
Final Exam, Algorithms 2018-2019

• You are only allowed to have a handwritten A4 page written on both sides.

• Communication, calculators, cell phones, computers, etc... are not allowed.

• Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudocode without explanations.
A good guideline is that a description of an algorithm should be such that a fellow
student can easily implement the algorithm following the description.

• Attached at the end of the exam is a French translation.

• Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

/ 22 points / 14 points / 18 points / 18 points / 14 points / 14 points

Total / 100

Page 1 (of 11)

CS-250 Algorithms, Final Exam • Autumn 2018
Michael Kapralov

1 (22 pts) Basic questions. This problem consists of five subproblems (1a-1e) for which you do
not need to motivate your answers.

1a (6 pts) Sorting

Insertion Sort and Quick Sort have the same worst case running time. True or False? True

Both Heap Sort and Merge Sort require linear extra space to sort, i.e. are not in place.
True or False? False

Let A[1 . . . 6] = 1 3 7 4 5 6 be an array consisting of 6 numbers. If we use
randomized quick sort to sort A, the probability that A[2] = 3 and A[5] = 5 are compared
is 1/2. True or False? False

1b (4 pts) Uniform Hashing
Suppose you are hashing n elements into m slots using uniform hashing. Asymptotically,
what is the value of m in terms of n that ensures that

(A) Expected number of collisions is Θ(
√
n).

m = Θ(n3/2)

(B) Expected number of elements mapped to any given slot of the table is Θ(1).

m = Θ(n)

1c (8 pts) Recurrences

Consider the functions Foo(n) and Bar(n), whose pseudocodes are given below. The
functions take as input an integer n.

Foo(n)
1. if n > 100
2. u= bn/3c
3. Foo(u)
4. Foo(n− u)
5. Bar(b

√
nc)

Bar(n)
1. if n > 1000
2. Bar(n− 1)
3. for i = 1 to n
4. Print (‘Ok’)

Denote the running time of Foo(n) by T (n), denote the running time of Bar(n) by S(n).

Page 2 (of 11)

CS-250 Algorithms, Final Exam • Autumn 2018
Michael Kapralov

Write down the recurrence relation for T (n) in terms of S(n).

T (n) = T (n/3) + T (2n/3) + S(
√
n), T (1) = Θ(1)

Write down the recurrence relation for S(n).

S(n) = S(n− 1) + Θ(n), S(1) = Θ(1)

What is the runtime of Bar(n) asymptotically as a function of n?

S(n) = Θ(n2)

What is the runtime of Foo(n) asymptotically as a function of n?

T (n) = Θ(n log n)

1d (2 pts) Consider the recurrence T (n) = T (αn) + T (βn) + T (γn) + n3, T (1) = Θ(1), for
some α, β, γ ∈ (0, 1) that satisfy α3 +β3 +γ3 = 1. Give a tight asymptotic bound for T (n).
You do not need to motivate your answer.

Solution: The answer is T (n) = Θ(n3 log n)

1e (2 pts) Consider the recurrence T (n) = T (αn) + T (βn) + T (γn) + n2, T (1) = Θ(1), for
some α, β, γ ∈ (0, 1) that satisfy α2 + β2 + γ2 = 0.999. Give a tight asymptotic bound for
T (n). You do not need to motivate your answer.

Solution: The answer is T (n) = Θ(n2)

Page 3 (of 11)

CS-250 Algorithms, Final Exam • Autumn 2018
Michael Kapralov

2 (14 pts) Monochromatic subtrees. For a rooted binary tree T = (V,E) with nodes labeled
with zeros and ones we would like to count the number of nodes u ∈ V whose subtrees are
monochromatic (i.e. either all nodes in their subtree are labelled zero or all nodes in their
subtree are labelled one).

Input: a rooted binary tree T = (V,E) with a label u.label ∈ {0, 1} for every node u ∈ T .

Output: number of nodes u ∈ V whose subtrees are monochromatic.

For example, consider the tree below (the arrows indicate the child-parent relation):

A
1

B
1

C
1

D
0

E
1

G
0

F
1

L
0

K
0

I
1

J
1

H
0

There are 9 nodes with monochromatic subtrees, namely D, E, G, F, H, I, J, K, L. The
subtrees are shown below:

D
0

H
0

E
1

I
1

J
1

G
0

L
0

K
0

F
1

L
0

K
0

I
1

J
1

H
0

In this problem you are required to (a) explain a correct algorithm with the desired running
time and to (b) analyze its running time. For full credit your algorithm should run in O(V) time.
You may assume that for every node u of T you have access to left child, right child and parent
pointers u.left, u.right, u.parent respectively, and T.root is the root of T .

