
Final Exam, Algorithms 2013-2014

� You are only allowed to have a handwritten A4 page written on both sides.

� Communication, calculators, cell phones, computers, etc... are not allowed.

� Your explanations should be clear enough and in su�cient detail so that a fellow student
can understand it. For example, a description of an algorithm should be so that a fellow
student can easily implement the algorithm following the description. In particular, do
not only write pseudocode without additional explanation.

� Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

/ 15 points / 20 points / 15 points / 20 points / 10 points / 20 points

Total / 100

Page 1 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

1 (15 pts) Asymptotics and Recursions.

Suppose you are choosing between the following �ve Divide-and-Conquer algorithms:

Algorithm A solves problems of size n by dividing (in constant time) them into two sub-
problems each of size n/2, recursively solving each subproblem, and then combining the
solutions in Θ(n3) time.

Algorithm B solves problems of size n by dividing (in constant time) them into nine sub-
problems each of size n/3, recursively solving each subproblem, and then combining the
solutions in Θ(n2) time.

Algorithm C solves problems of size n by dividing (in constant time) them into ten subproblems
each of size n/3, recursively solving each subproblem, and then combining the solutions in
Θ(n) time.

Algorithm D solves problems of size n by dividing (in constant time) them into eight sub-
problems each of size n/2, recursively solving each subproblem, and then combining the
solutions in constant time.

Algorithm E solves problems of size n by dividing (in constant time) them into two subprob-
lems each of size n − 1, recursively solving each subproblem, and then combining the
solutions in constant time.

What are the running times of each of these algorithms (in Θ notation), and which would
you choose?

Solution:

Algorithm A has running time proportional to the recursion T (n) = 2T (n/2) + Θ(n3) which,
by the master theorem, is Θ(n3).

Algorithm B has running time proportional to the recursion T (n) = 9T (n/3) + Θ(n2) which,
by the master theorem, is Θ(n2 lg n).

Algorithm C has running time proportional to the recursion T (n) = 10T (n/3) + Θ(n) which,
by the master theorem, is Θ(nlog3 10).

Algorithm D has running time proportional to the recursion T (n) = 8T (n/2) + Θ(1) which,
by the master theorem, is Θ(n3).

Algorithm E has running time proportional to the recursion T (n) = 2T (n − 1) + Θ(1) which
is Θ(2n).

The running time of the algorithms are thus so that B < C < A = D < E. Therefore, we choose
algorithm B.

Page 2 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

(This page is intentionally left blank.)

Page 3 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

2 (20 pts) Flows and Cuts. Assume the following �ow network and corresponding �ows (the
numbers on an edge determine its current �ow and its capacity).

s

A B

t

C D

E

5/10

10/20

5/10

0/4 10/10

0/1

10/10

5/205/70/10

5/5

0/3

2a (5 pts) What is the net-�ow across the cut ({s,A,C,E}, {t, B,D})? What is the capacity
of the same cut?

Solution:

� The net �ow across the cut is 15.

� The capacity across the cut is 25.

Page 4 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

2b (15 pts) Starting with the depicted �ow, �nd a max-�ow and a min-cut by running the
Ford-Fulkerson algorithm that in each iteration chooses the fattest augmenting path (the
one that can carry the maximum amount of �ow). In each iteration draw the residual
network and explain how you found the min-cut. Finally, write down the value of the found

max-�ow and the capacity of the min-cut.

Solution:

In the �rst iteration the residual network is:

s

A B

t

C D

E

5

5

10

10

5

5
4 10

1

10

15

5

5

2
10

5

3

The fattest path is s,A,B,E,D, t and it has capacity 5. Pushing �ow on along this path
gives us the �ow

s

A B

t

C D

E

10/10

10/20

10/10

0/4 10/10

0/1

10/10

10/200/70/10

0/5

0/3

The next residual network is

s

A B

t

C D

E

10

10

10

10

4 10

1

10

10

10
710

5

3

There is no augmenting path as the reachable nodes from the source s is {s, C,A,E,B}.
The �ow has value 20 and the min cut de�ned by the reachable nodes from the source s has

capacity 20.

