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e The exam consists of two parts. The first part consists of four multiple choice questions and the
second part consists of four open-ended questions.
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CATALOG

First part: multiple choice questions

For each question, mark the box corresponding to the correct answer.

correct answer. You do not need to justify your answers in this part.

Question [SCQ-01] :
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Question [SCQ-02] : (8 pts)
Consider the following undirected graph with edge weights:

SR

6 10 14 18

; e D

What are the weights of the edges (in the correct order) added to the solution by Dijkstra’s and Prim’s
algorithms starting from a, i.e., with source a? Recall that Dijkstra’s algorithm calculates a shortest path
tree with source a and Prim’s algorithm calculates a minimum spanning tree.

o o o o o o o o

The weights of the edges added by Dijkstra’s algorithm (in the correct order) is 6,8,5,10,11,17.
The weights of the edges added by Prim’s algorithm (in the correct order) is 6,3,5,9,11,17.

The weights of the edges added by Dijkstra’s algorithm (in the correct order) is 6,3,5,9,11,17.
The weights of the edges added by Prim’s algorithm (in the correct order) is 6, 8,5,10,11,17.

The weights of the edges added by Dijkstra’s algorithm (in the correct order) is 6,8,5,10,11,17.
The weights of the edges added by Prim’s algorithm (in the correct order) is 3,5,6,9,11,17.

The weights of the edges added by Dijkstra’s algorithm (in the correct order) is 3,5,6,9,11,17.
The weights of the edges added by Prim’s algorithm (in the correct order) is 6,8, 5,10, 11, 17.

The weights of the edges added by Dijkstra’s algorithm (in the correct order) is 5,6,8,10,11,17.
The weights of the edges added by Prim’s algorithm (in the correct order) is 6,3,5,9,11,17.

The weights of the edges added by Dijkstra’s algorithm (in the correct order) is 6,3,5,9,11,17.
The weights of the edges added by Prim’s algorithm (in the correct order) is 5,6,8,10,11,17.

The weights of the edges added by Dijkstra’s algorithm (in the correct order) is 5,6,8,10,11,17.
The weights of the edges added by Prim’s algorithm (in the correct order) is 3,5,6,9,11,17.

The weights of the edges added by Dijkstra’s algorithm (in the correct order) is 3,5,6,9,11,17.
The weights of the edges added by Prim’s algorithm (in the correct order) is 5,6,8,10,11,17.

The weights of the edges added by Dijkstra’s algorithm (in the correct order) is 6,3,5,9,11,17.
The weights of the edges added by Prim’s algorithm (in the correct order) is 6,3,5,9,11,17.
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Question [SCQ-03] : (8 pts) Assume the following flow network and corresponding flow of value 13 (the
numbers on an edge determine its current flow and its capacity).

A

3/10 10/10

10/20 3/20

Starting with the depicted flow, what is the value of the flow obtained by running one iteration of the
Ford-Fulkerson algorithm that chooses the fattest augmenting path (the one with the largest bottleneck).

- The value of the obtained flow is 20.

D The value of the obtained flow is 15.

[ ] The value of the obtained flow is 13.

D The value of the obtained flow is 17.

|:| The value of the obtained flow is 21.

|:| The value of the obtained flow is 14.

D The value of the obtained flow is 16.

[ ] The value of the obtained flow is 18.

D The value of the obtained flow is 19.
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Question [SCQ-04] : (8 pts) Consider an undirected graph G = (V, E) where each vertex has degree three,
i.e., each vertex is incident to exactly three edges. Now suppose we color the edges of G as follows:

Each edge is independently colored red, green, or blue uniformly at random (i.e., each of the
three colors is equally likely).

We say that a vertex is monochromatic if all its three incident edges are colored with the same color. What
is the expected number of monochromatic vertices?

B The expected number of monochromatic vertices is |V]/9.

[ ] The expected number of monochromatic vertices is |V]/3.

[ ] The expected number of monochromatic vertices is |V|/27.

[ ] The expected number of monochromatic vertices is |E|/9.

[ ] The expected number of monochromatic vertices is | E|/3.

