I

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Final Exam, Algorithms 2017-2018

You are only allowed to have a handwritten A4 page written on both sides.

Communication, calculators, cell phones, computers, etc... are not allowed.

Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudocode without explanations.
A good guideline is that a description of an algorithm should be such that a fellow

student can easily implement the algorithm following the description.
Attached at the end of the exam is a French translation.

Do not touch until the start of the exam.

Good luck!

Name: N° Sciper:

Problem 1 | Problem 2 | Problem 3 | Problem 4 | Problem 5

/ 23 points | / 14 points | / 16 points | / 17 points | / 18 points

Problem 6

/ 12 points

Total / 100

Page 1 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2017
Michael Kapralov

1 (23 pts) Basic questions. This problem consists of five subproblems (la-1e) for which you do
not need to motivate your answers.

la (5 pts) Arrange the following functions in increasing order according to asymptotic growth.
n\/ﬁ, logn, 3", n(logn)®, n*logn, log(n!)
(In this problem, you only need to give the right order, i.e., you do not need to explain your
answer.)
Solution:

logn, log(n!), n(logn)®, n*logn, n\/ﬁ, 3"

1b (6 pts, 1 pt for each correct pair) Pair up each of the recurrence relations on the left side
with the correct asymptotic growth function on the right side (assuming that 7°(1) = 1).
For example the recurrence T'(n) = T'(n — 1) + 1 has asymptotic growth ©(n).

Solution:

Tn) =Tn—-1)+1 ©(ny/n)
T(n) = 16T(n/8) + logn — 6
T(n) = 27T(n/9) + n*/3 — o'

T(n) = 4T (n'/*) + logn

T(n)=T(n/3)+T(n/2)+n ~O(log nloglogn)

T(n) = 2T (n/4) + v/n L~ ©(n3logn)

!)

T(n) = 8T(n/2) + n3 — O(n'/?logn)

Page 2 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2017
Michael Kapralov

1lc (4 pts) Consider the recurrence T'(n) = T(an) + T(Bn) + n?, T(1) = ©(1), for some
constants a, 3 € (0,1) that satisfy o? + 82 = 1. Give a tight asymptotic bound for T'(n).
You do not need to motivate your answer.

Solution:

The answer is T'(n) = O(n?logn)

1d (4 pts) Consider the recurrence T'(n) = T(an) + T(Bn) + n?, T(1) = O(1), for some
constants a, 3 € (0,1) that satisfy o? + 82 < 1. Give a tight asymptotic bound for T'(n).
You do not need to motivate your answer.

Solution:
The answer is T'(n) = ©(n?)
le (4pts) Suppose that you want to store n keys in a hash table with m slots. Assume simple

uniform hashing, and define a 4-collision as a set of four distinct keys {k1, k2, k3, k4} that
are hashed into the same slot.

Give a tight asymptotic expression for the expected number of 4-collisions.

Solution:

The expected number of 4-collisions is ©(n*/m?)

Page 3 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2017
Michael Kapralov

2 (14 pts) Maintaining the second smallest element. In this question you should design and
analyze a data structure that supports the following operations:

e INSERT(z): add an integer x to the data structure

e FINDSECONDSMALLEST(): return the second smallest element if the data structure contains
more than one element and NULL otherwise

e DELETESECONDSMALLEST(): remove the second smallest element (if the data structure
contains more than one element)

For full credit the operations must have the following time complexities: O(logn) for INSERT,
O(1) for FINDSECONDSMALLEST, O(logn) for DELETESECONDSMALLEST.

In this problem you are required to (a) describe your data structure and (b) analyze runtime
of the three operations above.

Solution:
We present three solutions: two based on a heap and one that can be based on either a heap
or a number of other data structures.

Solution 1: heap and the min element on the side. Here, our data structure is just a
standard min-heap H (i.e., a max-heap with the order of elements reversed) and a single variable
m. The intention is that m shall hold the minimum element (whenever the structure is non-
empty), and H shall hold all the remaining elements. We begin with H empty and m = co. We
discuss how the three operations can be implemented:

e INSERT(z): compare x to m. If m < x, then m should remain the smallest element, and
we insert x into H. Otherwise m should be replaced by = as the smallest element, and so
we insert m into H (unless m = oo, in which case do nothing) and then set m := x.

e FINDSECONDSMALLEST(): if H is non-empty, return the top element of H. Otherwise
return nil.

e DELETESECONDSMALLEST(): if H is non-empty, run DELETEMIN on H. Otherwise do
nothing.

