=Pi-L

Final Exam, Algorithms 2019-2020

e You are only allowed to have a handwritten A4 page written on both sides.

e Communication, calculators, cell phones, computers, etc... are not allowed.

e Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudocode without explanations.
A good guideline is that a description of an algorithm should be such that a fellow

student can easily implement the algorithm following the description.
e Attached at the end of the exam is a French translation.
e Do not touch until the start of the exam.

Good luck!

Name: N° Sciper:

Problem 1 | Problem 2 | Problem 3 | Problem 4 | Problem 5

/ 23 points | / 16 points | / 18 points | / 16 points | / 17 points

Problem 6

/ 10 points

Total / 100

Page 1 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2019
Michael Kapralov

1 (23 pts) Basic questions. This problem consists of five subproblems (la-1e) for which you do
not need to motivate your answers.

la (5 pts) Arrange the following functions in increasing order according to asymptotic growth.
A log(n!)
B (logn)losn
c 2"
D The worst case running time of BUILD-MAX-HEAP on an array of size n.
E The worst case running time of Strassen’s algorithm for multiplying two n xn matrices.
F

The worst case running time of QQUICKSORT on an array of size n.

Solution:

D<A<F<FE<B<C.

Explanation. Note the following: A = O(nlogn), B = O(2!°8leenlosny — g(plogloen) D —
O(n), E = O(n'°¢7), and F = O(n?).

1b (4 pts) In the graph shown in the figure below, what order are the nodes reached in if we
run Prim’s algorithm from A?

Solution:

A F,C,E,B,D,I, H,IJQG.

Page 2 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2019
Michael Kapralov

(6 pts, 1 pt for each correct pair) Pair up each of the recurrence relations on the left side

1c
with the correct asymptotic growth function on the right side (assuming that 7'(1) = 1).
For example the recurrence T'(n) = T'(n — 1) + 1 has asymptotic growth ©(n).
Solution:
T(n) = 4T(n/3) + n? — ©(n)
T(n) =4T(n — 1)+ 1 ></ O(n3logn)
T(n) = 10T(n/10) + n®logn — 04"
T(n) = 8T'(n/2) + 1 O(n*logn)
T(n) = 4T(y/n) + logn O(log®n)
T(n) = 16T(n/2) + n* 0(n?3)
1d (4 pts) Consider the recurrence T'(n) = 2T (an) + 5T(8n) + n?, T(1) = O(1), for some
constants «, 5 € (0, 1) that satisfy 2a + 55 = 1. Give a tight asymptotic bound for T'(n).
You do not need to motivate your answer.
Solution:
The answer is T'(n) = O(n?)
le (4 pts) Consider the recurrence T'(n) = 2T (an) + 5T(Bn) + n?, T(1) = O(1), for some
constants a, 8 € (0,1) that satisfy 2o +58% = 1. Give a tight asymptotic bound for T'(n).
You do not need to motivate your answer.
Solution:

The answer is T'(n) = O(n’logn)

Page 3 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2019
Michael Kapralov

2 (16 pts) Binary trees. In this problem you are given a rooted binary tree T = (V, E) with n
nodes, and your task is to design an efficient algorithm for finding a pair of nodes a,b € V' that
are at the largest possible distance from each other in T (the distance between a and b in T is
the length of the path connecting a to b in T' that does not have repeated vertices). For full
credit your algorithm should run in O(n) time.

e Input: A rooted binary tree T' = (V, E).

e Output: A pair of nodes a,b € V at maximum possible distance from each other in T'.

binary tree T’

Figure 1. A binary tree T with a pair of nodes a, b at maximum possible distance in T'.

Design an algorithm for this problem and analyze its runtime.

Solution:

We can solve this problem in time O(n) by doing post-order traversal on the tree. First,
we recursively compute the height of every node that has a value equal to the maximum of the
height of the left subtree and the right subtree plus one. Then for every subtree, we compute
the maximum length path that passes through the root of the subtree. The length of this path
has a value equal to the sum of the height of its left subtree and right subtree plus two. Finally,
the diameter of the tree is the maximum among all maximum length for all subtrees.

Page 4 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2019
Michael Kapralov

Algorithm 1 HEIGHT(node)

1: if node = null then

2 return 0

3: else if node.left = null and node.le ft = null then

4: return 0

5: else if node.le ft = null then

6 diam = max(diam, HEIGHT (node.right) + 1)

7 return HEIGHT(node.right) + 1)

8: else if node.right = null then

9: diam = max(diam, HEIGHT (node.le ft) + 1)

10: return HEIGHT(node.left) + 1)

11: else

12: diam = max(diam, HEIGHT(node.le ft) + HEIGHT (node.right) + 2)
13 return max(HEIGHT(node.le ft), HEIGHT (node.right)) + 1
14: end if

Solution 2: First, we run BFS starting at the root to find a vertex x with the maximum
distance from the root. Then we run the second BFS starting at vertex x to find the vertex
y with the maximum distance from x. Then the pair (z,y) has the maximum distance among
all the pairs in the tree. The runtime of the solution is the same as the runtime of the BFS
algorithm i.e., O(n).