Page 5 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

(This page is intentionally left blank.)

Page 6 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

3 (15 pts) Australian Open. The draw of Australian Open was recently announced. In tennis
each match is between two players and the winner progresses to the next round. This naturally
leads to a complete binary tree structure of the tournament. At the leaves, we have all the players
in the tournament. At the next level, we have those that won their �rst match, and so on. In
particularly, the root of the tree contains the winner of the tournament. We are interested in
predicting the outcome of every match in Australian Open 2014. To do this we use the following
simplifying assumption: a better ranked player always wins over a player with worse rank.

Consider the �gure below for an example. We have four players entering the tournament of
various rankings. The prediction tree then predicts the winner of each match. For example, as
Rafael Nadal is currently ranked number one and Andy Murray is ranked number four, Rafael
Nadal wins against Andy Murray. Similarly, we predict that Nadal wins against Djokovic in the
�nal.

Input

Nadal

(rank 1)

Nadal

(rank 1)

Murray

(rank 4)

Nadal

(rank 1)

Djokovic

(rank 2)

Bieber

(rank ∞)

Djokovic

(rank 2)

Prediction

Nadal

(rank 1)

Nadal

(rank 1)

Murray

(rank 4)

Nadal

(rank 1)

Djokovic

(rank 2)

Bieber

(rank ∞)

Djokovic

(rank 2)

Design and analyze an e�cient algorithm for the Australian Open prediction problem:

Input: The root of a complete binary tree (the draw) with n players as leaves. Each player/node
has a name and a ranking that is initially empty for nodes that are not leaves. In addition,
each node has pointers to its left child, its right child and its parent. Finally, no two players
have the same ranking.

Output: A complete binary tree (the prediction) where each node contains the player (his name
and rank) that has reached this stage assuming that better ranked players always win over
worse ranked players.

Your algorithm should run in linear time in the number of players.

Solution:

We shall do an algorithm that is similar to DFS and inspired by Divide-and-Conquer. When
we visit a node/player p we �rst calculate his left subtree rooted at p.left and then his right
subtree rooted at p.right. After we have calculated both subtrees, we compare the two winning
players of them and update p accordingly:

� If p.left.rank < p.right.rank then (left player is winning) set p.rank = p.left.rank and
p.name = p.left.name

� Else (right player is winning) set p.rank = p.right.rank and p.name = p.right.name

Page 7 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

The pseudocode of the algorithm Predict-Tournament that takes the root of the tour-
nament as input is as follows:

Predict-Tournament(p)

1. if p.left 6= NIL and p.right 6= NIL
2. Predict-Tournament(p.left)
3. Predict-Tournament(p.right)
4. if p.left.rank < p.right.rank
5. p.rank = p.left.rank
6. p.name = p.left.name
7. else

8. p.rank = p.right.rank
9. p.name = p.right.name

Runtime Analyzes: Note that the body of the algorithm takes Θ(1) time and is executed
exactly once for each node in the complete binary tree. As the complete binary tree has n
leaves, the total number of nodes it has is

∑log2 n
i=0 n/2i which is less than 2n and greater than n.

Therefore the total running time of the algorithm is Θ(n).

Page 8 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

4 (20 pts) Probabilistic analysis. We shall analyze a randomized procedureRandomized-Select
for the select problem: given an array A consisting of n unique integers and an integer k ≤ n,
output the kth smallest integer of A.

For example, if the input is A = 89 14 16 28 51 25 and k = 3 then the correct
output is 25.