The three operations clearly have the same asymptotic runtime as the corresponding heap oper-
ations, which is O(logn), O(1), and O(logn) respectively.
Solution 2: just a heap. Here, all the elements are kept in a standard min-heap.

e INSERT(z): just insert z into the heap.

e FINDSECONDSMALLEST(): note that, by the heap property, the second-smallest element
in a heap is one of the two children of the root. We return the smaller of the two. (If there
are fewer than two elements, return nil.)

e DELETESECONDSMALLEST(): we start by locating the second-smallest element, as above.
Then we delete it and restore the heap property manually. For instance, we can assign
the value oo to the deleted element, push it down to a leaf (always pushing to the subtree
containing the smaller element), then delete it.

Page 4 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2017
Michael Kapralov

We might also consider a solution that keeps only a heap and, for the second and third
operation, first removes the largest element, storing it on the side, then performs the wanted
operation on the heap so obtained, and then adds the deleted element back. However, such a
structure would have a running time of O(logn) for FINDSECONDSMALLEST(), whereas we need
O(1).

Solution 3: heap or a balanced binary tree, and the second-smallest element on
the side. Finally, we can use any data structure that supports operations INSERT, FINDS-
MALLEST and DELETESMALLEST in O(logn) time. (Note that we do not require O(1) time for
FindSmallest here; we will be fine with O(logn).) We will also keep the second-smallest “on the
side”, as a variable mg (initially nil), ready to be returned. Note that, differently from Solution
1, mg will also be present in the heap/tree.

e INSERT(z): just insert x into the heap/tree. Then update mq by finding the second-smallest
element in the heap/tree. (For example, in a heap, it is one of the two children of the root;
in a balanced binary tree, it can be found by first finding the smallest element, and then
its successor. Alternatively, regardless of the data structure used, we can just: delete the
smallest element, storing it on the side as m, find the now-smallest element and save it as
ma, and then insert back the deleted smallest element m. The entire step takes O(logn)
time in any case.)

e FINDSECONDSMALLEST(): just return mg! (This step takes O(1) time. By storing ma,
we do not need the underlying data structure to have O(1) runtime for FindSmallest nor
DeleteSmallest.)

e DELETESECONDSMALLEST(): again, we can either perform the operation in some way
depending on the underlying data structure, or use the heap/tree as a black-box: first
delete the smallest element and save it on the side as m, then delete the now-smallest
element, then save the now-smallest element as ms, and then add back the deleted element
m. (This takes O(logn) time.)

Page 5 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2017
Michael Kapralov

3 (16 pts) String similarity. In this problem you will design an algorithm that, given two strings
s and t, outputs the length of the longest common substring between s and t.

e Input: The input consists of two strings s and t of length n and m respectively.

e Output: The length of the longest common substring: the largest k such that there exist
1<i<n—-k+1,1<j<m-—k+1suchthat sfi:i+k—1]=1¢[j:j+k—1]. Here s[a : b
stands for the substring of s corresponding to indices a,a + 1,...,b.

For example, the maximum common substring between s = ABAABABBAB and ¢ = AAABBAA is
ABBA, of length 4. Indeed, s[6 : 9] = ¢[3 : 6] = ABBA, and there is no common substring of length
larger than 4.

Give a dynamic programming solution to the problem with runtime O(nm). Note: this is
similar, but not the same as the longest common subsequence problem covered in
class.

In this problem you are required to (a) define the subproblems and the recurrence, (b) analyze
the runtime of a bottom-up implementation of your recurrence.

