
Midterm Exam, Algorithms 2014-2015

� You are only allowed to have a handwritten A4 page written on both sides.

� Communication, calculators, cell phones, computers, etc... are not allowed.

� Your explanations should be clear enough and in su�cient detail so that a fellow student

can understand it. In particular, do not only give pseudocode without explanations. A

good guideline is that a description of an algorithm should be so that a fellow student

can easily implement the algorithm following the description.

� Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4

/ 25 points / 25 points / 25 points / 25 points

Total / 100
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1 (25 pts) Recurrences, Stacks, and Trees.

1a (9 pts) Give tight asymptotic bounds for the following recurrences (assuming that T (1) = Θ(1)):

(i) T (n) = 2T (n/4) + Θ(1)

(ii) T (n) = 2T (n/4) + Θ(n)

(iii) T (n) = 8T (n/4) + Θ(n)

(iv) T (n) = 32T (n/4) + Θ(n2.5)

Solution:

1b (8 pts) Consider the following procedure Unknown that takes as input an integer n ≥ 0.

Unknown(n)

1. Let S be an empty stack
2. Push(S, 1)
3. Push(S, 1)
4. while n > 1
5. tmp1 = Pop(S)
6. tmp2 = Pop(S)
7. Push(S, tmp1)
8. Push(S, tmp1 + tmp2)
9. n = n− 1
10. return Pop(S)

Write a recursive formulation of Unknown(n), i.e., write Unknown(n) as a function
of Unknown(0), Unknown(1), . . . , Unknown(n− 1) whenever n ≥ 2. Also indicate the
value of Unknown(n) when n = 0 and n = 1.

Solution:
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1c (8 pts) Illustrate/draw the binary search tree obtained by executing

1. Let T be an empty binary search tree
2. Tree-Insert(T, 9)
3. Tree-Insert(T, 5)
4. Tree-Insert(T, 2)
5. Tree-Insert(T, 12)
6. Tree-Insert(T, 13)
7. Tree-Insert(T, 7)
8. Tree-Insert(T, 10)

Is it a good binary search tree for the given set of keys? Motivate your answer.

Solution:
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2 (25 pts) Divide-and-Conquer. Consider the procedure Power that takes as input a number
a, a non-negative integer n and returns an:

Power(a, n)

1. if n = 0
2. return 1
3. if n = 1
4. return a
5. q = bn4 c + 1
6. return Power(a, q)· Power(a, n− q)

2a (10 pts) Let T (n) be the time it takes to invoke Power(a, n). Then the recurrence relation
of T (n) is

T (n) =

{
Θ(1) if n = 0 or n = 1,

T (bn/4c+ 1) + T (n− bn/4c − 1) + Θ(1) if n ≥ 2.

Prove that T (n) = O(n) using the substitution method.

In your proof you may ignore the �oor function, i.e., you can replace bn/4c by n/4.

Solution:

Do not forget subproblem 2b on page 6.
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Continuation of the solution to 2a:

Page 5 (of 10)

CS-250 Algorithms, Midterm Exam � Autumn 2014
Ola Svensson



2b (15 pts) Design and analyze a modi�ed procedure FastPower(a, n) that returns the
same value an but runs in time Θ(log n).

A solution that only works when n is a power of 2, i.e., n = 2k for some integer k ≥ 0,
gives partial credits.

(Note that an is not a basic instruction and should therefore not be used.)

Solution:
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3 (25 pts) Dynamic Programming. Consider the weighted version of the classic change making
problem that addresses the following question: how can a given amount of money be made with
the least weight of coins of given denominations and weights? The formal de�nition is as follows:

INPUT: a set of n integer coin values {v1, v2, . . . , vn} with associated weights
{w1, w2, . . . , wn} and a positive integer T . The coin values satisfy v1 = 1
and vi ≤ vi+1 for i = 1, . . . , n− 1.

OUTPUT: The smallest weight W such that there exist non-negative integers
x1, x2, . . . , xn satisfying

n∑
i=1

xi · vi = T and
n∑

i=1

xi · wi = W.

Here xi stands for the number of times the coin of value vi is used to achieve
the total value T .

An example input is the following:

T = 7 and there are n = 3 coin values:

i 1 2 3

vi 1 2 5
wi 6 14 29

The correct output to the above input is 41 as the smallest weight change is to use x1 = 2
coins of value v1 and x2 = 0 coins of value v2 and x3 = 1 coin of value v3.

3a (10 pts) Let r[t] equal the minimum weight Wt required to achieve a total value of t, i.e.,
such that there exist non-negative integers x1, x2, . . . , xn satisfying

n∑
i=1

xi · vi = t and
n∑

i=1

xi · wi = Wt.

Complete the recurrence relation for r[t] that can be used for dynamic programming.

Solution:

r[t] =



∞ if t < 0

if t = 0

if t > 0

3b (15 pts) Use either the bottom-up approach or top-down with memoization to design an
e�cient algorithm for the weighted change making problem. You should also give a
tight analysis of the running time of your algorithm.

(write your solution to 3b on next page)
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Solution to 3b:
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4 (25 pts) Heaps. Consider the following problem:

INPUT: A positive integer k and an array A[1 . . . n] consisting of n ≥ k integers
that satisfy the max-heap property, i.e., A is a max-heap.

OUTPUT: An array B[1 . . . k] consisting of the k largest integers of A sorted in
non-decreasing order.

Design and analyze an e�cient algorithm for the above problem. Ideally your algorithm should
run in time O(k log k) but the worse running time of O(min{k log n, k2}) is also acceptable.

Slightly slower algorithms give partial credits.

Solution:
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Continuation of the solution to 4:
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