I

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Midterm Exam, Algorithms 2015-2016

e You are only allowed to have a handwritten A4 page written on both sides.

e Communication, calculators, cell phones, computers, etc... are not allowed.

e Your explanations should be clear enough and in sufficient detail so that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be so that a fellow student
can easily implement the algorithm following the description.

e Do not touch until the start of the exam.

Good luck!
Name: N° Sciper:
Problem 1 | Problem 2 | Problem 3 | Problem 4 | Problem 5
/ 16 points | / 15 points | / 23 points | / 23 points | / 23 points
Total / 100

Page 1 (of 11)

CS-250 Algorithms, Midterm Exam

Ola Svensson

e Autumn 2015

1 (16 pts) Recurrences and Stacks.

la (8 pts) Give tight asymptotic bounds for the following recurrences (assuming that 7(1) = ©(1)).
You need not justify your answers.

(i) T(n) =2T(n/4) + O6(V/n)
(ii) T'(n) =107 (n/3) + O(n)
(iii) T(n) = T(n/2) +T(n/3) + T(n/3) + O(n?)

Solution:
(i) T'(n) =2T(n/4) + O(y/n) = ©(y/nlogn)
(ii) T(n) = 10T (n/3) + O(n) = O(n'°8:(10))
(iii) T(n) = T(n/2) + T(n/3) + T(n/3) + O(n?) = O(n?)

1b (8 pts) Consider the following procedure UNKNOWN that takes as input an array A[l...n]
consisting of n letters and returns true or false.

UNKNOWN(A, n)

. Let S be an empty stack
. fori=1to [n/2|
PusH(S, A[i])
.for j=[n/2]|+1ton
if A[j] # Por(S)
return false
return true

© 0 NS oA

What does UNKNOWN(A, n) return on input A :’ A ‘ B ‘ B ‘ A ‘ and n = 47

Solution: true
What does UNKNOWN(A, n) return on input A = m and n = 37

Solution: false

In general, give a succinct characterization of the inputs for which the procedure returns
true.

Solution: The procedure returns true if and only if the word/phrase represented by A is
a palindrome, i.e., it reads the same backward and forward.

Page 2 (of 11)

CS-250 Algorithms, Midterm Exam e Autumn 2015
Ola Svensson

2 (15 pts) Divide and Conquer. The increasing popularity of the MERGE-SORT algorithm is
largely due to it being parallelizable. This is a significant advantage when dealing with large
data sets. Here, we will analyze a new variant of merge-sort, called MERGE-SORT-DELUX, that
could potentially be even better for parallelization. Indeed, instead of partitioning the array
recursively into two subproblems; we will partition the array into /n subproblems (all of which
could potentially be sorted recursively on different computers). The pseudo-code is as follows.

MERGE-SORT-DELUX(A, p,7)

1. Letn=r—p+1
2. ifn>1

3. k=[]

4 fori=1tok
5. MERGE-SORT-DELUX (A, p+ |7 - (i = 1)|,p+ |F-i] = 1)
6. Merge the k sorted arrays

Alp...(p+ 2] - 1)]
Alp+ 1)) -+ F 2] - 1)

Allp+ [E-(k=1)])...7]

into one sorted array Alp...r].

Recall from the exercises that k sorted arrays containing n elements in total can be merged in
time O(nlog k) and thus Step 6 takes time ©(nlog k). We also assume that y/n can be calculated
in constant time.

2a (6 pts) Let T'(n) be the time it takes to execute MERGE-SORT-DELUX(A, p,7) on a single
computer, where n = r—p-+1 is the number of elements in the array. Give the recurrence
relation for T'(n). To simplify notation, you may assume that y/n and n/k are integers.

Solution: The divide and combine step is dominated by Step 6 which takes time O(nlogk)
where k = /n = n'/? so this is ©(nlogn). In the conquer step, k = \/n subproblems of size
n/+/n are solved recursively.

This gives us the recurrence

T(n) O(1) if n =1 (or a constant)
n) =
Vn-T(n/y/n)+ O(nlogn) otherwise

Page 3 (of 11)

CS-250 Algorithms, Midterm Exam e Autumn 2015
Ola Svensson

2b (9 pts) Prove that T'(n) = O(nlogn) using the substitution method.

Solution: We prove T'(n) = O(nlogn) by showing that there exists a constant d > 0 such that
T(n) < dnlogn for all n > 1. As always, the base case is trivial by selecting d large enough.

Now consider the inductive step (with the induction hypothesis that T'(n") < dn'logn’ for
all n’ < n). For some constant ¢ > 0 we have that

T(n) =+/nT(v/n)+c-nlogn
< Vndy/nlog(yv/n) +c-nlogn
= dnlog(n'/?) + c-nlogn

d
= énlognJrcnlogn

< dnlogn (by selecting d > 2c).