Solution: Let d(i,j) be the length of the longest common substring that finishes at si] and t[j]
forall 0 <i <n,0 <j <m. If s[i] # t[j], then there is no common substring that finishes at
this position, therefore the answer is zero. On the other hand, if s[i] = t[j] then the length of
such string is one more than the string that finishes at position s[i — 1] and t[j — 1]. We thus get
that d(i, j) satisfies the following recurrence:

o 0 t=0or j=0or s[t] #t[j
d(i,j) =9 . . . i
d(i—1,7—1)+1 otherwise

Then the answer is the maximum over all 0 < i <n,0 < j <m, of d(i, 7).

It is clear that the running time of filling this table is ©(mn), since our table has ©(mn)
many cells and filling each takes O(1). Therefore we can find the solution by finding the longest
number in the table, which is also ©(mn). A bottom-up implementation of our algorithm is
given below as Algorithm

Algorithm 1 Longest common substring

1: function LONGESTCOMMONSUBSTRING(S, t, n, m)
2: Initialize d[0..n][0..m] to zero

3: answer < 0

4: for i=1do ton

5: for j=1 do tom

6: if sli]==t[j] then

(£ da)lj] =d[i —1][j 1] +1

8: answer= max(answer, d[i|[j])
9: end if

10: end for

11: end for

12: return answer

13: end function

Page 6 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2017
Michael Kapralov

4 (17 pts) Algorithms on a grid. You are given an n x n grid of cells, with every grid cell

containing one of the letters A, L, G, 0. Your task is to find as many non-overlapping spellings of
the word ALGO on the grid as possible (see Fig. . Formally, a spelling of ALGO on the grid is a
sequence of grid cells (i1, j1), (i2,j2), (i3, 73), (i1, Ja) € {1,2,...,n} x {1,2,...,n} such that the
letter in position (i1, 1) is A, the letter in position (i, j2) is L, the letter in position (i3, j3) is G,
the letter in position (i4, j4) is 0, and consecutive cells are adjacent.

We say that two cells (4,) and (¢, j') are adjacent on the grid if either i = ¢’ and |j — j'| = 1
or [i —i'| =1 and j = j'. Two spellings are called non-overlapping if they do not share cells.

Input: Ann x n array A with 4;; € {A, L, G, 0} forevery 1 <i<n,1<j<n.

Output: The largest £ > 0 such that there exist k non-overlapping spellings of ALGO on the

grid.

i o1 2 3 4 V! 2 3 4

(2 7

1 0 A | L G 1 0 A—>L—>G
v

2 L G 0 0 2 L—>G—>0 0

t
3 AL G 0 3 A L—>G—0
4
4 L A 0 L 4 L A 0 L

Figure 1. 4 X 4 instance of the problem (left) and the optimal solution (right).

Design and analyze an algorithm for the problem. Your algorithm should run in time
polynomial in n. Hint: construct a graph G with a source s and a sink t such that the value of
max-flow from s and t in G is exactly the maximum number of non-overlapping spellings.

In this problem you are required to (a) describe an efficient algorithm and (b) analyze its
runtime.

Solution: This problem can be solved by associating transforming the input instance into a
graph and finding the maxflow on it. We construct the graph G(V, E) as follows.

The set of the vertices V is defined as V = {fu{; for all 4,5 € [n]} U {s} U {t}. Each vf
corresponds to a cell of the grid. The set of edges is defined as follows. For all i, j € [n]

1,79 zg+1) €

(4
(Aij, Aij1) €
eEiff(i ZJrlj)e
(Aij, Aimry) €
And also we connect s and t to nodes Uf ’s as follows:
(s,vf) ceFEiff A;; =A

Page 7 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2017
Michael Kapralov

(Ug,t) c b iff Ai,j =0

We compute the maximum s — ¢ flow in this graph with capacities of all the edges equal
to 1 and capacity of all v} vertices equal to 1. The maximum flow on this graph is equal to
the maximum number of non overlapping spellings of ALGO (see below for correctness proof).
The construction of the graph take time linear in the size of the input if we use the adjacency
array format to represent the graph. We then find the maximum flow using Ford-Fulkerson
algorithm, using BFS to find augmenting paths at every iteration. The number of iterations is
upper bounded by the number of spellings, and thus by n?, and each iteration takes O(n?) time.
Overall, our algorithm runs in O(n?) time.