Solution: We use divide and conquer to solve this problem. To count the number of monochro-
matic subtrees of node u, we count the number of monochromatic subtrees of u.right and u.left
and we add them. We also check if the entire subtrees u.right and u.right are monochromatic
and the same color as u, in which case the entire subtree u is monochromatic and we increment
the number of monochromatic subtrees of u by 1.

The runtime analysis is as follows. In each iteration of the algorithm we recurse on the
left subtree as well as the right subtree and then merge the information about the subtrees in

Page 4 (of 11)

CS-250 Algorithms, Final Exam • Autumn 2018
Michael Kapralov

1: procedure Monochrom(u)
2: if u.right 6= ∅ then
3: (Nr,monor, labelr)←Monochrom(u.right)
4: if u.left 6= ∅ then
5: (Nl,monol, labell)←Monochrom(u.left)
6: else
7: (Nl,monol, labell)← (0, true, u.label)
8: end if
9: else

10: (Nr,monor, labelr)← (0, true, u.label)
11: end if
12: if monol = true and monor = true and labell = labelr = u.label then
13: label← u.label
14: mono← true
15: else
16: mono← false
17: end if
18: N ← Nl +Nr + 1
19: return (N,mono, label)
20: end procedure

constant time. Therefore we spend a constant amount of time per each node of the tree. Hence
the runtime is proportional to the number of nodes of the tree, O(n).

Page 5 (of 11)

CS-250 Algorithms, Final Exam • Autumn 2018
Michael Kapralov

3 (18 pts) Packing dominos. You bought a new board game: an n × n grid with every cell
either square shaped or circular or inactive, together with an unlimited supply of dominos of
a rather non-standard form: a circle attached to a square (see Fig. 1 below; inactive cells are
shaded in grey). The domino fits onto the board if its circle part is in a circular cell of the
board and its square is in a square cell of the board to the left/right, or above/below the circular
part. Design an algorithm that determines, given the shape of the board, the maximum number
of non-overlapping dominos that can be simultaneously placed on the board. You cannot use
inactive cells.

domino board optimal packing

Figure 1. Illustration of the domino (left), a 3 × 3 board (center) and an optimal packing of 3
dominos onto the board (right).

• Input: an integer n ≥ 1, an n× n array A with Aij = 1 if the (i, j)-th cell is circular and
Aij = 2 if the (i, j)-th cell is square and Aij = 0 if the (i, j)-the cell is inactive.

• Output: largest number of non-overlapping dominos that can be placed on the board.

In this problem you are required to (a) describe an efficient algorithm and (b) analyze its
runtime. Hint: convert the problem to a graph problem and use an algorithm seen in class.

Solution: Create a bipartite graph G = (P,Q,E), where P is the set of square shapes, Q is the
set of circle shapes on the board, and a square shape u ∈ P is connected by an edge to a circle
shape v ∈ Q if and only if they are neighbors on the board (i.e., if and only if the circle shape
v is to the left/right or above/below the square shape u). Then our task is to find a maximum
matching in the graph G. This can be done using a reduction to the maximum flow problem
shown in class: orient all edges in G to go form P to Q, attach a source s connecting with unit
capacity edges to every vertex in P (directed out of s), attach a sink t connecting with unit
capacity edges to every vertex in Q (directed into t), and find the maximum s − t flow. Using
the Ford-Fulkerson method with BFS to find augmenting paths we get runtime of O(fmax · |E|),
which is O(n4) since the maximum flow at most n2 and the number of edges in the constructed
graph is O(n2).

Page 6 (of 11)

CS-250 Algorithms, Final Exam • Autumn 2018
Michael Kapralov

4 (18 pts) Archipelago. You’re trying to navigate a strange city. The city’s map is given by a
graph G = (V,E) specifying the intersections and streets of the city. Each edge e ∈ E has a
positive integer weight we specifying the time it takes to walk along the street. You are currently
located in vertex a and want to get to vertex b as quickly as possible.

