
Final Exam, Algorithms 2014-2015

� You are only allowed to have a handwritten A4 page written on both sides.

� Communication, calculators, cell phones, computers, etc... are not allowed.

� Your explanations should be clear enough and in su�cient detail so that a fellow student
can understand it. In particular, do not only give pseudocode without explanations. A
good guideline is that a description of an algorithm should be so that a fellow student
can easily implement the algorithm following the description.

� Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

/ 15 points / 15 points / 5 points / 11 points / 29 points / 25 points

Total / 100

Page 1 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

1 (15 pts) Asymptotics and basic runtime analysis.

1a (5 pts) Arrange the following functions in increasing order according to asymptotic growth.

2n, (log log n)10, n300,
√
n, n/ log n, 22

n
, n
√
n, log n

(In this problem, you only need to give the right order, i.e., you do not need to explain your

answer.)

Solution:

(log log n)10 < log n <
√
n < n/ log n < n300 < n

√
n < 2n < 22

n

Page 2 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

1b (10 pts) Consider the following four recursive functions. We assume fi(0) = 0 and they
are de�ned as follows for n ≥ 1:

f1(n) = max
1≤i≤n

(pi + f1(n− i)), f2(n) = max
1≤i≤blognc

(pi + f2(n− i))

f3(n) = pn + f3(n− 1), f4(n) = max
1≤i≤n
1≤k≤i

(k2pi + f4(n− k)),

where p1, . . . , pn are positive integers.

Give tight asymptotic running times (using the Θ(·) notation) of the bottom-up
dynamic programming implementations for calculating f1(n), f2(n), f3(n), and f4(n). We
assume that the implementation of the bottom-up does not use any special properties of the
recursions, i.e., it �lls in each cell in the table using exactly the de�nition of the recursion.

(In this problem, you only need to give the answer, i.e., no explanations are needed. In particular,

you do not need to explain the bottom-up dynamic programs.)

Solution: Using the bottom-up dynamic programming technique (without using any special
properties of the recursions)

� the asymptotic running time for calculating f1(n) is Θ(n2).

� the asymptotic running time for calculating f2(n) is Θ(n log n).

� the asymptotic running time for calculating f3(n) is Θ(n).

� the asymptotic running time for calculating f4(n) is Θ(n3).

Page 3 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

2 (15 pts) Hash tables.

2a (7 pts) Illustrate/draw the hash table T [0, . . . , 6] obtained after inserting the keys
3, 9, 7, 24, 0, 14 in the given order using the hash function h(k) = k mod 7. Collisions are
resolved using chaining with double-linked lists.

(Note that you only need to draw one hash table: the one obtained after inserting all the above

keys.)

Solution:

0

1

2

3

4

5

6

T =

14 0 7

9

24 3

Page 4 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

2b (8 pts) Suppose you have a hash table with 2n slots and suppose that n distinct keys
are inserted into the table. Each key is equally likely to be hashed into each slot (simple

uniform hashing).

Prove that the expected number of collisions is (n−1)/4. Recall that we say that two keys
ki and kj with i 6= j collide if they are hashed to the same slot. The number of collisions
is the number of pairs of keys that collide.

Solution:
For 1 ≤ i < j ≤ n, we let Xij be the indicator variable that indicates whether key ki is

hashed to the same slot as kj . That is Xij = I{h(ki) = h(kj)} where h is the hash-function.
Let X be the total number of collisions. By the above de�nitions and the de�nition of collisions,
we have X =

∑n−1
i=1

∑n
j=i+1Xij . Using linearity of expectation, we thus have that the expected

number of collisions is

E[X] = E

n−1∑
i=1

n∑
j=i+1

Xij

 =
n−1∑
i=1

n∑
j=i+1

E[Xij].

Since we assume simple uniform hashing we have that the probability that two di�erent keys
hash to the same slot is 1/(the number of slots) = 1/(2n). Substituting in this equality, we have
that the expected number of collisions is

n−1∑
i=1

n∑
j=i+1

1

2n
=

n−1∑
i=1

n− i
2n

=
1

2n
+

2

2n
+ . . .+

n− 1

2n
=
n(n− 1)

4n
=

(n− 1)

4
,

as required.

Page 5 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

3 (5 pts) Spanning trees. Let G = (V,E) be a connected undirected graph with edge weights
w : E → R. Consider an arbitrary edge e ∈ E. Professor Homer Simpson thinks the following
statement is always true:

�e is contained in a minimum spanning tree or e is contained in a maximum spanning tree.�

Show that Homer is wrong by giving a counterexample to this statement.