To see the correctness, note that because we have the constraint on the maximum capacity
of each v] being at most one there will be no overlap between the spellings. First we show that
for any set of non overlapping spellings on the grid there exists a valid flow on the graph. The
reason is that for each spelling of ALGO on the grid there is a sequence of adjacent grid cells
(i1, 1), (42, 72), (i3, j3), (11, 44) € {1,2,...,n} x {1,2,...,n} and we can send a unit amount flow
from s to v}l — vf2 = vf> — v} and to t. This does not violate the capacities of the edges or
nodes because spellings on the cell were non overlapping.

Now we show that any integral flow on the graph corresponds to a set of valid non overlapping
spellings of ALGO on the grid (note that it is enough to consider integral flows because Ford-
Fulkerson returns an integral flow whenever capacities are integral, as in our case). First clearly
the capacity constraints on the nodes prevents the overlaps. Also by the connections from the
nodes it is clear that each unit of flow corresponds to a spelling of ALGO.

Page 8 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2017
Michael Kapralov

5 (18 pts) Minimum-weight forests. In this problem you are given a connected undirected
graph G = (V, E) with non-negative edge weights w, and your task is to design and analyze
an efficient algorithm that computes the minimum-weight forest in G with exactly two connected
components.

Input: Connected undirected graph G = (V, E') with non-negative edge weights w : E' — R.

Output: Minimum-weight forest in G with exactly two connected components.

For full credit, your algorithm should run in time O((|V| + |E|) log [V]).

TR

Figure 2. Example of input graph G with edge weights (left), and its minimum-weight forest with
two components (right).

In this problem you are expected to (a) design an efficient algorithm (b) prove its correctness
and (c) analyze its runtime.

Solution: Run Kruskal’s algorithm for |V| — 2 iterations, which results in a forest with 2
connected components — denote this forest by F. We show that this forest is the cheapest forest
with two components in G. Let T denote the minimum spanning tree resulting from running
Kruskal’s algorithm to the end, i.e. for |V| — 1 iterations. Recall that Kruskal’s algorithm adds
edges to the minimum spanning tree T in non-decreasing order of weight, so the forest F' that
we constructed is in fact T without its most expensive edge. To show that F' is a minimum-cost
forest with 2 connected components, we argue by contradiction. Let F’ be a minimum-cost
forest with two components in GG, and suppose that the cost of F’ is strictly smaller than the
cost of F. Now there exists at least one edge ¢’ of T' which can be added to F’ to turn it into
a spanning tree 7”, and the weight of 7" is the sum of the weight of F’ and the weight of ¢’
cost(T") = cost(F') + w(e’). On the other hand, the weight of T is the weight of F plus the
weight of a heaviest edge in T: cost(T) = cost(F) + max.cr we. Putting these two bounds
together, we get

cost(T") = cost(F') + w(e") < cost(F) + w(e’) < cost(F) + mMax We = cost(T),
ec

which contradicts the assumption that T' was a minimum spanning tree.

Page 9 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2017
Michael Kapralov

6 (12 pts) Route intersections revisited. The infinite glacier in the Swiss Alps has the following
structure: two perfectly parallel walls (North and South) with a river of ice flowing between them.
We model the South wall as the line y = 0 in the plane, and the North wall as the line y = 1
(see Fig. . Now n companies want to establish Tyrolean routes across the glacier, and each
company designated two climbers, who occupy positions on the two walls and have a rope between
them. The ropes may cross, and in this problem your task is to design an efficient algorithm for
counting the number of crossings.

Input: Positions a;,7 = 1,...,n of n climbers on the North wall. The first climber in the i-th
pair occupies position (a;, 1) on the North wall, and the second occupies position (i,0) on
the South wall (see Fig. [3). The rope between them is the line segment connecting (a;, 1)
to (¢,0) in the plane.

Output: Your task is to compute the number of intersections of the line segments.