[ ] The expected number of monochromatic vertices is |E|/27.
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Second part, open questions

This part consists of four questions, each worth 17 points. Please follow the following instructions:

e Your explanations should be clear enough and in sufficient detail that a fellow student can understand
them. In particular, do not only give pseudocode without explanations. A good guideline is that a
description of an algorithm should be such that a fellow student can easily implement the algorithm
following the description.

e You are allowed to refer to material covered in the lectures including algorithms and theorems (without
reproving them). You are however not allowed to simply refer to material covered in exercises.

e Please answer all questions within the designated boxes (otherwise your answer may not be accurately
scanned). At the end of the exam there are five extra pages if you need additional space for your
answers.

e Leave the check-boxes empty, they are used for the grading.

Question 5: Recurrences. (17 pts)
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Do not write here.

Consider the following procedure UNKNOWN that takes as input an integer n:

UNKNOWN(n):

if n < 100
return
- q¢=[n/5]
. UNKNOWN(3 - q)
. UNKNOWN(4 - q)
.fori=1,2,...,n
PRINT “Almost done!”

e =2 IS B UI O

Let T'(n) be the time it takes to execute UNKNOWN(n). Give the recurrence relation of T'(n) and prove
that T'(n) = O(n?). To simplify notation and calculations, you may assume that n/5 always evaluates to an
integer.

(In this question you are asked to give the recurrence relation of T(n) and to give a mathematically rigorous
proof that T(n) = O(n?). Recall that you are allowed to refer to material covered in the lectures.)

Begin writing your answer on the next page.
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The recurrence relation is given by T'(n) = T'(3n/5) + T'(4n/5) + cn (where
c is a constant) and T'(n) = 1 if n < 100.

Let us prove by induction that T'(n) < an? + bn for some constants a, b that
we will fix.

Assume this is true for all inputs up to n — 1. Then we can write, by the
recurrence relation,

T(n) =T(3n/5) +T(4n/5) + cn

& 3n 2+b3n+ 4n 2+b4n+
al|l — — +4al — — +cn
- 5 5 5 5

((3)1 (g)"’) e (Do)
—anan (Do),

By choosing b such that %” +c<b <= b< - %, we obtain that the induction
hypothesis works. Hence we fix b = —%.

For the base case to be correct, we need that an? — E’CT" > foralll. < nx
100. Choosing a = 3¢ is enough.

Therefore, we have proven that T'(n) < 3cn? — 25 for all n > 1. This shows

that T'(n) = O(n?).
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Question 6: Check shortest path distances. (17 pts)

[ Jo Ll [ Ja L Js [ Jo L Js [ Jo [ J= [ Js[ s
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Do not write here.

Design and analyze an algorithm that runs in linear time, i.e., in time O(|V]| + |E]), for the following
problem:

INPUT: A directed graph G = (V, E), a source s € V, edge-weights w : E — Z, and a value
v.d € 7Z for each vertex v € V.

OUTPUT: Print “CORRECT” if v.d equals the shortest path distance from s to v for every
vertex v € V; otherwise print “INCORRECT.”

You may assume that every vertex is reachable from s and that the graph only contains non-negative cycles
but it may contain negative edge weights.

We remark that there is no assumption on the values v.d. A solution that is fully correct under the additional
assumption that, for every vertex v € V, v.d is at least the shortest path distance from s to v is rewarded
10 points.

Example: Consider the following input (the values v.d are not depicted):

.

The output of your algorithm should be “CORRECT” if and only if s.d =0,A.d =2,B.d=1, and C.d = 2.

(In this question you are asked to design and analyze an algorithm that runs in time O(|V| + |E|) for the
problem of verifying that the values v.d equals the shortest path distance from s to v for every vertexv € V.
Recall that you are allowed to refer to material covered in the lectures.)
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We call edge e = (u,v) tight if u.d + w(u,v) = v.d. We call a path between two
vertices tight if it consists entirely of tight edges.
The solution is as follows:

1. Check s.d = 0.
2. For each edge e = (u,v):

(a) Check that v.d > u.d + w(u,v).
(b) If e is tight mark it as tight.

3. Check that each vertex is reachable from root through tight paths, using
DFS.

If any check fails, output ”Incorrect”. Otherwise, output ”Correct”.

Time analysis. The first two steps take time ©(1). The loop runs for |E|
iterations and each iteration takes time ©O(1). Thus the total running time of
the loop is ©(|E|). Finally, the running time of DFS is ©(|V| + |E|) and so the
total running time is O(|V| + |E|) as required.