Solution:
A counter example is as follows:

1

1 3

3

2

The above is a counterexample to the statement of Homer because the edge of weight 2 is in
no minimum spanning tree and in no maximum spanning tree. Indeed a minimum spanning
tree is formed by taking both edges of weight 1 and then one edge of weight 3; and a maximum
spanning tree is formed by taking both edges of weight 3 and then one edge of weight 1.

Another way to see that Homer is wrong is as follows: Take a complete graph with n ≥ 5
vertices where all edges have distinct weights. Since all edge-weights are unique, there exists a
unique minimum spanning tree and a unique maximum spanning tree. Hence at most 2(n − 1)
edges can be in any of them but a complete graph has n(n− 1)/2 edges.

Page 6 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

4 (11 pts) Basic algorithm design. It is well-known that �nding the minimum in an array of n
numbers requires time Θ(n). However, if we are given more information about the structure of
this array, we might be able to do it more e�ciently. For instance, if the array is sorted, then
one can �nd the minimum in constant time.

In this problem, we are given an array A = [a1, . . . , an] of n numbers, with the promise that
there exists an index ` ∈ {1, 2, . . . , n} such that

a1 > a2 > · · · > a` and a` < a`+1 < · · · < an

Note that in this case, the minimum in this array is a`.
Design and analyze an algorithm that, given such an array A, returns the minimum element

a` in time O(log n) (no points will be given for worse running times). You may assume that the
array is always in the correct format, and the elements in the array are distinct, and hence the
minimum is unique.

Solution:
We observe that our array has a very nice structure: whenever we check an element, we know

it is the one we are looking for if it is smaller than its neighbors. Otherwise, we know in which
direction to look for: if the element is smaller than its right neighbor and larger than its left one,
we should look towards the left direction, otherwise we should look towards the right direction.

This prompts us to design a divide-and-conquer algorithm, based on the binary search algo-
rithm. The essential di�erence is that, while in binary search the condition we check for is if
the element we are looking at is the one we are searching for, here instead the condition will be
whether the element is smaller than its neighbors. Other than that, the two algorithms will be
identical.

So, here is the recursive procedure we will use:

SEARCH(A, l, r)
1. if A[l] < A[l + 1]
2. return A[l]
3. if A[r] < A[r − 1]
4. return A[r]
5. m← b(l + r)/2c
6. if A[m− 1] > A[m] < A[m+ 1]
7. return A[m]
8. if A[m− 1] < A[m] < A[m+ 1]
9. SEARCH(A, l,m− 1)
10. if A[m− 1] > A[m] > A[m+ 1]
11. SEARCH(A,m+ 1, r)

So, this procedure implements the ideas we discussed above: it picks the middle element of
the subarray we are looking at, checks if it is the minimum element of the whole array, and if
not, chooses the correct direction to continue looking at, always halving the size of the subarray
at each recursive call. In order to solve the problem, we run SEARCH(A, 1, n).

To verify the correctness of the algorithm, observe that at each recursive call, the minimum
element will be at the subarray we will apply the recursive call on. Hence, all we have to guarantee
is two things:

� that the conditions checked in lines 6, 8 and 10 are always well-de�ned; this is true because
they would be ill-de�ned only if we tried m = 1 or m = n, in which case case the subarray
we are looking at has size 2, and we would have reurned a result either in line 2 or 4.

Page 7 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

� that the size of the subarray we are looking at decreases at each recursive call; this is true,
because of lines 9 and 11, which imply that the size of the subarray always decreases by at
least 1.

To analyze the running time, observe that due to the selection of m and due to lines 9 and
11, the size of the subarray we will be looking at every time we apply a recursive call will be
at most half the size of the original subarray. Since every recursive call takes constant time to
complete, we can write the following recursive formula for the running time:

T (n) = T (n/2) +O(1)

with T (1) = O(1). Applying the Master Method with a = 1 and b = 2, we get that the running
time is

T (n) = O(log n)

Page 8 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

5 (29 pts) Flows and Cuts.

5a (10 pts) Consider the �ow of value 22 in the following �ow network (the numbers on an
edge determine its current �ow and its capacity).

s

A

B

C

t

D

E

F

9/12

11/11

2/8

1/1

18/24

3/4

0/4

9/9

0/6

18/18

1/4

1/3

2/2

0/4

0/7

Starting with the above �ow, �nd a max �ow by running the Ford-Fulkerson
method. In each iteration, draw the residual network, and if there exists an augmenting
path, indicate which one you selected and explain how the �ow is updated along this path.