You may assume that n is a power of two if this simplifies your analysis, as well as that no
two climbers occupy the same position, and no three line segments intersect at the same point.
You may use the fact that a segment connecting (i,0) to (a;, 1) intersects a segment connecting
(4,0) to (aj,1) if and only if ¢ < j and a; > a; or ¢ > j and a; < a;.

as a2 ap a4 North wall (line y = 1)
®
®
1 2 3 4 South wall (line y = 0)

Figure 3. An example problem instance with n = 4. The number of intersection points is 3. Note
that only the z-coordinates of the climbers are shown, as all climbers on the North wall have their
y-coordinates equal to 1, and climbers on the South wall have their y-coordinates equal to 0.

For full credit your algorithm should run in O(nlogn) time. Hint: the problem can be solved
using an adaptation of merge-sort.

Solution: Notice that we only need to count the number of pairs 7, j such that ¢ < j and a; < a;.
We call such a pair an inversion, and thus, we need to count the number of inversions in the
array A = [a1,...,a,)].

A naive way of doing this would be going through all 1 < i < j < n and checking whether
a; > aj, but this would need ©(n?) comparisons. However, we already know that we can sort the
array A using O(nlogn) comparisons. If we carefully observe what happens in the sorting, (i.e.,
how the order of the elements get changed over time,) we can figure out how many inversions

Page 10 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2017
Michael Kapralov

were there to begin with. We can modify the divide and conquer sorting algorithm, MergeSort,
for this purpose.

To see this, suppose that we have already sorted the first half of A and the second half of A
separately, and counted the number of inversions that were in those portions separately. Formally,
suppose that we have an array C' = [cy, ... ,Cn, Ry, ,cn] such that, ¢ < ey < -+ < cn and
Cnpq <cnyg <-o- < Cp Now, while merging the two halves into a single sorted array, we can
count the number of remaining inversions, i.e. inversions that involve one element from the left
half and one element from the right half. Note that the total number of such inversions is the
sum over all elements of the right half of the number of elements in the left half that are larger.
We can compute this sum in linear time during the merge step. Consider the merge procedure in
MERGESORT (see Algorithm |3/ below for the modified version) and suppose that we have merged
i —1 elements from the first half and j — 1 elements form the second half, and are now comparing
¢i and ¢z ;. We will record the contribution of every element of the right half of C' to the number
of inversions once it is added to the merged array. If ¢; < cnig, there is nothing to be done, since
¢; is added to the merge array, not cngj. If cniy < ¢, we add § — i+ 1 to our counter, since
Czj must be put before all the remaining elements of the first half, ¢;, ¢;41, ... e, and thus
participates in exactly § —i+ 1 more inversions with an element of the left half of C'. Hence, we
have the following modified MERGESORT algorithm for counting the number of inversions (see
Algorithm [2)). We get the answer by calling ROUTEINTERSECTIONS(4, 1, n).

Algorithm 2 Modified MERGESORT
1: function ROUTEINTERSECTIONS(X, p,)
2 answer <— 0
3 if p <r then
4 g [0
5: answer <— answer + ROUTEINTERSECTIONS(X, p, q)
6
7
8

answer < answer + ROUTEINTERSECTIONS(X, ¢+ 1,7)
answer < answer + ROUTEINTERSECTIONSMERGE(X, p, q,)
end if
return answer
9: end function

Page 11 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2017
Michael Kapralov

Algorithm 3 Modified merging procedure.

1: function ROUTEINTERSECTIONSMERGE(X, p, ¢, 7)
2 answer <— 0
3 ny+—q+1—p
4: ng < r—gq
5: Create new arrays L[1,...,n1 + 1], and R[1,...,no + 1]
6 fori=1,...,n; do
7 L[i] + X[p+i—1]
8 end for
9: Ling +1] < o0
10: for j=1,...,n0 do
11: R[j] « X[q + J]
12: end for
13: Ring + 1] + o0
14: 141
15: g1
16: for k=p,...,r do
17: if L[i] < R[j] then
18: X k] < L[i]
19: 1+ 1+1
20: else
21: answer <— answer + (n; —i+ 1)
22: X[k] < R[j]
23: j+ij+1
24: end if
25: end for

return answer
26: end function

Page 12 (of 12)

CS-250 Algorithms, Final Exam e Autumn 2017
Michael Kapralov

