
Final Exam, Algorithms 2015-2016

• You are only allowed to have a handwritten A4 page written on both sides.

• Communication, calculators, cell phones, computers, etc... are not allowed.

• Your explanations should be clear enough and in sufficient detail so that a fellow student

can understand it. In particular, do not only give pseudocode without explanations. A

good guideline is that a description of an algorithm should be so that a fellow student

can easily implement the algorithm following the description.

• Do not touch until the start of the exam.

Good luck!

Name: N

�
Sciper:

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

/ 23 points / 10 points / 15 points / 16 points / 17 points / 19 points

Total / 100

Page 1 (of 12)

CS-250 Algorithms, Final Exam • Autumn 2015
Ola Svensson

1 (23 pts) Basic questions. This problem consists of four subproblems (1a-1d) for which you do
not need to motivate your answers.

1a (6 pts) Let A[1 . . . 9] = 3 9 5 4 8 6 11 7 2 be an array consisting of 9

numbers. Illustrate how A looks like after executing the code

Max-Heapify(A, 4, 9), Max-Heapify(A, 3, 9), Max-Heapify(A, 2, 9), Max-Heapify(A, 1, 9).

Solution:

Resulting A = 11 9 6 7 8 3 5 4 2

1b (6 pts) A brilliant and highly motivated student at EPFL has decided to improve upon
Strassen’s algorithm for matrix multiplication. He strongly believes that after partitioning
the matrices into 16 submatrices each of dimension n/4 ⇥ n/4 — similarly to Strassen’s
algorithm (recall that Strassen’s algorithm partitions the matrices into 4 submatrices each
of dimension n/2 ⇥ n/2) — one can obtain the final answer by using 32 matrix multipli-
cations (each multiplying two matrices of dimension n/4 ⇥ n/4). If the student modifies
Strassen’s algorithm using this idea, what is the running time obtained for multiplying two
matrices of dimension n⇥ n?

Solution:

The answer is ⇥(n2.5
).

1c (5 pts) Suppose you have n distinct keys that you wish to store in a hash table. We have
six different alternatives for the size of the hash table:

A: n B: n log n C: n2
D: n2

log n E: n3
F: n3

log n

Assuming simple uniform hashing, what is the smallest size of the hash table (among the
above alternatives) so that the expected number of collisions is less than 1 ?

Solution:

The choice is C.

Page 2 (of 12)

CS-250 Algorithms, Final Exam • Autumn 2015
Ola Svensson

1d (6 pts) Consider the following undirected graph with edge weights:

a

b c

d

e f

g

8

7

9

7

2

4

5

6

12 4

11

10

Write the weights of the edges (in the correct order) added to the shortest path tree by
Dijkstra’s algorithm starting from a, i.e., with source a.

Solution:

7, 8, 7, 9, 11, 6

Page 3 (of 12)

CS-250 Algorithms, Final Exam • Autumn 2015
Ola Svensson

2 (10 pts) Probabilistic analysis. Consider the following algorithm Random-Cut that takes
as input an undirected unweighted graph G = (V,E).

Random-Cut(G)

1. Let s and t be two vertices in G.
2. Let S = {s} and T = {t}.
3. for each vertex v in G different from s and t
4. Add v to S or to T with equal probability 1/2.
5. return the cut (S, T)

2a (6 pts) Recall that an edge crosses a cut (S, T) if one of its end points is in S and the other
one is in T . Prove that in expectation the number of edges crossing the cut returned by
Random-Cut is at least |E|/2, i.e., at least half of the edges crosses the cut in expectation.

Solution:

For each edge e 2 E, let Xe be the indicator random variable for the event that “e crosses
the cut (S, T) returned by Random-Cut”. Then the expected number of edges that crosses the
cut is

E
"
X

e2E
Xe

#
=

X

e2E
E[Xe]

=

X

e2E
Pr(S,T)[e crosses the cut (S, T)].

We complete the proof by showing that Pr(S,T)[e crosses the cut (S, T)] is at least 1/2 for any
edge e. If e = {s, t} then the probability is one. In the other cases, when e = {s, u} or e = {u, t}
or e = {u, v}, the probability equals 1/2 (because after fixing the side of one of the vertices,
the probability that the other vertex goes to the opposite side of the cut is exactly 1/2). This
completes the proof since this implies that

P
e2E Pr(S,T)[e crosses the cut (S, T)] � |E|/2.

Page 4 (of 12)

CS-250 Algorithms, Final Exam • Autumn 2015
Ola Svensson

2b (4 pts) Give a small modification to the algorithm Random-Cut so that strictly more

than half of the edges crosses the returned cut in expectation. Here, we assume that the
input graph contains at least one edge.

Solution:

The small modification is that instead of chosing s and t to be any two vertices in G, we select
an edge e = {u, v} in G and let s = u and t = v. Then that edge will be cut with probability
1 and all other edges in the graph will be cut with probability 1/2 by the same analysis as
in the previous subproblem. Thus the expected number of edges crossing the edges with this
modification is

1 +

|E|� 1

2

=

|E|+ 1

2

,

which is strictly greater than |E|/2.