Solution:

Iteration 1: The residual network is:

s

A

B

C

t

D

E

F

3
9

11

6
2

1

6
18

1
3

4

9

6

18

3
1

2
1

2

4

7

There exists an augmenting path: s→ A→ D → B → F → t. The bottleneck of this path is 1
because of arc (D,B). Hence, we update the �ow by sending one unit of �ow along this path to
obtain the new �ow:

Page 9 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

s

A

B

C

t

D

E

F

10/12

11/11

2/8

1/1

18/24

4/4

1/4

9/9

0/6

18/18

2/4

0/3

2/2

0/4

0/7

Iteration 2: The residual network is:

s

A

B

C

t

D

E

F

2
10

11

6
2

1

6
18

4

3
1

9

6

18

2
2

3

2

4

7

Note that the vertices reachable from the source are s, C,A,D and hence there is no augmenting
path and the �ow is a max �ow of value 23. As a sanity check, the cut �corresponding� to this
�ow is ({s, C,A,D}, {B,E, F, t}) and it has indeed capacity 23.

Page 10 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

5b (6 pts) Consider the same �ow network as in Subproblem 5a and consider the min cut
�corresponding� to the max �ow that you found in that problem. Use the structure of
this cut to prove (in a couple of sentences) that the max �ow value must decrease if the
capacity of arc (C,F) is decreased from 2 to 1.

Solution:
The cut corresponding to the max �ow of 5a was S = {s, C,A,D}, T = {B,E, F, t}. As it is

a minimum cut, it has capacity 23 which equals the max �ow in the original �ow network. Now
since (C,F) is an arc of going from S to T in the cut we have that the capacity of the cut would
decrease from 23 to 22 if we would decrease the capacity of (C,F) from 2 to 1. Hence, as the
value of a max �ow is at most the capacity of any cut, we have that the max �ow value must
decrease to be at most 22 if we decrease the capacity of (C,F) from 2 to 1.

Page 11 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

5c (13 pts) Thanks to the many excellent students (and professors :)), EPFL has seen a rapid
increase in size and quality. However, there is one worry: are there enough professors and
PhD students to cover all courses? In order to ensure high quality teaching we have the
following constraints in assigning teaching sta� to courses. Professors and PhD students
can be assigned to at most one course in their expertise. Moreover, each course needs a
course-dependent number of sta� members, one of which needs to be a professor.

Formally, we wish to solve the following teaching assignment problem:

Input: a set C of courses where each course c ∈ C has a requirement r(c) ≥ 1, a set T of
teaching sta�, partitioned into a set P of professors and a set S of PhD students, where
each sta� member t ∈ T can be assigned to a subset Ct ⊆ C of courses (corresponding
to his/her expertise).

Output: If possible, an assignment of teaching sta� to the courses so that

� Each sta� member t ∈ T is assigned to at most one course and, if assigned, the
assignment must be to a course in Ct.

� Each course c ∈ C is assigned at least r(c) teaching sta� members.

� At least one professor is assigned to each course (note that it is also �ne if more
than one professor is assigned to a course).

If no such assignment exists, simply output �We need to hire!�.

Your task is to design and analyze a polynomial time algorithm for the above problem.

(Hint: formulate a �ow problem so that an (integral) max �ow corresponds to an assignment

if one exists. However, do not forget to explain how to turn a solution to the �ow problem

into a solution to the original problem.)

Solution:
We shall model the problem as a �ow problem with a source s and a sink t. The remaining

nodes of our �ow network will be arranged into two layers: the left-layer and the right-layer.
The left-layer has a node Lp for each professor p ∈ P and a node s ∈ S for each PhD student.
The right-layer has two nodes Rc and Rc′ for each course c ∈ C. (The reason that we have two
nodes for each course is to ensure that each course will be assigned one professor as will be clear
below.) Our construction has the following arcs:

� For each professor p ∈ P there is an arc (s, Lp) of capacity 1. Similarly, for each PhD
student s ∈ S, there is an arc (s, Ls) of capacity 1.

� For each course c ∈ C there is an arc from (Rc′ , t) of capacity 1 and an arc (Rc, t) of
capacity r(c)− 1 (which is non-negative since r(c) ≥ 0).