To simplify the description of Randomized-Select, we let |A| denote the length of the
array. The pseudocode is as follows:

Randomized-Select(A, k)

1. Pick pivot uniformly at random from the numbers in A.
2. Compare each number in A with pivot to obtain arrays S and L:
2. S contains all numbers of A strictly smaller than pivot.
2. L contains all numbers of A strictly larger than pivot.
3. if |S| = k − 1
4. return pivot
5. else if |S| ≥ k
5. return Randomized-Select(S, k)
6. else (we have |S| < k − 1)
7. return Randomized-Select(L, k − (|S|+ 1))

The idea of the algorithm is very similar to Randomized-Quicksort that we saw in class.
As in that algorithm, we �rst select a number pivot uniformly at random from the numbers
in A. We then partition A into two arrays S and L that contain all numbers of A that are
strictly smaller and strictly larger than pivot, respectively1. The time it takes to execute these
steps (Steps 1 and 2) of the algorithm is Θ(|A|) which is also proportional to the number of
�≤�-comparisons we make to �nd S and L. After that, the algorithm recurses on the array where
the kth smallest element can be found or simply returns the kth smallest element if the pivot
equals it.

We shall now analyze the running time of Randomized-Select.

4a (4 pts) Suppose that we are extremely lucky: every time we select a pivot at random, the
pivot that minimizes the running time is selected. What is the asymptotic running time
of Randomized-Select in this lucky case? Motivate your answer.

Solution:

If we have maximum luck the pivot equals the kth smallest element. Therefore the running
time of algorithm will be Θ(n) if |A| = n. This is the time it takes to execute Steps 1-4 of the
algorithm.

1As we saw in class, we can do this without using the extra space S and L. We have presented the algorithm

in this way to make the description clearer.

Page 9 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

4b (6 pts) Suppose that we are extremely unlucky: every time we select a pivot at random,
the pivot that maximizes the running time is selected. What is the asymptotic running
time of Randomized-Select in this unlucky case? Motivate your answer.

Solution:

Let |A| = n. Suppose k ≤ n/2 the argument is symmetric if k > n/2. Now if we have bad
luck, Step 1 always selects the pivot that equals the largest number. It will then continue to
look for the kth smallest element in array S of size (n− 1). Thus we are stuck with the following
recursion T (n) = T (n − 1) + Θ(n) and T (k) = 1. When k ≤ n/2 this is Θ(n2). Note that the
maximum bad luck can only be worse so that has also running time Θ(n2). That it is O(n2)
follows from that one can see that the running time is upper bounded by T (n) = T (n−1)+Θ(n2).

Page 10 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

4c We shall now analyze the expected running time of Randomized-Select on an array of
length n. Similarly to Randomized-Quicksort, the running time is proportional to the
total number of comparisons. As we saw in class, if we let X be the random variable that
equals the total number of comparisons then

E[X] =

n∑
i=1

n∑
j=i+1

E[Xij],

where Xij is the random indicator variable that takes value 1 if the ith smallest number
was compared to the jth smallest number of the array, and 0 otherwise.

Give a tight asymptotic analysis of the expected running time of Randomized-Select by
analyzing the above expression.

(Hint: Distinguish between the following three cases: i < j ≤ k, k ≤ i < j, and i < k < j.)

Solution:

We start by noting that

E[Xi,j] = Pr[ith smallest number was compared to the jth smallest number]

and that two numbers are compared only if one is a pivot. We now do case distinction as in the
hint.

Case i < j ≤ k: Suppose that the `th smallest number was the �rst pivot such that i ≤ ` ≤ k.
i and j are compared if ` = i or ` = j. We shall show that they will never be compared if ` 6= i
and ` 6= j. To see this suppose �rst that i < ` < j but then i will be put in S and j in L so they
will never be compared. On the other hand, if j < ` ≥ k then i, j ∈ S but k ∈ L so the algorithm
will recurse on L. Therefore, the probability that i and j will be compared in this case is 2

k−i+1 .

Case k ≤ i < j: By the same arguments as in the case above, i and j will be compared with
probability 2

j−k+1 .

Case i < k < j: In this case we only compare i and j if no pivot is chosen between them before
anyone of them is chosen as a pivot (same as in the quicksort analysis). The probability that
they are compared is thus 2

j−i+1 .