Page 5 (of 12)

CS-250 Algorithms, Final Exam • Autumn 2015
Ola Svensson

3 (15 pts) Job assignments. Consider the following job assignment problem:

There is a set A = {a1, a2, . . . , an} of n students and a set B = {b1, b2, . . . , bm} of m jobs.
Each student ai 2 A is interested in a subset N(ai) ✓ B of the jobs. The goal is to find (if
possible) an assignment of jobs to students so that each student ai 2 A gets one job bj in
N(ai) and each job is assigned to at most one student.

In class, we saw how to formulate this problem as a max flow problem of a flow network G so
that the maximum flow value is equal to n if and only if there exists a job assignment to the
students. The flow network G is defined as follows (see also example below):

• The vertices consist of a source s, a sink t, a vertex ai 2 A for each student, and a vertex
bj 2 B for each job.

• There is an arc of capacity 1 from the source s to ai for each student ai 2 A. Similarly,
there is an arc of capacity 1 from bj to the sink t for each job bj 2 B.

• Finally, there is an arc of capacity 1 from ai to bj if and only if bj 2 N(ai), i.e., if student
ai is interested in the job bj .

The task, in the following two subproblems, is to analyze for which instances there is a job
assignment (or equivalently, for which instances, the flow network has a max flow value of n).

Example of flow network: Consider the instance when S = {a1, a2, a3},
J = {b1, b2, b3, b4}, and N(a1) = {b1, b2, b3}, N(a2) = {b2, b3} and N(a3) = {b3, b4}. The
corresponding flow network can then be depicted as follows:

s

a1

a2

a3

t

b1

b2

b3

b4

1

1

1

1

1

1

1

1

1

11

1

1

1

Page 6 (of 12)

CS-250 Algorithms, Final Exam • Autumn 2015
Ola Svensson

3a (5 pts) Suppose there is a subset A0 ✓ A of students so that |A0| > |N(A0
)|, where

N(A0
) =

S
ai2A0 N(ai). Then there cannot be an assignment of jobs to the students

because the total number of jobs that interest the students in A0 is less than the number
of students in A0.

In this case, which of the following cuts is guaranteed to have capacity less than n?

A: The cut defined by S = {s} and T = {t} [A [B.

B: The cut defined by S = {s} [A [B and T = {t}.
C: The cut defined by S = {s} [A0 and T = {t} [(A \A0

) [B.

D: The cut defined by S = {s} [N(A0
) and T = {t} [A [(B \N(A0

)).

E: The cut defined by S = {s} [A0 [N(A0
) and T = {t} [(A \A0

) [(B \N(A0
)).

F: The cut defined by S = {s} [A0 [(B \N(A0
)) and T = {t} [(A \A0

) [N(A0
).

Solution:

The cut which is guaranteed to have capacity less than n is E

(You are not required to motivate your answer in this subproblem.)

Page 7 (of 12)

CS-250 Algorithms, Final Exam • Autumn 2015
Ola Svensson

3b (10 pts) Prove that if every A0 ✓ A satisfies

|A0|  |N(A0
)| (where again N(A0

) =

S
ai2A0 N(ai))

then there is a job assignment, i.e., the max flow has value n.

Solution:

We prove that the max flow has value � n by showing that any s, t-cut has capacity at least
n. Consider any cut (S, T) where s 2 S and t 2 T . Let

A0
= A \ S and B0

= B \ S.

First observe that if N(A0
) 6✓ B0 then there exists an arc from a student ai 2 A0 to a job

bj 2 N(ai) \ B0, i.e., this arc crosses the cut. Since these arcs have capacity 1, the cut has
clearly capacity � n in this case.

Therefore we may from now on assume that N(A0
) ✓ B0. In that case the capacity of the

cut is
X

ai 62A0

1 +

X

bj2B0

1,

where the first sum comes from the arcs from the source s to the students not in A0 and the
second sum comes from the arcs from the jobs in B0 to the sink. The capacity of the cut can
thus be rewritten as

n� |A0|+ |B0| � n� |A0|+ |N(A0
)| � n,

where the first inequality follows from that we now assume N(A0
) ✓ B0 and the second inequality

follows from the assumption of the statement.
We have thus verified that every cut has capacity � n and since the cut S = {s}, T = {A,B, t}

has capacity n, we can conclude from the max-flow min-cut Theorem that the max-flow has value
n.

Page 8 (of 12)

CS-250 Algorithms, Final Exam • Autumn 2015
Ola Svensson

4 (16 pts) Shortest paths.

4a (3 pts) Consider a directed graph G = (V,E) with edge-weights w : E ! R and a ver-
tex/source s 2 V . We assume that G does not contain any negative cycles. In addition,
we have the following facts:

• The edges (u1, v), (u2, v) 2 E are both part of shortest paths from s to v and
w(u1, v) = 10, w(u2, v) = 20.

• The length of a shortest path from s to v is 1981.

What are the lengths of shortest paths from s to u1 and from s to u2?

Solution:

The length of a shortest path from s to u1 is 1971.

The length of a shortest path from s to u2 is 1961.

(You are not required to motivate your answers in this subproblem.)

