
Final Exam, Algorithms 2014-2015

� You are only allowed to have a handwritten A4 page written on both sides.

� Communication, calculators, cell phones, computers, etc... are not allowed.

� Your explanations should be clear enough and in su�cient detail so that a fellow student
can understand it. In particular, do not only give pseudocode without explanations. A
good guideline is that a description of an algorithm should be so that a fellow student
can easily implement the algorithm following the description.

� Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

/ 15 points / 15 points / 5 points / 11 points / 29 points / 25 points

Total / 100

Page 1 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



1 (15 pts) Asymptotics and basic runtime analysis.

1a (5 pts) Arrange the following functions in increasing order according to asymptotic growth.

2n, (log log n)10, n300,
√
n, n/ log n, 22

n
, n
√
n, log n

(In this problem, you only need to give the right order, i.e., you do not need to explain your

answer.)

Solution:

Page 2 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



1b (10 pts) Consider the following four recursive functions. We assume fi(0) = 0 and they
are de�ned as follows for n ≥ 1:

f1(n) = max
1≤i≤n

(pi + f1(n− i)), f2(n) = max
1≤i≤blognc

(pi + f2(n− i))

f3(n) = pn + f3(n− 1), f4(n) = max
1≤i≤n
1≤k≤i

(k2pi + f4(n− k)),

where p1, . . . , pn are positive integers.

Give tight asymptotic running times (using the Θ(·) notation) of the bottom-up
dynamic programming implementations for calculating f1(n), f2(n), f3(n), and f4(n). We
assume that the implementation of the bottom-up does not use any special properties of the
recursions, i.e., it �lls in each cell in the table using exactly the de�nition of the recursion.

(In this problem, you only need to give the answer, i.e., no explanations are needed. In particular,

you do not need to explain the bottom-up dynamic programs.)

Solution:

Using the bottom-up dynamic programming technique (without using any special properties of
the recursions)

� the asymptotic running time for calculating f1(n) is

� the asymptotic running time for calculating f2(n) is

� the asymptotic running time for calculating f3(n) is

� the asymptotic running time for calculating f4(n) is

Page 3 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



2 (15 pts) Hash tables.

2a (7 pts) Illustrate/draw the hash table T [0, . . . , 6] obtained after inserting the keys
3, 9, 7, 24, 0, 14 in the given order using the hash function h(k) = k mod 7. Collisions are
resolved using chaining with double-linked lists.

(Note that you only need to draw one hash table: the one obtained after inserting all the above

keys.)

Solution:

Page 4 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



2b (8 pts) Suppose you have a hash table with 2n slots and suppose that n distinct keys
are inserted into the table. Each key is equally likely to be hashed into each slot (simple

uniform hashing).

Prove that the expected number of collisions is (n−1)/4. Recall that we say that two keys
ki and kj with i 6= j collide if they are hashed to the same slot. The number of collisions
is the number of pairs of keys that collide.

Solution:

Page 5 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



3 (5 pts) Spanning trees. Let G = (V,E) be a connected undirected graph with edge weights
w : E → R. Consider an arbitrary edge e ∈ E. Professor Homer Simpson thinks the following
statement is always true:

�e is contained in a minimum spanning tree or e is contained in a maximum spanning tree.�

Show that Homer is wrong by giving a counterexample to this statement.

Solution:

Page 6 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



4 (11 pts) Basic algorithm design. It is well-known that �nding the minimum in an array of n
numbers requires time Θ(n). However, if we are given more information about the structure of
this array, we might be able to do it more e�ciently. For instance, if the array is sorted, then
one can �nd the minimum in constant time.

In this problem, we are given an array A = [a1, . . . , an] of n numbers, with the promise that
there exists an index ` ∈ {1, 2, . . . , n} such that

a1 > a2 > · · · > a` and a` < a`+1 < · · · < an

Note that in this case, the minimum in this array is a`.
Design and analyze an algorithm that, given such an array A, returns the minimum element

a` in time O(log n) (no points will be given for worse running times). You may assume that the
array is always in the correct format, and the elements in the array are distinct, and hence the
minimum is unique.

Solution:

Page 7 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



Continuation of the solution to 4:

Page 8 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



5 (29 pts) Flows and Cuts.