Page 4 (of 11)

CS-250 Algorithms, Midterm Exam e Autumn 2015
Ola Svensson

3 (23 pts) Binary Search Trees.
3a (7 pts) We consider the task of reconstructing a binary search tree from the output of

a postorder walk. Illustrate/draw the binary search tree T for which the output of
POSTORDER-TREE-WALK(T.root) is 3,2,1,9,8,13,14,19,12, 5.

Solution:

3b (16 pts) Design and analyze an algorithm for the following problem:

Input: An array A[l...n] consisting of n different integers.

Output: A binary search tree T of height |logy(n)] with the integers in A as keys
(the tree should contain exactly one key for each element of A).

Your algorithm should run in time O(nlogn).

Solution: In order to construct our tree, we first sort A in non-decreasing order using Merge-
sort. Then, we will apply a recursive procedure REC to the sorted array A; REC receives as
input an array, and outputs the root node of a balanced binary search tree whose keys are the
elements of A. REC works as follows: given array B of length k as input, REC constructs a
root node r whose key is B[|k/2] + 1]; then, the left child of r is set to be the root of the tree
constructed by REC(BJ1,...|k/2]]), and the right child of r is set to be the tree constructed by
REC(B[|k/2] + 2,k]).

Let us now analyze our algorithm; first, we analyze its running time. The sorting takes time
O(nlogn), and the running time of constructing the tree is expressed by the following recurrence:

T(n)=T(n/2)+ O(1)

which means (using the Master Theorem) that T'(n) = O(n). Hence, the total running time is
O(nlogn).

Now, let us see why the algorithm works: first of all, the fact that the output is a binary
search tree can be easily proved by observing that (due to the fact that A is sorted) the left child

Page 5 (of 11)

CS-250 Algorithms, Midterm Exam e Autumn 2015
Ola Svensson

of a node of a node r has always smaller key than r, and the right child of a node r has always
larger key than r. To see that the resulting tree has height |logn], it suffices to observe that
every level i of the tree has exactly 27! nodes, except possibly for the last one.

Here is the complete description of the algorithm:

function MAIN(B, z,y)
Sort B using Merge-sort
l<—z—y+1
Create node r with r.key = B[z + |1/2]]
if [> 2 then
rleft <~ REC(B,z,z + |I/2] — 1)
end if
if [> 3 then
r.right < REC(B,x + [1/2] + 1,y)
end if
return r
end function
function REC(B, z,y)
l<—z—y+1
Create node r with r.key = B[z + |1/2]]
if [> 2 then
rleft <~ REC(B,z,z + |I/2] — 1)
end if
if [> 3 then
r.right < REC(B,x + [1/2] +1,y)
end if
return r
end function

To solve the problem, we run MAIN(A, 1,n).

Page 6 (of 11)

CS-250 Algorithms, Midterm Exam e Autumn 2015
Ola Svensson

4 (23 pts) Dynamic Programming. In this problem you are going to help Mourinho get the
Chelsea football club back on track. In particular, you should design an algorithm for buying
the cheapest set of players so that they form a “good team”: their sum of skills should be at least
a threshold T. In our abstract model, we assume that a player’s skill can be characterized by a
single integer. The formal definition of our problem is as follows:

INPUT: A set {1,2,...,n} of n players where each player ¢ is characterized by the fol-
lowing data:

e 5; > 0 — an integer describing player ’s skill,

e p; > 0 — an integer describing the price of buying player 1.

In addition, we are given a non-negative integer 7', which is the required sum of skills
of the new players.

OUTPUT: The smallest cost C such that there exists a subset P C {1,2,...,n} of players

satisfying
ZPz’ZC and ZSiZT‘
i€P ieP

If no subset P with the required sum of skills exists, the algorithm should output oco.

4a (13 pts) Let c[i,t] be the minimum cost of a solution to the instance consisting only of the
first 7 players {1,2,...,i} and with total skill requirement ¢. In other words, c[i,] is the
smallest cost such that there exists a subset P C {1,2,...,i} satisfying

Zpi = ci, t] and Zsi > t.
icP icP
(Or, simply oo if no such subset P exists.)

Complete the recurrence relation for c[i, t| that can be used for dynamic programming.
Also motivate your answers by explaining your reasoning.