Correctness. It is pretty obvious that if the distance assignment is correct,
the algorithms outputs ” Correct”.

If the assignment is not correct, let S be the set of all vertices that have
the correct assignment, and let dist(v) denote the true distances to each of
the vertices. Notice that if s ¢ S, we will detect it when we check s.d = 0.
Therefore, we can assume s € S. Then, there exists v € V'\ S,v # s. Let C be
the set of all vertices in V'\ S, such that Vv € C' there is some shortest path from
s to v where v is the only vertex in that path not in S. Suppose that there is a
v € C such that dist(v) < v.d. Let u be the second-to-last vertex in the shortest
path to v. Then u € S and dist(u) = u.d. Therefore, we will output ”Incorrect”
when we check edge (u,v) in step 2, since dist(v) = dist(u) + w(u, v) since it’s
an edge on the shortest path to v.

Now, suppose that for all of the vertices v in C' dist(v) > v.d. Then there is
no tight path from s to any vertex v in C, because otherwise v.d would be equal
to the length of some path from s, which is at least dist(v) > v.d. Therefore, if
C' is not empty, the algorithm will not reach vertices in C' in step 3 and output
"Incorrect”.

Finally, notice that if S # V, C' is not empty, because we can always consider
a shortest path from s to some vertex in V'\ S, and the first vertex not in S
on that path would be in C. Therefore, if the assignment v.d is incorrect, the
algorithm always outputs ”Incorrect”.
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Question 7: Short walk of maximum value. (17 pts)

[ Jo Ll [ Ja L Js [ Jo L Js [ Jo [ J= [ Js[ s
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Do not write here.

Consider a (n+ 1) x (n+ 1) grid of cells with coordinates (7, j) for 0 < i <n and 0 < j < n. We are going
to analyze walks from the bottom-left cell (0,0) to the top-right cell (n,n) where the available moves are:

UP: Standing in a cell (4, j) with j < n, we can go to (i,7 + 1).
RIGHT: Standing in a cell (i, ) with ¢ < n, we can go to (i + 1, 7).

UP-RIGHT: Standing in a cell (¢, j) with i < n and j < n, we can go to (i+1,7+1).

Notice that any such walk makes at least n moves and at most 2n moves. We say that the walk is short if
it makes at most 3n/2 moves. In addition, each cell (¢, ) has a value v(4,7), and the value of a walk is the
total value of the cells it visited. Your task is to design and analyze an efficient algorithm that calculates
the maximum value any short walk from (0,0) to (n,n) can achieve.

The running time of your algorithm should be polynomial in n. While your algorithm should run
in polynomial time, it is not important that you achieve an optimal running time in this question. We
also remark that partial credits will be given to solutions that output the maximum value that any (not

necessarily short) walk can achieve.

Example: Consider the following (n + 1) x (n + 1) grid with n = 2:

0,2) | (1,2) | (2,2)

(0,1) | (1,1) | (2,1)

(0,0) | (1,0) | (2,0)

The value of the gray cells is 1 and the value of the white cells is 0 (in this example cells take values 0
and 1 but in general cells can take any value). Hence, the maximum value of any walk from (0,0) to (2,2)
is 3. This value is obtained by the walk that visits the cells (0,0),(1,0), (2,0),(2,1),(2,2). However, this
walk makes 2n = 4 moves and is thus not short. The maximum value of a short walk (that makes at
most 3n/2 = 3 moves) is 2. This is achieved by the short walk that makes 3 moves and visits the cells
(0,0),(1,0),(2,1),(2,2). On this input, the output of your algorithm should thus be 2.

(In this question you are asked to design and analyze an algorithm that runs in time polynomial in n for the
problem of calculating the mazimum value of any short walk from (0,0) to (n,n). Recall that you are allowed

to refer to material covered in the lectures.)

Begin writing your answer on the next page.
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We will solve this problem using the dynamical programming approach. Let
dpli][j][k] denote the maximal value of a walk that starts in (0,0), ends in (7, )
and makes maximally k& moves. The main observation is that the maximum
value for a walk ending in (7, j) making at most k£ moves is equal to V[i][;] plus
the maximum of short walks ending in (i,5 — 1), (i — 1,7),(i — 1, 7 — 1) making
at most k — 1 moves. This gives us a recurrence relation

dpfil[j][k] = V'[][j]+ max(dli — 1][j][k — 1], dpl] i — 1)k — 1], dpfi— 1]~ 1]}k — 1]).