Page 11 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

Having analyzed E[Xij], we turn our attention to the sum. Note that it can be written as

E[X] =
k−1∑
i=1

k∑
j=i+1

E[Xij] +
n∑

j=k+1

j−1∑
i=k

E[Xij] +
k−1∑
i=1

n∑
j=k+1

E[Xij]

=
k−1∑
i=1

k∑
j=i+1

2

k − i + 1
+

n∑
j=k+1

j−1∑
i=k

2

j − k + 1
+

k−1∑
i=1

n∑
j=k+1

2

j − i + 1

=
k−1∑
i=1

(k − i)
2

k − i + 1
+

n∑
j=k+1

(j − k)
2

j − k + 1
+

k−1∑
i=1

n∑
j=k+1

2

j − i + 1

≤ 2n +
k−1∑
i=1

n∑
j=k+1

2

j − i + 1

= 2n +

n−1∑
l=1

k−1∑
i=k−`+1

2

` + 1

≤ 2n + 2n = 4n.

We have thus proved that in expectation 4n comparisons are made. Therefore, Random-Select
runs in expected linear time.

Page 12 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

(This page is intentionally left blank.)

Page 13 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

5 (10 pts) Spanning trees. Consider three undirected edge-weighted connected graphs G1 =
(V,E1), G2 = (V,E2), and H = (V,E1 ∪ E2) with non-negative weights w : E1 ∪ E2 → R+ on
the edges. Note that they are all graphs on the same vertex set but their edges di�er: G1 has
only the edges in E1, G2 has only the edges in E2, and H has all the edges (E1 ∪ E2).

Let T, T1, T2 be minimum spanning trees of H,G1, and G2, respectively. Assuming that the
weights of the edges are unique, i.e., no two edges have the same weight, prove that T ⊆ T1∪T2.

For an example of the statement see the �gure below. The solid edges are E1 and the dashed
edges are E2. Note that the minimum spanning tree of G1 is T1 = {1, 2, 4}, the minimum
spanning tree of G2 is T2 = {3, 5, 6}, and the minimum spanning tree of H is T = {1, 2, 3}. We
have thus that T ⊆ T1 ∪ T2 in this case. You should prove that it holds in general.

1

2

4

3

5

6

Solution:

Let e be an arbitrary edge in T . Consider the cut de�ned by the two connected components of
T \{e}. Then e is the minimum-cost edge in this cut. (Proof. Suppose e′ 6= e is the minimum-cost
edge in the cut (A,B). Then T \{e}∪{e′} is a spanning tree of strictly better cost, contradicting
the assumption that T is a minimum spanning tree.)

Since e ∈ E1 ∪ E2, e ∈ Ei for some i ∈ {1, 2}, and e is the minimum-cost edge in (A,B) in
Gi; thus, e ∈ Ti from the cut property.

Alternative proof: Suppose that we run Kruskal's algorithm on H,G1, G2 to �nd T, T1, T2.
Let m = |E1 ∪ E2|.

Suppose toward contradiction that there exists an edge that Kruskal's algorithm adds to T
but not to T1 or T2. Let e = {u, v} be the �rst such edge. Suppose that e ∈ E1 (the case e ∈ E2

is symmetric). If Kruskal's algorithm don't add e to T1, T1 already contains a path between u
and v that consists of edges of strictly smaller weight than e. However, as Kruskal's algorithm
greedily adds edges of smallest edge �rst, we have that there must be a path between u and v in
T as well, which contradicts that e is added to T .

Alternative proof: Consider the edges in E1 ∪E2. Let m = |E1 ∪E2| and suppose that they
are ordered e1, e2, . . . , em such that w(e1) < w(e2) < · · · < w(em). Now note that if we run
Kruskal's algorithm on H then an edge ei = {u, v} is added to the tree T if and only if the
vertices u and v are in di�erent components in the graph with edges E<i = {e1, e2, . . . , ei−1}.
Therefore if ei is added to the tree T of H it is also clearly added by Kruskal's algorithm to the
tree T1 of G1 if ei ∈ E1 or to the tree T2 of G2 if ei ∈ E2. To see this note that since u and v
are in di�erent components in the graph with edges E<i, they are also in di�erent components
in the graph with edges E<i ∩ E1 and in the graph with edges E<i ∩ E2.