� Finally, for each professor p ∈ P and c ∈ Cp, there are arcs (Lp, Rc′) and (Lp, Rc) of
capacity∞; and for each PhD student s ∈ S and c ∈ Cs, there are arcs (Ls, Rc) of capacity
∞.

This �nishes the construction of the �ow network, which is easy to do in linear time. See also
Figure 1 for an illustration. We relate the max-�ow of the �ow network to a solution to the
problem:

Page 12 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

Claim 0.1 The �ow network has max �ow of value
∑

c∈C r(c) i� there is an assignment of

teaching sta� satisfying the required constraints. Moreover, given an (integral) max �ow, we can

in linear time transform it into an assignment.

Proof. We �rst prove that the value of the max �ow is
∑

c∈C r(c) i� there is an assignment of
teaching sta� satisfying the required constraints. Suppose �rst that the there is an assignment
satisfying the required constraints. Note that we may assume that each course is assigned exactly
r(c) sta� members; otherwise, remove one of the assigned students (or professors if there are
several professors). Then construct a �ow as follows. For each professor p ∈ P that is assigned
to a course c ∈ Cp, send a unit �ow along the path s→ Lp → Rc′ → t if no other professor has
already sent �ow through Rc′ otherwise send a unit of �ow through the path s→ Lp → Rc → t.
Similarly, for each PhD student s ∈ S that is assigned a course c ∈ Cs send a unit �ow along
the path s → Ls → Rc → t. Clearly, �ow conservation constraints are satis�ed because we
only send �ow along paths from the source to the sink. Capacity constraints are satis�ed since
a professor/student is assigned at most one course. Finally, we have that exactly one professor
sends �ow through Rc′ for each c ∈ C and that r(c)− 1 other teaching sta� members send unit
�ows through Rc. Moreover, the �ow has value equal to the total �ow on incoming arcs to the
sink which equals

∑
c∈C r(c) as required.

We now prove that if there a �ow of value
∑

c∈C r(c) then there is a feasible assignment.
First observe that we may assume that the �ow is integral since all the capacities are integral
and therefore the Ford-Fulkerson method will �nd an integral �ow. We claim that the following
is a feasible assignment: assign each professor p ∈ P to course c ∈ Cp if there is a unit �ow from
Lp to Rc or Rc′ ; assign each PhD student s ∈ S to course c ∈ Cs if there is a unit �ow from
Ls to Rc. Note that since the capacity of the arcs exiting the source is 1, we have that each
professor/student is assigned to at most one course. Moreover, recall that the capacity of an arc
(Rc, t) is r(c) − 1 and (Rc′ , t) is 1. Therefore, the incoming arcs have total capacity

∑
c∈C r(c)

which implies that a �ow of that value has to saturate all those arcs. In other words, since only
professors can send a unit �ow to Rc′ we have that each course c is assigned one professor and
r(c) teaching sta� members in total. This shows that the assignment satis�es the requirements.
Furthermore, the transformation above can easily be done in linear time. �

To summarize, our argument works as follows:

1. Construct the �ow network above

2. Solve it using the Ford-Fulkerson method.

3. Check if the max-�ow has value
∑

c∈C r(c). If not, output �We need to hire!�.

4. Otherwise, output the assignment that we obtain from the �ow as described in the claim.

As the construction of the �ow network and the transformation of the �ow solution into an
assignment both can be implemented in linear time, the running time is dominated by the Ford-
Fulkerson method. We have that the Ford-Fulkerson method can run for at most |T | iterations
because each iteration increases the �ow by at least one unit and each teaching sta� member
t ∈ T can send one unit of �ow (and hence max-�ow has value ≤ |T |). Moreover, we can
implement each iteration in linear time of the size of the �ow network (using BFS) which has
size at most O(|T ||C|) (if all teaching sta� members can be assigned to all courses). Hence, the
total running time required is at most O(|T |2|C|).

Page 13 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

s

Lp

professors

Ls

students

Rc′

Rc

t

1

1

∞
∞

if c ∈ Cp

∞

if c ∈ Cs

1

r(c)− 1

Figure 1. Illustration of the �ow network.

6 (25 pts) Shortest paths and dynamic programming. Consider a directed graph G = (V,E)
with positive edge weights w : E → R>0, i.e., w(e) > 0 for e ∈ E, and a vertex s ∈ V . We shall
design and analyze an e�cient algorithm that �nds, for each v ∈ V \ {s}, the number of shortest
paths from s to v. We divide this task into that of solving two subproblems.