Solution:

00 fi=0and ¢t >0

0 ifi=0andt=0

) cli — 1,1, .
min ifi1>0
pi+cfi —1,(t—s;)"]

Here, we used the notation (a)™ to denote max{a,0}. The motivation of our solution is that the
interesting case (when i > 0) is the minimum of two choices: either we buy player i or not. If we
don’t buy him then we need to meet the requirement t with players {1,...,7 — 1} in an optimal
way which costs c[i — 1,t]. Otherwise, if we buy player i then we need to pay p; and meet the
requirement (¢ —s;)" with players {1,...,4— 1} in an optimal way which costs c[i — 1, (t — s;)T].
For the base cases, assume we have no player. By choosing none of them, we can get a team of

Page 7 (of 11)

CS-250 Algorithms, Midterm Exam e Autumn 2015
Ola Svensson

cost zero with total sum of skills equal to zero, so the cost is zero for the case when ¢ = 0, = 0.
On the other hand, it is not possible to have a team with positive skills, therefore, the cost is oo
in the case when i = 0,¢ > 0.

Page 8 (of 11)

CS-250 Algorithms, Midterm Exam e Autumn 2015
Ola Svensson

4b

(10 pts) Consider the following instance of our problem:

i |1

2
1 n==6and T =5.
1

~N WlWw
|
Y | O
N NS

S; 2
pi|3
Use the recurrence relation to return the optimal solution by filling in the table of c[i, ¢]
values below (in a bottom-up dynamic programming fashion). Also, in general, what is

the running time (in ©-notation) of a bottom-up dynamic programming implementation
as a function of n and T7

Solution:

Table:

0 0 00 00 o0 00 00
1 0 3 3 o0 o0 00
2 0 1 3 4 o0 00
3 0 1 3 4 8 10
4 0 1 3 4 7 8
5 0 1 3 4 6 7
6 0 1 2 3 5 6

The asymptotic running time (as a function of n and T) of solving the problem in a bottom-up
fashion is

@(nT)

for the recurrence given in 4a. Other solutions/recurrences may have a different running

time.

Page 9 (of 11)

CS-250 Algorithms, Midterm Exam e Autumn 2015
Ola Svensson

5 (23 pts) Homer Simpson’s crazy-lists. Homer Simpson is not exactly known as the Einstein
of Springfield. In spite of this and unfortunately for us, he has decided to design a linked-list
data structure, which we call crazy-lists. A crazy-list is like a single-linked list with the following
important exception: the last element’s pointer points to a previous element in the list instead
of being nil. Two examples of crazy-lists are as follows:

s N

L.head

21 K 5 5 e V15 g 1 K 1

L.head

1 Y1 e 5 e 51 K e Y e N

. J

Design and analyze an algorithm that takes as input a crazy-list (i.e., a pointer L.head)
and outputs the number n of elements in that list. The algorithm is not allowed to modify the
input. In addition, your algorithm should run in time O(n) and use a constant amount of
extra space (not counting the memory for storing the list).

If you do not solve the whole problem, you are encouraged to write down your best (partial)
solution.

Hints: Use the “tortoise/turtle (slow) and hare (fast)” technique to detect the cycle. Then
calculate the length of the cycle. After that calculate the length of the path up to the cycle.

Solution:

1. Let slow and fast be two pointers, initially initialised to L.head and L.head.next respec-
tively, such that slow makes one move at a time (i.e., slow = slow.next) and fast makes
two moves (i.e., fast = fast.next).

2. We detect the cycle the first time slow and fast meet, but we still need to calculate the
length of this cycle. To do this we create a counter cLen that we set to 1.

3. We walk around the cycle again with both pointers while incrementing cLen at each time.
When they meet again, cLen will be exactly the length of the cycle.

4. We now create a counter LenToC' = 1, and 2 new pointers, call them pl and p2, such that
pl = L.head and p2 is cLen steps away from L.head. We move each pointer 1 step at a
time while incrementing LenToC', and when they meet is easy to see that LenToC will be
exactly the length from head up until the start of the cycle.

5. The total number of elements in the list is now simply n = cLen + LenToC'.

Page 10 (of 11)

CS-250 Algorithms, Midterm Exam e Autumn 2015
Ola Svensson

Space Requirement: O(1), as we only create 4 pointers (we can infact reuse slow and fast
instead of creating pl and p2) and 2 counters.

Time Requirement: Let n be the total number of elements in the list, and ¢ the length of
the cycle. It is easy to see that step [2] takes ¢ moves, and step [takes n moves. It remains
to see how much does step [1] take.

We know that after n—c moves, both slow and fast are inside the cycle, which means that
they are at distance at most ¢ from each others. Note that at each step, since ¢ increases
by 1, and h increases by 2, the hare will be one step closer to the turtle, and hence they
will collide after at most ¢ moves after entering the cycle.

Hence [l] takes at most n — ¢ + ¢ = n steps. Therefore the overall running time is O(n).

Page 11 (of 11)

CS-250 Algorithms, Midterm Exam e Autumn 2015
Ola Svensson

