

Midterm Exam, Algorithms 2014-2015

- You are only allowed to have a handwritten A4 page written on both sides.
- Communication, calculators, cell phones, computers, etc... are not allowed.
- Your explanations should be clear enough and in sufficient detail so that a fellow student can understand it. In particular, do not only give pseudocode without explanations. A good guideline is that a description of an algorithm should be so that a fellow student can easily implement the algorithm following the description.
- **Do not touch until the start of the exam.**

Good luck!

Name: _____ N° Sciper: _____

Problem 1	Problem 2	Problem 3	Problem 4
/ 25 points	/ 25 points	/ 25 points	/ 25 points

Total / 100

1 (25 pts) Recurrences, Stacks, and Trees.

1a (9 pts) Give tight asymptotic bounds for the following recurrences (assuming that $T(1) = \Theta(1)$):

(i) $T(n) = 2T(n/4) + \Theta(1)$

(ii) $T(n) = 2T(n/4) + \Theta(n)$

(iii) $T(n) = 8T(n/4) + \Theta(n)$

(iv) $T(n) = 32T(n/4) + \Theta(n^{2.5})$

Solution:

1b (8 pts) Consider the following procedure UNKNOWN that takes as input an integer $n \geq 0$.

```
UNKNOWN(n)
1. Let S be an empty stack
2. PUSH(S, 1)
3. PUSH(S, 1)
4. while n > 1
5.     tmp1 = POP(S)
6.     tmp2 = POP(S)
7.     PUSH(S, tmp1)
8.     PUSH(S, tmp1 + tmp2)
9.     n = n - 1
10.    return POP(S)
```

Write a recursive formulation of UNKNOWN(n), i.e., write UNKNOWN(n) as a function of UNKNOWN(0), UNKNOWN(1), ..., UNKNOWN($n - 1$) whenever $n \geq 2$. Also indicate the value of UNKNOWN(n) when $n = 0$ and $n = 1$.

Solution:

1c (8 pts) Illustrate/draw the binary search tree obtained by executing

1. Let T be an empty binary search tree
2. TREE-INSERT($T, 9$)
3. TREE-INSERT($T, 5$)
4. TREE-INSERT($T, 2$)
5. TREE-INSERT($T, 12$)
6. TREE-INSERT($T, 13$)
7. TREE-INSERT($T, 7$)
8. TREE-INSERT($T, 10$)

Is it a good binary search tree for the given set of keys? Motivate your answer.

Solution:

- 2 (25 pts) **Divide-and-Conquer.** Consider the procedure POWER that takes as input a number a , a non-negative integer n and returns a^n :

```
POWER( $a, n$ )
1. if  $n = 0$ 
2.     return 1
3. if  $n = 1$ 
4.     return  $a$ 
5.  $q = \lfloor \frac{n}{4} \rfloor + 1$ 
6. return POWER( $a, q$ ) · POWER( $a, n - q$ )
```

- 2a (10 pts) Let $T(n)$ be the time it takes to invoke $\text{POWER}(a, n)$. Then the recurrence relation of $T(n)$ is

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 0 \text{ or } n = 1, \\ T(\lfloor n/4 \rfloor + 1) + T(n - \lfloor n/4 \rfloor - 1) + \Theta(1) & \text{if } n \geq 2. \end{cases}$$

Prove that $T(n) = O(n)$ using the substitution method.

In your proof you may ignore the floor function, i.e., you can replace $\lfloor n/4 \rfloor$ by $n/4$.

Solution:

Do not forget subproblem 2b on page 6.

Continuation of the solution to 2a:

- 2b** (15 pts) **Design** and **analyze** a modified procedure $\text{FASTPOWER}(a, n)$ that returns the same value a^n but runs in time $\Theta(\log n)$.

A solution that only works when n is a power of 2, i.e., $n = 2^k$ for some integer $k \geq 0$, gives partial credits.

(Note that a^n is *not* a basic instruction and should therefore not be used.)

Solution:

- 3 (25 pts) Dynamic Programming.** Consider the weighted version of the classic change making problem that addresses the following question: how can a given amount of money be made with the least weight of coins of given denominations and weights? The formal definition is as follows:

INPUT: a set of n integer coin values $\{v_1, v_2, \dots, v_n\}$ with associated weights $\{w_1, w_2, \dots, w_n\}$ and a positive integer T . The coin values satisfy $v_1 = 1$ and $v_i \leq v_{i+1}$ for $i = 1, \dots, n - 1$.

OUTPUT: The smallest weight W such that there exist non-negative integers x_1, x_2, \dots, x_n satisfying

$$\sum_{i=1}^n x_i \cdot v_i = T \quad \text{and} \quad \sum_{i=1}^n x_i \cdot w_i = W.$$

Here x_i stands for the number of times the coin of value v_i is used to achieve the total value T .

An example input is the following:

i	1	2	3
v_i	1	2	5
w_i	6	14	29

The correct output to the above input is 41 as the smallest weight change is to use $x_1 = 2$ coins of value v_1 and $x_2 = 0$ coins of value v_2 and $x_3 = 1$ coin of value v_3 .

- 3a (10 pts)** Let $r[t]$ equal the minimum weight W_t required to achieve a total value of t , i.e., such that there exist non-negative integers x_1, x_2, \dots, x_n satisfying

$$\sum_{i=1}^n x_i \cdot v_i = t \quad \text{and} \quad \sum_{i=1}^n x_i \cdot w_i = W_t.$$

Complete the recurrence relation for $r[t]$ that can be used for dynamic programming.

Solution:

$$r[t] = \begin{cases} \infty & \text{if } t < 0 \\ \underline{\hspace{10cm}} & \text{if } t = 0 \\ \underline{\hspace{10cm}} & \text{if } t > 0 \end{cases}$$

- 3b (15 pts)** Use either the bottom-up approach or top-down with memoization to **design an efficient algorithm** for the weighted change making problem. You should also **give a tight analysis** of the running time of your algorithm.

(write your solution to 3b on next page)

Solution to 3b:

4 (25 pts) **Heaps.** Consider the following problem:

INPUT: A positive integer k and an array $A[1 \dots n]$ consisting of $n \geq k$ integers that satisfy the max-heap property, i.e., A is a max-heap.

OUTPUT: An array $B[1 \dots k]$ consisting of the k largest integers of A sorted in non-decreasing order.

Design and **analyze** an efficient algorithm for the above problem. Ideally your algorithm should run in time $O(k \log k)$ but the worse running time of $O(\min\{k \log n, k^2\})$ is also acceptable.

Slightly slower algorithms give partial credits.

Solution:

Continuation of the solution to 4: