I

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Final Exam, Algorithms 2018-2019

You are only allowed to have a handwritten A4 page written on both sides.

Communication, calculators, cell phones, computers, etc... are not allowed.

Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudocode without explanations.
A good guideline is that a description of an algorithm should be such that a fellow

student can easily implement the algorithm following the description.
Attached at the end of the exam is a French translation.

Do not touch until the start of the exam.

Good luck!

Name: N° Sciper:

Problem 1 | Problem 2 | Problem 3 | Problem 4 | Problem 5

/ 22 points | / 14 points | / 18 points | / 18 points | / 14 points

Problem 6

/ 14 points

Total / 100

Page 1 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2018
Michael Kapralov

1 (22 pts) Basic questions. This problem consists of five subproblems (la-1e) for which you do

not need to motivate your answers.

la

1b

1c

(6 pts) Sorting
Insertion Sort and Quick Sort have the same worst case running time. True or False?

Both Heap Sort and Merge Sort require linear extra space to sort, i.e. are not in place.
True or False?

Let A[1...6] =[1[3[7[4]5]6]be an array consisting of 6 numbers. If we use
randomized quick sort to sort A, the probability that A[2] = 3 and A[5] = 5 are compared
is 1/2. True or False?

(4 pts) Uniform Hashing
Suppose you are hashing n elements into m slots using uniform hashing. Asymptotically,
what is the value of m in terms of n that ensures that

(A) Expected number of collisions is ©(y/n).
m=e(____)
(B) Expected number of elements mapped to any given slot of the table is ©(1).

m=e(____)

(8 pts) Recurrences

Consider the functions Foo(n) and BAR(n), whose pseudocodes are given below. The
functions take as input an integer n.

Foo(n)

1. ifn > 100

2. u= [n/3|

3. Foo(u)

4. Foo(n —u)
5. Bar(lyn))
BAR(n)

1. if n > 1000

2. BAr(n — 1)

3. fori=1ton
4. PRrINT (‘Ok’)

Denote the running time of Foo(n) by T'(n), denote the running time of BAR(n) by S(n).

Page 2 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2018
Michael Kapralov

Write down the recurrence relation for 7'(n) in terms of S(n).

T(n)=6(—)

1d (2 pts) Consider the recurrence T'(n) = T(an) + T(Bn) + T(yn) +n3, T(1) = O(1), for
some a, 3,7 € (0,1) that satisfy o+ 32+~ = 1. Give a tight asymptotic bound for T'(n).
You do not need to motivate your answer.

Solution: The answeris T(n)=0(___)

le (2 pts) Consider the recurrence T'(n) = T'(an) + T(Bn) + T(yn) + n?, T(1) = O(1), for
some a, 3,7 € (0,1) that satisfy o + 82 +~2 = 0.999. Give a tight asymptotic bound for
T(n). You do not need to motivate your answer.

Solution: The answeris T(n)=0(_____)

Page 3 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2018
Michael Kapralov

2 (14 pts) Monochromatic subtrees. For a rooted binary tree T' = (V, E) with nodes labeled
with zeros and ones we would like to count the number of nodes u € V whose subtrees are
monochromatic (i.e. either all nodes in their subtree are labelled zero or all nodes in their

subtree are labelled one).
Input: a rooted binary tree T' = (V, E) with a label u.label € {0,1} for every node u € T

Output: number of nodes u € V whose subtrees are monochromatic.

For example, consider the tree below (the arrows indicate the child-parent relation):

There are 9 nodes with monochromatic subtrees, namely D, E, G, F, H, I, J, K, L. The
subtrees are shown below:

DO ®O OO

In this problem you are required to (a) explain a correct algorithm with the desired running
time and to (b) analyze its running time. For full credit your algorithm should run in O(V') time.
You may assume that for every node u of T you have access to left child, right child and parent
pointers w.left, u.right, u.parent respectively, and T.root is the root of T

Solution:

Page 4 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2018
Michael Kapralov

Solution to problem 2 continued

Page 5 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2018
Michael Kapralov

3 (18 pts) Packing dominos. You bought a new board game: an n x n grid with every cell
either square shaped or circular or inactive, together with an unlimited supply of dominos of
a rather non-standard form: a circle attached to a square (see Fig. [I| below; inactive cells are
shaded in grey). The domino fits onto the board if its circle part is in a circular cell of the
board and its square is in a square cell of the board to the left /right, or above/below the circular
part. Design an algorithm that determines, given the shape of the board, the maximum number
of non-overlapping dominos that can be simultaneously placed on the board. You cannot use
inactive cells.

0 () o)
; o9 9Ok
O o0

domino board optimal packing

Figure 1. Illustration of the domino (left), a 3 x 3 board (center) and an optimal packing of 3
dominos onto the board (right).

e Input: an integer n > 1, an n x n array A with A;; = 1 if the (4, j)-th cell is circular and
A;; = 2 if the (7, j)-th cell is square and A;; = 0 if the (4, j)-the cell is inactive.

e Output: largest number of non-overlapping dominos that can be placed on the board.

In this problem you are required to (a) describe an efficient algorithm and (b) analyze its
runtime. Hint: convert the problem to a graph problem and use an algorithm seen in class.

Solution:

Page 6 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2018
Michael Kapralov

Solution to problem 3 continued

Page 7 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2018
Michael Kapralov

(18 pts) Archipelago. You're trying to navigate a strange city. The city’s map is given by a
graph G = (V, E) specifying the intersections and streets of the city. Each edge e € F has a
positive integer weight w, specifying the time it takes to walk along the street. You are currently
located in vertex a and want to get to vertex b as quickly as possible.

Luckily we’ve seen many algorithms in class that are able to tell you the shortest path to b.
Unluckily, the city is located on an archipelago, and the graph G is not connected.

To help the citizens get around, there are a number of ferries connecting the islands (or
sometimes two points of the same island). You have access to their schedule: It lists T ferries,
specifying for each the place of departure (a vertex), the place of arrival (also a vertex), the
departure time and the arrival time. Times are given as non-negative integers; it is currently
time 0. See Fig. 2] for an illustration.

Design and analyze an algorithm that, given the graph G and the ferry schedule, returns the
shortest time needed to get from a to b if you start at a at time 0.

e Input: a graph G = (V, E) with nonnegative weights w : £ — Z given in adjacency list
representation. You have access to a function FERRYSCHEDULE. For every v € V and
integer ¢ > 1 a call to FERRYSCHEDULE(w, ?) in O(1) time returns a triple (v, s,t), where
v € V is the destination, s the departure time and ¢ the arrival time of the i-th ferry out
of u, and NULL if there are fewer than 7 ferries out of w.

e Output: shortest time needed to get from a to b if you start at a at time 0.

departure time = 3

arrival time = 7

Figure 2. A graph G with two connected components (islands) and two ferries. The ferry from e
to be b is faster, but one cannot get to vertex e from vertex a before the ferry’s departure time, so
the route a,c,d, f,b is optimal.

In this problem you are required to (a) describe an efficient algorithm and (b) analyze its
runtime. For full credit your algorithm should run in time O((E + T)logV') time, where T is
the total number of ferries. Hint: adapt an algorithm seen in class.

Solution:

Page 8 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2018
Michael Kapralov

Solution to problem 4 continued

Page 9 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2018
Michael Kapralov

(14 pts) Maintaining a minimum spanning tree in a changing graph. Suppose that you
are given a graph G = (V, E) with weights w : E — R on edges, and a minimum spanning tree
T in G. Now the graph G’ = (V', E') is obtained from G by adding a new vertex v together with
incident edges (see Fig. [3| below). All edge weights in G’ are distinct. Give an efficient algorithm
for computing a minimum spanning tree 7" in G'.

e Input: a graph G = (V, E) with weights w : F — R on the edges, a minimum spanning
tree T in G. A new vertex v together with incident edges (with weights). All edge weights
are distinct.

e Output: a minimum spanning tree in the graph G’ obtained by adding v with all its edges
to G.

graph G and tree T' graph G’ and tree T’

Figure 3. A graph G with its minimum spanning tree T' (left) and the graph G’ with its minimum
spanning tree T” (right). The edges of the spanning trees are shown in bold.

In this problem you are expected to (a) design an efficient algorithm and (b) prove its cor-
rectness. For full credit your algorithm should run in O(V logV') time.

Solution:

Page 10 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2018
Michael Kapralov

6 (14 pts) Largest square submatrix of ones. Given an m x n matrix of zeros and ones, find
the size of the largest square sub-matrix of 1’s present in it.

e Input: an m x n matrix C with Cj; € {0,1} foralli=1,...,mand j=1,...,n.

e Output: Your task is to compute the size of the largest square sub-matrix of 1’s present
in it. Formally, you should find the largest k such that there exist 1 <i<m —k+1,1 <
J <n—k+1suchthat Ciyq4p =1foralac{0,1,...,k—1} and b€ {0,1,...,k —1}.

For example, the size of largest square sub-matrix of 1’s is 3 x 3 in the matrix below.

1001110
1101101
00(111|10
11j11101
1011110
1101001

Give a dynamic programming solution to this problem.

In this problem you are required to (a) describe the subproblems, (b) give a recurrence relation
and (c) analyze the runtime of a bottom-up implementation of your recurrence. For full credit
your solution should run in O(mn) time.

Solution:

Page 11 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2018
Michael Kapralov

Solution to problem 6 continued

Page 12 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2018
Michael Kapralov

