, computes ¢ = |n/3], calls itself recursively on A[l,...,q]
and Aln—q+1,...,n], then performs other operations that run in ©(1) time in total, and finally
returns.

Algorithm III: it takes as input a positive integer n and an array A of n integers, performs oper-
ations that run in O(n) time in total, computes ¢ = [n/3], calls itself recursively on A[l,...,q],
Alg+1,...,2q], A[n — g+ 1,...,n], then performs other operations that run in ©(n) time in
total, and finally returns.

Which of the following statements holds? Hint: logs 2 ~ 0.63.

A. Algorithms I, II, IIT run in time Q(n!/3), O(n?/3), ©(n®/*) respectively.
Algorithms I, I, III run in time ©(logn), Q2(y/n), O(nlogn) respectively.
Algorithms I, II, III run in time ©(logn), O(logn), ©(nlogn) respectively.

Algorithms I, II, IIT all run in time ©(nlogn).

= O a @

Algorithms I, IL, III run in time ©(logn), ©(nlogn), Q(n/?) respectively.

Solution. The answer is B. O

Page 3 (of 8)

CS-250 Algorithms | e Spring 2024
Michael Kapralov & Ola Svensson

le. Data Structures (7 points). Let S be a stack and @ be a queue, initially empty. Consider
the following sequence of operations on S and Q:

PusH(S,1),
ENQUEUE(Q, 4),
Pusu(S, 1),
Pusu(S,4),
ENQUEUE(Q, Pop(S)),

)
ENQUEUE(Q, Pop(S)),
PusH(S, DEQUEUE(Q)).

We recall that POP and DEQUEUE also return the item that they removed from the stack and
queue respectively. Which of the following statements about S and @ holds true after having
run the sequence of operations above?

A. The output of DEQUEUE(Q), POP(S) is 4,1 (in order).
B. The output of DEQUEUE(Q), DEQUEUE(Q) is the same as Popr(S), Pop(S) (in order).
C. The output of PopP(S) is 1.
D. The stack S contains only 1’s and the queue @) contains 1’s and 4’s.
E. The stack S contains 1’s and 4’s and the queue) contains only 4’s.
Solution. The answer is B. O

Page 4 (of 8)

CS-250 Algorithms | e Spring 2024
Michael Kapralov & Ola Svensson

Problem 2: Magical Computation (10 points)

Consider the following procedure UNKNOWN that takes as input an array A[¢...r] of n = r—{(+1
numbers with the left-index ¢ and the right-index r:

UNKNOWN(A, ¢, r)

1L.ifl>r

2. return 0
3. elseif £ =r

4 return A[/]

3. else

4. p L+ [

5. g r— [

6 Terml < UNKNOWN(A, ¢, p)

7 Term?2 < UNKNOWN(A,p +1,q)
8 Term3 < UNKNOWN(A, g+ 1,7)
9 return Terml + Term2 + Termd

2a. (5 points)Let A[1...8] =3 [7[5[5][2]3]1]9] Whatdoesacall to UNKNOWN(A, 1, 8)
return?

Solution. 35 (the sum of elements in A) O

2b. (5 points) Let T'(n) be the time it takes to execute UNKNOWN(A, ¢,) where n =7 — ¢+ 1
is the number of elements in the array. Give the recurrence relation of 7'(n).

Solution. T'(n) = T(2) + 2T(%) + ©(1), T(1) = O(1). O

Page 5 (of 8)

CS-250 Algorithms | e Spring 2024
Michael Kapralov & Ola Svensson

Problem 3: Searching in a mountain (20 points)

Consider an array A containing n distinct integers. It is indexed starting at 1, i.e. its first
element is A[1] and last element is A[n].

The array has the following structure: there is an unknown index k& (1 < k < n) such that
the array is increasing until its k** element and decreasing afterwards. More precisely A[1] <
A[2]... < Alk] and Alk] > A[k + 1] > ... > A[n]. For example, the array [8,9, 13,10, 4] satisfies
the property for k = 3.

You need to design and analyze an algorithm that searches for an integer x in the array A. If =
is in A then you should return the index of z in A, otherwise return —1.

Your algorithm must run in O(logn) time.