Luckily we’ve seen many algorithms in class that are able to tell you the shortest path to b.
Unluckily, the city is located on an archipelago, and the graph G is not connected.

To help the citizens get around, there are a number of ferries connecting the islands (or
sometimes two points of the same island). You have access to their schedule: It lists T ferries,
specifying for each the place of departure (a vertex), the place of arrival (also a vertex), the
departure time and the arrival time. Times are given as non-negative integers; it is currently
time 0. See Fig. 2 for an illustration.

Design and analyze an algorithm that, given the graph G and the ferry schedule, returns the
shortest time needed to get from a to b if you start at a at time 0.

• Input: a graph G = (V,E) with nonnegative weights w : E → Z given in adjacency list
representation. You have access to a function FerrySchedule. For every u ∈ V and
integer i ≥ 1 a call to FerrySchedule(u, i) in O(1) time returns a triple (v, s, t), where
v ∈ V is the destination, s the departure time and t the arrival time of the i-th ferry out
of u, and NULL if there are fewer than i ferries out of u.

• Output: shortest time needed to get from a to b if you start at a at time 0.

ac
d

e
b

f
g

1

4

11

3

1

departure time = 2

arrival time = 10

departure time = 3

arrival time = 7

Figure 2. A graph G with two connected components (islands) and two ferries. The ferry from e
to be b is faster, but one cannot get to vertex e from vertex a before the ferry’s departure time, so
the route a, c, d, f, b is optimal.

In this problem you are required to (a) describe an efficient algorithm and (b) analyze its
runtime. For full credit your algorithm should run in time O((E + T) log V) time, where T is
the total number of ferries. Hint: adapt an algorithm seen in class.

Solution: We adapt Dijkstra’s algorithm. Note that, in order to reach the destination with the
shortest path in this question, you may need to wait for the ferries. Also, if you reach a starting
point of a ferry after its departure, you will not be able to take that ferry. We need to apply the
following changes to Dijkstra’s algorithm.

1. In the initialization phase of the algorithm, additional to edges corresponding to roads on
the islands, we add ferry edges to the graph, by giving them weight equal to their arrival
time, i.e., for every u ∈ V , for every i, we add an edge from u to vi with weight ti (vi is

Page 7 (of 11)

CS-250 Algorithms, Final Exam • Autumn 2018
Michael Kapralov

the point of arrival of the i-th ferry out of u, si and ti are the departure and arrival times
respectively; note that such edges are directed)

2. After each round of Dijkstra’s algorithm, i.e., adding a new vertex u, we update graph as
follows: First, for every ferry edge originating from u update the weight of the edge by
subtracting the shortest path distance u.d of u from a, from the length of the edge, if the
departure time of the ferry is no earlier than u.d, and make the weight of the edge infinity
otherwise (equivalently, remove the edge).

The correctness proof is similar to that for Dijkstra’s algorithm.
Runtime analysis: We have at most |E| + T edges at each step of Dijkstra’s algorithm.

Also, updating part of the algorithm, described above, takes linear time in T . So, in total the
runtime of this algorithm is O((|E|+ T) log |V |).

Page 8 (of 11)

CS-250 Algorithms, Final Exam • Autumn 2018
Michael Kapralov

5 (14 pts) Maintaining a minimum spanning tree in a changing graph. Suppose that you
are given a graph G = (V,E) with weights w : E → R on edges, and a minimum spanning tree
T in G. Now the graph G′ = (V ′, E′) is obtained from G by adding a new vertex v together with
incident edges (see Fig. 3 below). All edge weights in G′ are distinct. Give an efficient algorithm
for computing a minimum spanning tree T ′ in G′.

• Input: a graph G = (V,E) with weights w : E → R on the edges, a minimum spanning
tree T in G. A new vertex v together with incident edges (with weights). All edge weights
are distinct.

• Output: a minimum spanning tree in the graph G′ obtained by adding v with all its edges
to G.

graph G and tree T

a

b

c
d

e

8 6

1

7

9

4

5

graph G′ and tree T ′

a

b

c
d

e

v

8 6

1

7

9

4

5

2

3

Figure 3. A graph G with its minimum spanning tree T (left) and the graph G′ with its minimum
spanning tree T ′ (right). The edges of the spanning trees are shown in bold.

In this problem you are expected to (a) design an efficient algorithm and (b) prove its cor-
rectness. For full credit your algorithm should run in O(V log V) time.

Solution:
Our algorithm is going to be very simple. Take the graph G′′ = (V ′, T ∪ δ(w)), where δ(w)

is the set of edges adjacent on w. Then find a minimum spanning tree of G′′ using Kruskal or
Prim.

We just need to prove that any edge that wasn’t in T wasn’t going to be in T ′ either so we
don’t destroy T ′ by discarding edges like this.

Consider the minimum spanning tree of G′, T ′. Recall that for any cut A ∪ B = V ′ the
minimum edge crossing the cut must be in T ′. Let edge e ∈ T ′. Consider the cut A,B created
by removing e from T ′. e must be the minimum edge crossing this cut in G′. Therefore, either e
is not in G (because it is adjacent to w) or e was also the minimum edge crossing the same cut
in G. In either case e ∈ T ∪ δ(w) and is not discarded by our algorithm.

The algorithm runs in time O(V log V) since the size of the edge set of G′′ is O(V).

Page 9 (of 11)

CS-250 Algorithms, Final Exam • Autumn 2018
Michael Kapralov

6 (14 pts) Largest square submatrix of ones. Given an m× n matrix of zeros and ones, find
the size of the largest square sub-matrix of 1’s present in it.

• Input: an m× n matrix C with Cij ∈ {0, 1} for all i = 1, . . . ,m and j = 1, . . . , n.

• Output: Your task is to compute the size of the largest square sub-matrix of 1’s present
in it. Formally, you should find the largest k such that there exist 1 ≤ i ≤ m− k + 1, 1 ≤
j ≤ n− k + 1 such that Ci+a,j+b = 1 for all a ∈ {0, 1, . . . , k − 1} and b ∈ {0, 1, . . . , k − 1}.

For example, the size of largest square sub-matrix of 1’s is 3× 3 in the matrix below.

1 0 0 1 1 1 0
1 1 0 1 1 0 1
0 0 1 1 1 1 0
1 1 1 1 1 0 1
1 0 1 1 1 1 0
1 1 0 1 0 0 1

Give a dynamic programming solution to this problem.

In this problem you are required to (a) describe the subproblems, (b) give a recurrence relation
and (c) analyze the runtime of a bottom-up implementation of your recurrence. For full credit
your solution should run in O(mn) time.

Solution: We define the following subproblems :

1. Li,j stores the length of the longest continuous sequence of 1’s ending in Ci,j in the row Ci.

2. Ti,j stores the length of the longest continuous sequence of 1’s ending in Ci,j in the column
Cj .

3. Si,j stores the size of the largest square sub matrix of 1’s whose bottom right corner is Ci,j .

We have the following recurrence relations :-

Li,j =


0, if Ci,j = 0.

Li,j−1 + 1, if Ci,j = 1 & j > 1.

1, if Ci,j = 1 & j = 1.

(1)

Ti,j =


0, if Ci,j = 0.

Ti−1,j + 1, if Ci,j = 1 & i > 1.

1, if Ci,j = 1 & i = 1.

(2)

Si,j =


Li,j , if j = 1.

Ti,j , if i = 1.

Si−1,j−1 + 1, if i > 1 & j > 1 & min(Ti,j , Li,j) > Si−1,j−1 .

min(Ti,j , Li,j), if i > 1 & j > 1 & min(Ti,j , Li,j) ≤ Si−1,j−1 .

(3)

Page 10 (of 11)

CS-250 Algorithms, Final Exam • Autumn 2018
Michael Kapralov

It is straightforward to come up with a bottom up implementation which runs in O(mn)
time. We give the psuedo code below:

MaxSubSquare(C,m, n)
1. Initialize 3 m× n arrays L, T and S.
2. ans=0.
3. for i = 1 to m
4. for j = 1 to n
5. Compute Li,j , Ti,j and Si,j acc. to recurrences defined above.
6. ans = max(ans,Si,j)
7. return ans

Steps (5) and (6) both take constant time as all the formulas require a constant time to eval-
uate and require values of variables that have already been calculated in the previous iterations.
Hence the algorithm runs in O(mn) time.

Page 11 (of 11)

CS-250 Algorithms, Final Exam • Autumn 2018
Michael Kapralov