(1)

One needs to be careful about corner cases, for instance k = 0 ori = 0,5 = 0.

One needs to take them into account when writing down the full recurrence

relation. One way to take care of these corner cases is given in the pseudocode
below.

Algorithm 1 FINDMAXIMUMSHORTWALK(V,n)
1: dp[0][0]{0] = V{0][0]
2: for i from 0 to n do
3: for j from 0 to n do

4: for k from 1 to %n do

5: if i =0 and j =0 then

6: dpli][j][k] = dpli][5][k — 1]

7 else if i = 0 then

5 dplil[j1[k] = VIilj] + dplilj — 1k — 1]

9: else if j = 0 then

10  apllil] = VL] + doli - -

11: else

12 dplil[j][k] = VIiJli) + max(dpli — 1][j][k — 1], dpli]lj — ][k —

1], dpli —1][j — 1][k - 1])
13: return dp[n][n](3n]

The first condition says that the maximum value when we end in cell (0, 0)
in 0 moves is V[0][0]. In line 6 we say that to end up in cell (0,0) with the
number of moves at most k is the same as with the number of moves at most
k — 1. Lines 8,10 express the fact that if we are at the edges of the grid then we
can only do either up or right moves. Line 12 represents (1).

The algorithm runs in time ©(n®) as we have three for loops inside each
other, where each iterates over ©(n) values, and we perform ©(1) operations
inside of them.
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Question 8: Many spanning trees. (17 pts)

DO Dl D2 Ds D4 Ds D6 D7 DSDQ Do not write here
(ol Jul Jeel sl Jua[ Jus[ il '

Design and analyze an efficient algorithm for the following problem:

INPUT: A connected undirected graph G = (V, E) with integer edge-weights w : £ — Z.

OUTPUT: Print “ONE” if G with edge-weights w has a unique minimum spanning tree; oth-
erwise print “MANY.”

The running time of your algorithm should be polynomial in |V|. While your algorithm should run
in polynomial time, it is not important that you achieve an optimal running time in this question. For full

credit, you should also explain in words why your algorithm is correct.

Example: Consider the following two inputs:

The output of your algorithm should be “MANY” on the left input since that graph contains four minimum
spanning trees; on the right instance, the output should be “ONE” since that graph contains a unique

minimum spanning tree.

(In this question you are asked to design and analyze an algorithm that runs in time polynomial in |V| for
the problem of verifying whether the graph G = (V, E) with integer edge-weights w has a unique minimum
spanning tree. While you do not need to give a rigorous proof of correctness, you should argue why your
algorithm is correct in addition to analyzing its running time. Recall that you are allowed to refer to material

covered in the lectures.)
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In the following, for a graph G = (V, E) with edge weights w : E — Z we will denote by w(G)
the sum of the weights of edges in G, that is w(G) = zee g w(e). The following algorithm solves the
problem.

Input: a graph G = (V, E)
Run Kruskal algorithm on graph G to get an MST T'.
for all e € T do
if graph G’ = (V. E \ {e}) is connected then
Run Kruskal on G’ to get the corresponding MST solution 7.
if w(T) = w(T’) then
Return “MANY™.
end if
end if
end for
Return “ONE".

Proof:

e Assume there exist two different MST solutions T, 7" of graph G. Then, we know that w(T) =
w(T"). In addition, let e € T\ T” then 7" is an MST of graph G’ = (V. E \ {e}). Thus, our
algorithm will compute an MST of value w(T') after running Kruskal on graph G’ = (V. E'\ {e})
and it will output “MANY™.

e Assume that there exists a unique MST T of graph G. Then for all edges e € G the graph
G’ = (V,E \ {e}) will either be disconnected or every MST 7" of that graph will have a larger
total weight, i.e., w(T") > w(T). Consequently our algorithm will correctly output “ONE”.

Time complexity: The time complexity of Kruskal is |E|log|E| < |[V|?log|V]? = O(|V[|?). In
addition finding if a graph is connected requires time O(|E| + |V|). Consequently, our algorithm has
time complexity O(|V|?) since the number of edges in an MST solution T is O(|V).
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