Page 5 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2019
Michael Kapralov

Continuation of the solution to 2:

Page 6 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2019
Michael Kapralov

3 (18 pts) Fair partitioning. In this problem you are given n positive integers (w1, ..., w,) with
total sum W = >, w;. Your task is to determine whether it is possible to partition these
integers into three disjoint subsets such that the sum of elements in every subset is exactly W/3.

e Input: An integer n and a sequence of positive integers (wq, ..., w,) whose total sum is
W =3 wi

e Output: YES if it is possible to find a partition 1, Is, I3 of the integers between 1 and n
such that for every j = 1,2, 3 one has Zz‘elj w; = W/3, and NO otherwise.

For example, suppose that the input sequence is w1 = 5, wy = 6,w3 = T,wy = 1,w5 =
1,wg = 1. Then such a partitioning exists: we let Iy = {1,4,5}, 1o = {2,6},I3 = {3}. On the
other hand, if the input sequence is wy = 5, w9 = 3, w3 = 7,wy = 8, w5 = 4,wg = 3, then no
such partitioning exists.

Design and analyze a dynamic programming solution to the problem with runtime poly-
nomial in n and W.

3a Forie{l,2,...,n} and two integers x,y € {0,1,..., W} let d(i,z,y) = 1 if it is possible
to partition the integers wq, wa, ..., w; (the first 7 integers in our sequence) into three sets
whose sums are z, y and Z}Zl w; — (x+y) respectively, and d(i, z,y) = 0 otherwise. Design
a recurrence relation for d(i, z,y).

Solution: The recurrence is as follows:
d(i,z,y) =max{d(i — 1,z,y),d(i — 1,z —w;,y),d(i — 1,z,y — w;)}

3b Analyze the runtime of a bottom up implementation of your recurrence in 3a.

Solution:

Algorithm 2 Bottom up implementation of the recurrence
1. forie {0,1,2,...,n} do

2: for z € {-W,...,W/3} do

3: for y e {-W,...,W/3} do

4: if i=0,2=0,y=0 then
5: d(i,z,y) 1

6: else if i = 0 then

7: d(i,z,y) < 0

8: else if © < 0 or y < 0 then
9: d(i,xz,y) <0

10: else

11: d(i,z,y) < max{d(i — 1,z,y),d(i — 1,z —w;,y),d(i — 1, x,y —w;)}
12: end if

13: end for

14: end for

15: end for

16: return d(n, W/3,W/3)

One can see that the for loops of this algorithm incur O(nW?) run-time.

Page 7 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2019
Michael Kapralov

4 (16 pts) Connectivity. In this problem your task is to design cost effective infrastructure for a
country consisting of n cities represented by vertices of a graph G = (V, E). For every pair of
cities a,b € V such that (a,b) € FE you can build a road connecting the cities at cost wgp. Also,
for every city a € V you can build an airport at a at cost ¢,. Any two cities that have an airport
can reach each other. Your task is to determine which roads should be built and which airports
should be constructed to ensure connectivity while minimizing cost.

Input: Connected undirected graph G = (V, E) with non-negative edge weights w : E — R,
for every a € V the cost ¢, of building an airport at a.

Output: Minimum cost collection of roads and/or airports to build that ensures connectivity
of all cities in V.

Solution: There are two possible ways of constructing the infrastructure:
e without any airports,
e with a non-zero number of airports.

If we commit to constructing no airports the problem is simply to construct a minimum cost
spanning subgraph on a weighted undirected graph. Since the weights are non-negative, the
optimal solution can be a spanning tree and we can simply use Prim’s or Kruskal’s to find the
minimum cost spanning tree of G.

If we commit to constructing some airports, the problem becomes equivalent to the following:
Add to G a single new vertex vy, connected to every other vertex, with (a,vg) having weight ¢,.
We can now think of building airports as building connections to vy.

Indeed, every solution for connecting the country, which includes at least one airport, defines
a spanning subgraph of the graph G + vg. All pairs of vertices in V' are connected (possibly
through v if we need to use airports), and vy is also connected to V', since we have built at least
one airport. Similarly every spanning subgraph of G+ vy defines a correct solution for connecting
the cities. Again, since all edge weights are non-negative, the optimal solution can be a spanning
tree which we can find using Prim’s or Kruskal’s.

The full algorithm runs Prim’s or Kruskal’s on both G and G + vy and takes the better of
the two results.

Page 8 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2019
Michael Kapralov

Continuation of the solution to 4:

Page 9 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2019
Michael Kapralov

5 (17 pts) Path finding. In this problem you are given an undirected graph G = (V, E) and
three distinct vertices z,y,z € V. Your task is to find a simple path from x to y in G that goes
through the vertex z if such a path exists, and output NONE otherwise. Recall that a path is
simple if it does not have repeated vertices. See Fig. [2] below for an example.

Input: An undirected graph G = (V, E') together with three distinct vertices z,y,z € V.