(You will receive partial points (10 out of 20) if you design an algorithm with O(logn) running
time assuming the index k is given to you.)

Solution. The first part of the algorithm will be to use binary search to find the pivot index
k. We do a binary search with the following modification - we first take the middle element of
arr. If the elements to its right and left are smaller than itself, then this is the index k. If the
element to its left is bigger then k lies in the left half of arr, otherwise it lies in the right half.
Thus we recursively repeat this strategy on either the left or right half to find %, and thus this
procedure runs in O(logn) time.

After we know k, then we just search for x using a standard binary search in both the sub
arrays [A[1],..., A[k]] and [A[k],..., A[n]]. Both of these searches can be done in O(logn) time.
Thus the total runtime of both the phases of the algorithm is O(logn). U

Page 6 (of 8)

CS-250 Algorithms | e Spring 2024
Michael Kapralov & Ola Svensson

Problem 4: Finding the highest peaks (15 points)

Alice, who recently relocated to Switzerland, thrives on adventure and hiking challenges. Eager
to take on the hardest challenges, she sets out to identify highest mountains of Switzerland.
Armed with an array containing the heights of all N Swiss mountains, she faces a daunting task
due to Switzerland’s abundance of peaks. Alice seeks an efficient algorithm to determine the
heights of the v/N highest mountains. As an experienced algorithm designer, she looks for a
solution that runs in O(N) time complexity. Can you assist her in this endeavor? Your task is
to design and analyze an algorithm which, given an array of N positive integers, outputs the
V'N highest numbers and runs in O(N) time.

For your convenience you can assume that v/ N is an integer.

Solution. The algorithm that we will run is the following. First, we will create a max-heap
that contains all of the input array’s numbers. As we know from the class, this procedure can be
implemented in O(N) time. Then, we can simply repeadetly extract the maximum height from
the heap and fix it so that it remains a heap. Extracting one number and fixing the heap can be
implemented in O(log N) time. Since we only need to do v/N extractions, the total complexity
of our algorithm will be O(N + v/Nlog N) = O(N).

The pseudocode of our algorithm is the following:

Algorithm 1 Find-Highest-Peaks
1: procedure FINDHIGHESTPEAKS(heights, n)
2: highest « empty array of size \/n

3: heap < empty array of size n

4: Build-Heap(heap, heights, n);

5: heapSize = n;

6: fori=n; i>n—+/n;i=i—1do

7 highestin — i + 1] = heap[1] > keeping the max height
8: swap(heap|1],heap[heapSize]) > swap the first element with the last
9: heapSize = heapSize — 1 > decrease the heap size by 1
10: Max-Heapify(heap, 1, heapSize) > fix the heap
11: end for

12: return highest

13: end procedure

Page 7 (of 8)

CS-250 Algorithms | e Spring 2024
Michael Kapralov & Ola Svensson

Problem 5: Mirror mirror on the wall (20 points)

For a binary tree T, the mirror tree M (T') is another binary tree where the children of all non-leaf
nodes are interchanged. In other words, the left child of every node becomes its right child and
the right child becomes its left child. An example of a tree and its mirror tree can be seen in
Figure 1.

Figure 1.

Input Tree: T Mirror: M(T)

Your task is to design and analyze an algorithm that, given a binary tree of n nodes, outputs its
mirror image in time O(n).

Solution. The idea is to use is a simple recursive algorithm, as follows. If the tree is empty the
algorithm does nothing. Otherwise it recursively assigns the left sub-tree of the current node in
the new tree to be the mirror of the right sub-tree of the current root in the original tree and
similarly the right sub-tree of the current node of the new tree as the mirror of the left sub-tree
of the current root in the original tree. The procedure is described formally in the following
pseudocode.

Procedure MirrorTree(node)
If node is not null
// Swap the left and right children of node
temp = node.left
node.left = node.right
node.right = temp

// Call MirrorTree on the left child of node
If node.left is not null
MirrorTree(node.left)

// Call MirrorTree on the right child of node

If node.right is not null
MirrorTree(node.right)

Page 8 (of 8)

CS-250 Algorithms | e Spring 2024
Michael Kapralov & Ola Svensson