Page 9 (of 12)

CS-250 Algorithms, Final Exam • Autumn 2015
Ola Svensson

4b (13 pts) Design and analyze an efficient algorithm for the following problem:

Given a directed graph G = (V,E) with edge-weights w : E ! R and a vertex/source
s 2 V , return all the edges that are part of a shortest path starting at s.

You may assume that the graph only contains non-negative cycles but it may contain
negative edge weights.

Example: Consider the following input:

s

A

B

C

2

1

�1

1

1

1

Then the shortest paths from s are s ! A, s ! B, s ! B ! A, s ! B ! C. Therefore
the correct output of the algorithm would be the edges (s,A), (s,B), (B,A), (B,C).

Solution:

The algorithm is as follows:

1. Run Bellman-Ford to calculate the distance d(u) from s all other vertices u 2 V . (We use
Bellman-Ford as the graph may have negative edges but no negative cycles.)

2. Let SOL = ;. For each arc (u, v) 2 E, add (u, v) to SOL if d(v) = d(u) + w(u, v).

3. Return SOL.

First we calculate all the shortest path lengths from the source. Then we add an edge (u, v) to
the solution SOL if and only if it is part of a shortest path from s to v. This is the case if a
shortest path from s to u of length d(u) plus the length of the edge (u, v) (i.e., w(u, v)) equals
the length of a shortest path from s to v.

The running time of our algorithm is as follows. The first step takes O(|V ||E|) time. The
second step takes O(|E|) time. Hence the total running time of the algorithm is O(|V ||E|) which
is the asymptotic running time of the Bellman-Ford algorithm.

Page 10 (of 12)

CS-250 Algorithms, Final Exam • Autumn 2015
Ola Svensson

5 (17 pts) The funny array game. Design and analyze an efficient algorithm for the following
problem of optimally playing a game on an array:

You are given a sequence of n positive numbers a1, a2, ..., an. Initially, they are all colored
black. In one move, you can choose a black number ak and color it and its immediate
neighbors (if any) red (the immediate neighbors are the elements ak�1, ak+1). You get ak
points for this move. What is the maximum total number of points that you can get during
the game?

For full credit, your algorithm should run in time O(n).

Example: Given a sequence 1 2 6 4 7, you can start by choosing 6; when you do, you
get 6 points and have to color 2 6 4 red. Next, you can choose 7, which gives you 7 points;
you color 7 red (its neighbor 4 was already red). Finally, you choose 1 (the only remaining
black number), get 1 point and color it red. Now all numbers are red and you cannot make
any more moves. You obtain 6 + 7+ 1 = 14 points, which is the maximum possible score.

Solution:

First we observe that it does not matter in which order we choose the numbers. Instead a
feasible selection of numbers can be described as a subset of numbers so that we have not chosen
two adjacent indices.

We can now write a recursive formulation of our problem. Let p[t] be the maximum number
of points of an optimal solution to the game on the first t numbers, i.e., on a1, a2, . . . , at. Then,
we can express p[t] as the following recurrence

p[t] =

8
><

>:

0 if t = 0

a1 if t = 1

max{p[t� 1], p[t� 2] + at} if t � 2.

The maximum is over two options: either we don’t pick the t:th number so we get a smaller
instance of the first t � 1 numbers; or we pick the t:th number and in this case we cannot pick
the t� 1:th number so we get a smaller instance of the first t� 2 numbers.

We now can implement this recurrence either using the bottom-up or the top-down approach.
We do bottom-up:

Bottom-Up(a1, a2, . . . , an)

1. Let p[n] be an array of n numbers.
2. p[0] = 0 and p[1] = a1
3. For t = 2, . . . , n:
4. p[t] = max{p[t� 1], p[t� 2] + at}
5. return p[n].

It is clear that the loop dominates the running time. As it is executed  n times, the total
running time is O(n).

Page 11 (of 12)

CS-250 Algorithms, Final Exam • Autumn 2015
Ola Svensson

6 (19 pts) Median of two sorted arrays.

Given two sorted arrays A and B that both contain n integers, design and analyze an
efficient algorithm that returns the median of the array resulting from merging A and B. For
full credit, your algorithm should run in time O(log n).

(Recall that the median of k numbers a1  a2  · · ·  ak is adk/2e if k is odd and a(k/2)+a(k/2+1)

2
if k is even.)

Solution:

The idea of the algorithm is as follows: Let C denote the merged array of A and B. Note
that if we remove the x smallest numbers and the x largest numbers from C then the median
does not change (as long as we do not remove the numbers that define the median). How can
we efficiently remove smaller and larger elements in the merged array without merging it? Well
let Med(A) denote the median of A and let Med(B) denote the median of B. Suppose that
Med(A)  Med(B), then we know that the numbers A[1 . . . dn/2e � 1] will not be part of the
median because they are too small of C and B[bn/2c + 2 . . . n] will not be part of the median
because they are too big. This means that we have thrown away x = dn/2e�1 = n�(bn/2c+2)+1

smaller and bigger elements and we can recurse on the smaller instance of roughly half the size.

Page 12 (of 12)

CS-250 Algorithms, Final Exam • Autumn 2015
Ola Svensson