Output: A simple path from x to y in G that goes through z if such a path exists, and NONE
otherwise.

f g

Figure 2. In the graph G above there exists a simple path from b to ¢ that goes through e, but
there does not exist a simple path from a to f that goes through b.

Design and analyze an algorithm for the problem. Your algorithm should run in time
polynomial in |V'|. Hint: modify the graph and use maz-flow.

In this problem you are required to (a) describe an efficient algorithm and (b) analyze its
runtime.

Solution: We basically need to find out if there exist vertex disjoint paths from z to x and y.
This can be done by computing max-flow on an appropriate graph.

We first convert G = (V, E) to a directed graph G’ = (V', E’). For every vertex v € V, we add a
vertex to V'. For every edge e = (a,b) € E, we add two vertices v(,) and v(,q) to V’ and edges
(a7 U(a,b))’ (U(a,b)a b)? (b7 U(b,a)) and (U(b,a)v a) to E.

We now convert G’ to a graph with edge capacities G = (V" E”). We add a source vertex
Vsource 10 V. In order to simulate the vertices having capacities, for every vertex v € V'\ {z},
we add v, v;, and vy to V. We add edges (v, v) and (v, ve,t) each of capacity 1 to E”. For
simplicity of notation, let vy = (Vap);, = (Vap),,, for any edge (a,b) in E and z = 2z = Zout-
For every edge (a,b) € E’, we add edges (aout, bir,) of capacity 1. We add edges (vsource; Tin) and
(Vsource Yin) Of capacity 1.

It is not hard to see that testing whether there exists a simple path from x to y in G that
goes through z is equivalent to testing if there exists a max-flow of value 2 on G”. We will show
how to find a path in G if value of max-flow on G” is 2 in the algorithm below. For the other
direction, let there exist a path P from x to y that goes through z. Send a flow of value 1 on
edges (Vsources Tin)s (Tin,) and (x, Toye). Similarly, send a flow of value 1 from vgpyrce towards
Yout- For an edge (a,b) that is on path P before vertex z is visited, add flow of 1 on edges
(@in, a), (a, aout), (Gout, Vap), (Vap, bin)s (bin, b) and (b, boy). For an edge (a,b) that is on path P

Page 10 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2019
Michael Kapralov

after vertex z is visited, add flow of 1 on edges (bin,b), (b, bout); (bout, Vb,a)s (Vb.a Gin), (@in, a) and
(@, apyt). The flow constraints are satisfied as the path P is simple.

For finding max-flow on G”, one can run the Ford Fulkerson method with breadth first search to
find augmenting paths. If max-flow has value 2, one can run a breadth first search from vertex
z on the residual graph with edges of capacity 1. Then output rev(path(z, a) o path(z,b)) where
rev(s) is used to represent the reverse of string s and o is the concatenation operator. One should
also remove unwanted vertices from the path found such as v;, and wv,,; vertices for a vertex
v € V' and v(qp) and v, q) for an edge (a,b) € E.

For runtime analysis, building graphs G’ and G” takes O(V + E) time. Running Ford Fulkerson
method with bfs takes 2 - O(V + E) as max-flow has value atmost 2. Finally, finding the path
requires doing a bfs which takes time O(V + E). Hence the total time taken by our algorithm is
oV +E).

Page 11 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2019
Michael Kapralov

(10 pts) Searching in a 2d array. In this problem you are given an n x n array whose columns
and rows contain numbers in increasing order, and a number z (see example below). Your task
is to design an algorithm that locates = in the array or concludes that it is not there. For full
credit your algorithm should run in O(n) time.

12 3 5 7
3 3 4 5 8
3 4 5 5 8
4 5 6 8 10
6 7 7 9 11

Figure 3. An example 5 x 5 array A whose rows and columns contain numbers in increasing order.

e Input: Integers n and z, as well as an n x n array A of integers such that all rows of A
are monotone increasing, and all columns are monotone increasing.

e Output: Integers 1 < 4,5 < n such that A; ; = x if x is in A, and L otherwise.
Design an algorithm for this problem and analyze its runtime.

Solution: Consider the following algorithm:
14-mn, 1
while s > 1 and j < n do
if A;; = x then
return 7,)
else if A;; < x then
j—J+1
else
14—1—1
end if
end while
return |

In other words, we start in the bottom left corner of the array and compare this value to x.
If it is x, return the coordinates. If it is smaller than x, then we know that x cannot be in the
first column of the array, so we move one entry to the right. Otherwise, if it is larger than z, we
know that x cannot be in the last row of the array, so we move one entry up.

Repeat this process until we either find x, or exit the boundary of the array. If we exit the
array then we know that x is not in the array because we maintain that all entries to the left
and below the current position cannot contain .

Running time: In each iteration of the while loop we move one entry up or one entry to
the right so there will be at most 2n — 1 iterations, and a constant number of operations are
performed in each iteration. Hence, the algorithm is linear O(n) time. (Another way to think of
it is that in each iteration we rule out one column or one row that cannot contain x.)

Page 12 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2019
Michael Kapralov