Page 14 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

6 (20 pts) Dynamic programming. The capacitated increasing subsequence problem is de�ned
as follows:

Input: a sequence of integers a1, a2, . . . , an, sizes s1, s2, . . . , sn that are either 1, 2, or 3, and an
integral capacity C.

Output: the length of a longest subsequence ai1 , ai2 , . . . , aik satisfying:

� It is an increasing subsequence: 1 ≤ i1 < i2 < · · · < ik ≤ n and ai1 < ai2 < · · · < aik .

� It satis�es the capacity: si1 + si2 + · · ·+ sik ≤ C.

For example, consider the following input: a1 = 8, a2 = 7, a3 = 9 and s1 = 1, s2 = 2, s3 = 1 and
capacity C = 2. The correct output is 2 as a capacitated increasing subsequence of maximum
length is a1, a3 which has size s1 + s3 = 2 = C.

6a (10 pts) Let R(j, c) = �length of longest increasing subsequence which ends in aj and has
capacity at most c�. If sj > c, we let R(j, c) = −∞. Find a recursive formulation of R(j, c).

Solution: Note that if we have an maximum length increasing subsequence that ends in aj of
capacity at most c. Then there are 3 cases

� it is invalid: sj > c then R(j, c) = −∞ by de�nition.

� It is the only number in the sequence. Then R(j, c) = 1. This happens if j = 1 and sj ≤ c
or if ai ≥ aj or si > c− sj for all i : 1 ≤ i < j.

� It is the last number of a longer subsequence. Then R(j, c) is equal to 1 + the maximum
length of a subsequence of capacity c − sj ending in some i : 1 ≤ i < j with ai < aj .
Therefore we get in this case that R(j, c) = max1≤i<j{1 + R(i, c− sj)|ai < aj}.

One can formulate this as (at least) two di�erent recurrences:

R(j, c) =


−∞, if sj > c

1, if j = 1 and sj ≤ c

max [1,max1≤i<j{1 + R(i, c− sj)|ai < aj}] , if j > 1 and sj ≤ c

Alternative: Let R(j, c) = −∞ if sj > c and let R(1, c) = 1 if s1 ≤ c. For j > 1 and sj ≤ c,

R(j, c) =

{
1, if ai ≥ aj or si > c− sj for all 1 ≤ i < j

max1≤i<j{1 + R(i, c− sj)|ai < aj}, otherwise

Page 15 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

6b (10 pts) Design and analyze an e�cient algorithm for solving the capacitated increasing
subsequence problem.

Solution:

We use the bottom-up-approach starting from the following recursion:

R(j, c) =


−∞, if sj > c

1, if j = 1 and sj ≤ c

max [1,max1≤i<j{1 + R(i, c− sj)|ai < aj}] , if j > 1 and sj ≤ c

The pseudocode is as follows

Bottom-Up-Increasing-Subsequence(a, s, C, n)

1. Let r[·][·] be a new matrix of dimension n× C.
2. for j = 1, . . . , n
3. for c = 1, . . . , C
4. if sj > c
5. r[j][c] = −∞
6. else if j = 1
7. r[j][c] = 1
8. else

9. r[j][c] = max [1,max1≤i<j{1 + R(i, c− sj)|ai < aj}]
10. return max1≤j≤n r[j][C]

Run time analysis:
Note that the table r has n ·C cells. Each cell takes O(n) time to �ll in (line 9 is dominating).

Therefore, the total running time is O(n2C). To see that it is Ω(n2C). Note that line 9 takes
time Ω(n) if j is greater than n/2 and that step 9 is executed n/2 ·C times when j ≥ n/2. This
leads to a running time of Ω(n2C) and hence the total running time is Θ(n2C). This is e�cient
(Θ(n3) time) since we may assume that C ≤ 3n because sizes where at most 3.

Page 16 (of 18)

CS-250 Algorithms, Final Exam � Autumn 2013
Ola Svensson