5a (10 pts) Consider the �ow of value 22 in the following �ow network (the numbers on an
edge determine its current �ow and its capacity).

s

A

B

C

t

D

E

F

9/12

11/11

2/8

1/1

18/24

3/4

0/4

9/9

0/6

18/18

1/4

1/3

2/2

0/4

0/7

Starting with the above �ow, �nd a max �ow by running the Ford-Fulkerson
method. In each iteration, draw the residual network, and if there exists an augmenting
path, indicate which one you selected and explain how the �ow is updated along this path.

Solution:

Page 9 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



Continuation of the solution to 5a:

Page 10 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



5b (6 pts) Consider the same �ow network as in Subproblem 5a and consider the min cut
�corresponding� to the max �ow that you found in that problem. Use the structure of
this cut to prove (in a couple of sentences) that the max �ow value must decrease if the
capacity of arc (C,F ) is decreased from 2 to 1.

Solution:

Page 11 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



5c (13 pts) Thanks to the many excellent students (and professors :)), EPFL has seen a rapid
increase in size and quality. However, there is one worry: are there enough professors and
PhD students to cover all courses? In order to ensure high quality teaching we have the
following constraints in assigning teaching sta� to courses. Professors and PhD students
can be assigned to at most one course in their expertise. Moreover, each course needs a
course-dependent number of sta� members, one of which needs to be a professor.

Formally, we wish to solve the following teaching assignment problem:

Input: a set C of courses where each course c ∈ C has a requirement r(c) ≥ 1, a set T of
teaching sta�, partitioned into a set P of professors and a set S of PhD students, where
each sta� member t ∈ T can be assigned to a subset Ct ⊆ C of courses (corresponding
to his/her expertise).

Output: If possible, an assignment of teaching sta� to the courses so that

� Each sta� member t ∈ T is assigned to at most one course and, if assigned, the
assignment must be to a course in Ct.

� Each course c ∈ C is assigned at least r(c) teaching sta� members.

� At least one professor is assigned to each course (note that it is also �ne if more
than one professor is assigned to a course).

If no such assignment exists, simply output �We need to hire!�.

Your task is to design and analyze a polynomial time algorithm for the above problem.

(Hint: formulate a �ow problem so that an (integral) max �ow corresponds to an assignment

if one exists. However, do not forget to explain how to turn a solution to the �ow problem

into a solution to the original problem.)

Solution:

Page 12 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



Continuation of the solution to 5c:

Page 13 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



Continuation of the solution to 5c:

Page 14 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



6 (25 pts) Shortest paths and dynamic programming. Consider a directed graph G = (V,E)
with positive edge weights w : E → R>0, i.e., w(e) > 0 for e ∈ E, and a vertex s ∈ V . We shall
design and analyze an e�cient algorithm that �nds, for each v ∈ V \ {s}, the number of shortest
paths from s to v. We divide this task into that of solving two subproblems.

(Note that you can solve the second subproblem even if you did not manage to solve the �rst one.)

6a (12 pts) Design and analyze a polynomial time algorithm that �nds a permutation
π : V → {1, 2, . . . , n} of the vertices so that

� π(s) = 1; and

� no shortest path from s to another vertex uses a �back-edge�, that is, an edge (u, v) ∈ E
such that π(u) > π(v).

For full score, you should argue why your algorithm returns a permutation that satis�es
the above properties.

Example: Consider the following graph where all edges have weight 1:

s

A

B

C

A permutation satisfying the required properties would be π(s) = 1, π(A) = 2, π(B) =
3, π(C) = 4 because no shortest path from s uses the edges (B,A) and (A, s). Also note
that the number of shortest paths from s to A is 1, from s to B is 1, and from s to C is 2.

Solution:

Page 15 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



Continuation of the solution to 6a:

Page 16 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



6b (13 pts) Use the permutation π of the vertex set V from Subproblem 6a to design and
analyze a polynomial time dynamic programming algorithm that �lls in a table/array c
indexed by the vertices in V so that c[s] = 1 and, for v ∈ V \ {s}, c[v] equals the number
of shortest paths from s to v.

(Hint: suppose that you calculated c[u] for all u with π(u) < π(v). How would you use this

information to calculate c[v]?)

Solution:

Page 17 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson



Continuation of the solution to 6b:

Page 18 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2014
Ola Svensson