(Note that you can solve the second subproblem even if you did not manage to solve the �rst one.)

6a (12 pts) Design and analyze a polynomial time algorithm that �nds a permutation
π : V → {1, 2, . . . , n} of the vertices so that

� π(s) = 1; and

� no shortest path from s to another vertex uses a �back-edge�, that is, an edge (u, v) ∈ E
such that π(u) > π(v).

For full score, you should argue why your algorithm returns a permutation that satis�es
the above properties.

Page 14 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

Example: Consider the following graph where all edges have weight 1:

s

A

B

C

A permutation satisfying the required properties would be π(s) = 1, π(A) = 2, π(B) =
3, π(C) = 4 because no shortest path from s uses the edges (B,A) and (A, s). Also note
that the number of shortest paths from s to A is 1, from s to B is 1, and from s to C is 2.

Solution:
We �nd a permutation as follows:

1. Find the shortest path from s to all other vertices using Dijkstra's algorithm. Note that
all weights are positive and we can therefore use Dijkstra's algorithm.

2. Let d(v) be the length/weight of the shortest path from s to v. Now order the vertices in
non-decreasing order according to d(v)'s, that is if v is in i possition of the d after sorting,
then π(v) = i. One can see that the permutation π satis�es π(u) < π(v)→ d(u) ≤ d(v).

The running time of the above algorithm is clearly dominated by Dijkstra's algorithm which runs
in time O(|E| log |V |) or O(|E| + |V | log |V |) with a more careful implementation. Indeed, the
second step is a simple sorting which can be done in time O(|V | log |V |).

Let us now prove that the returned permutation satis�es the required properties. First, we
have π(s) = 1 since d(s) = 0 and d(v) > 0 for all other v ∈ V \ {s} because the edge-weights
are strictly positive. Now, for the second property, assume toward contradiction that there is
a back-edge (vi, vj) that is part of a shortest path P = s, v1, . . . , vi, . . . , vj , . . . vk. First observe
that the length of the path s, v1, . . . , vi, . . . , vj equals d(vj) since otherwise we could decrease the
length of the path P . Similarly the length of path s, v1, . . . , vi equals d(vi). Therefore we must
have that w(vi, vj) = d(vj)− d(vi) > 0. This is a contradiction if π(vi) > π(vj)⇒ d(vi) ≥ d(vj)
since all edge-weights are strictly positive.

It follows that we can e�ciently �nd a permutation π as required.

Page 15 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

6b (13 pts) Use the permutation π of the vertex set V from Subproblem 6a to design and
analyze a polynomial time dynamic programming algorithm that �lls in a table/array c
indexed by the vertices in V so that c[s] = 1 and, for v ∈ V \ {s}, c[v] equals the number
of shortest paths from s to v.

(Hint: suppose that you calculated c[u] for all u with π(u) < π(v). How would you use this

information to calculate c[v]?)

Solution:
Assume for simplicity that V \ {s} = {v2, . . . , vn} such that π(vi) = i. We shall use the

permutation to �ll in the array c in a bottom-up fashion, starting from s we continue with
v2 and then v3 and so on until we �lled in the whole array. The advantage with this (also
highlighted in the hint) is that when we �ll in vi we know c[vj] for all j < i and moreover we
know that no shortest-path uses a back-edge. Therefore the number of shortest paths that go
from s to vi is exactly c[vj1] + c[vj2] + . . . + c[vj`] where {vj1 , . . . , vj`} are the vertices that can
be visited just prior to vi in a shortest path from s. That is d(vj1) + w(vj1 , vi) = d(vi), . . . ,
d(vj1) +w(vj` , vi) = d(vi) where d(u) denotes the shortest path distance from s to u. This gives
us the following pseudo-code for �ll in c:

1. c[s]← 1 and c[v]← 0 for v ∈ V \ {s}
2. for i = 2, 3, . . . , n
3. for each (u, vi) ∈ E such that d(u) + w(u, vi) = d(v) (and therefore π(u) < π(v))
4. c[vi]← c[vi] + c[u]
5. return c.

Note that we can �nd the incoming edges to each vertex similar to the way that we �nd the
outgoing edges of each vertex. The time it takes is O(n2 + |E|) = O(n2) as in each iteration of
the for-loop of Step 2 we need to check all incoming arcs to vi which are at most n many and
hence the for-loop runs at most n iterations each time. Also �nding all the incoming edges can
be done in O(|E|).

Page 16 (of 16)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson

