
Problem 1 (10 points)

1. Give a formal specification of the following problem: given an array of integers, and another integer x , determine whether there are two elements in the array that sum up to x .
2. Design an algorithm that solves the problem of the previous part in $O(n \log n)$ steps, where n is the length of the array, and a step is either an addition or a comparison of integers.

Solution:

1. (4 points) The input set I is $(\cup_{n=1}^{\infty} \mathbb{Z}^n) \times \mathbb{Z}$. The output set O is {TRUE,FALSE}. The relation is

$$R = \left\{ ((\sigma, x), \text{TRUE}) \mid \exists 0 \leq i < j < |\sigma|: \sigma_i + \sigma_j = x \right\} \cup \\ \left\{ ((\sigma, x), \text{FALSE}) \mid \forall 0 \leq i < j < |\sigma|: \sigma_i + \sigma_j \neq x \right\}$$

where $|\sigma|$ is the length of the sequence σ .

2. (6 points) Given an array σ consisting of n elements, and the integer x , we first sort σ using $O(n \log n)$ operations. Next, we initialize two indices i and j to $i = 0$ and $j = n - 1$. As long as $i < j$, we perform the following: if $\sigma_i + \sigma_j > x$, then we decrease j by one. If $\sigma_i + \sigma_j < x$, then we increase i by one. We stop and return the value TRUE if we hit (i, j) with $\sigma_i + \sigma_j$. If during the course of the algorithm $i \geq j$, then we return the value FALSE. The running time of this algorithm is obviously $O(n)$, so the total running time is $O(n \log n)$.

Problem 2 (15 points) Suppose that you are given a sorted sequence of n distinct integers $\{a_1, \dots, a_n\}$. Give an algorithm to determine whether there exists an index i such that $a_i = i$, outputting one i if such an i exists, and which uses $O(\log(n))$ steps. For example, in $\{-10, -3, 3, 5, 7\}$, $a_3 = 3$, whereas $\{2, 3, 4, 5, 6, 7\}$ has no such i .

Solution: The key is the following realization: if $a_i < i$, then for all $\ell \leq i$ we have $a_\ell < \ell$, and if $a_i > i$, then for all $\ell \geq i$ we have $a_\ell > \ell$. To see this, note that in the former case, $a_{i-\ell} \leq a_i - \ell \leq i - \ell$ since the a_i 's are distinct and integers. In the latter case, $a_\ell \geq a_i + (\ell - i) \geq \ell$, again since the a_i 's are distinct.

Now we use binary search on the sequence $(a_i - i \mid 1 \leq i \leq n)$ to find a zero of this sequence if it exists.

Problem 3 (15 points) Given an $O(n \log(k))$ -algorithm that merges k sorted list of integers with a total of n elements into one sorted list.

Hint: Use a heap of size at most k .

Solution: Let the arrays be A_1, \dots, A_k and assume that they are sorted in an ascending way. We will create sorted array S consisting of the union of the A_i 's.

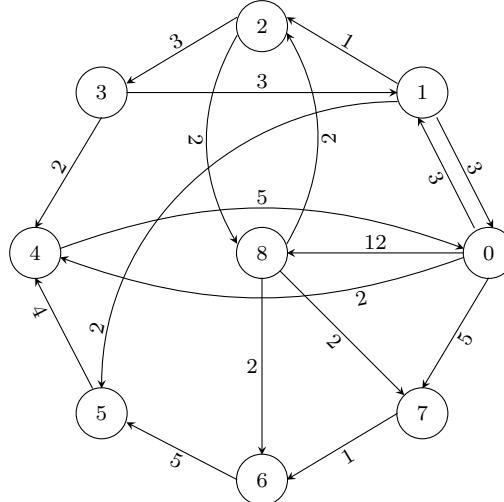
```

Create min-heap for elements (1,A_1[0]),..., (k,A_k[0]) where
the minimization is with respect to the second variable.
i = 0;
while ( i < n ) do
  (j,A_j[1]) = DeleteMin of the Heap;
  S[i] = A_j[1];
  i = i+1;
  if (l is not the length of A_j ) then
    Insert A_j[l+1] into the min-heap.

```

For every entry of S we need to do one deletemin operation and at most one insertion operation into the heap. The heap size is at most k , so these operations cost $O(\log(k))$. In total we will have an $O(n \log(k))$ -algorithm.

Problem 4 (20 points) Show the successive node values computed in the execution of the Moore-Bellman-Ford algorithm on this graph, assuming that node 0 is the starting node s . Moreover, for every node v , determine a shortest path from s to v .



Your output should look like this:

	0	1	2	3	4	5	6	7	8
Step 0	0	∞							
Step 1	0								
Step 2	0								
...	0

Solution: (12 points for the trace, 3 points for each step. 8 points for the shortest paths, 1 point for each path)

The trace of the MBF algorithm is the following:

	0	1	2	3	4	5	6	7	8
Step 0	0	∞							
Step 1	0	3	∞	∞	2	∞	∞	5	12
Step 2	0	3	4	∞	2	5	6	5	12
Step 3	0	3	4	7	2	5	6	5	6
Step 4	0	3	4	7	2	5	6	5	6

The shortest paths are the following:

$0 \rightarrow 1$
 $0 \rightarrow 1 \rightarrow 2$
 $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$
 $0 \rightarrow 4$
 $0 \rightarrow 1 \rightarrow 5$
 $0 \rightarrow 7 \rightarrow 6$
 $0 \rightarrow 7$
 $0 \rightarrow 1 \rightarrow 8$

Problem 5 (20 points) A max-min algorithm finds both the largest and the smallest elements in an array of n integers. Design and analyze a divide-and-conquer max-min algorithm that uses $\lceil 3n/2 \rceil - 2$ comparisons for any integer n . (You will receive 10 points if you can show this for the case when n is a power of 2, and an additional 10 points if you can prove it for general n .)

Hint: If $T(n)$ denotes the number of comparisons of your algorithm, try to find a recursion relating $T(n+m)$ to $T(n)$ and $T(m)$. Then study first the case where n is a power of 2.

Solution: Here is the algorithm:

```

A is an array of n integers
Max-Min(A) returns [max,min], the maximum and the minimum of A

if ( n == 1 ) then
    return max=min=A[0]
l = ceil(n/2), m = n-1
[max_1, min_1] = Max-Min(A[0:l-1])
[max_2,min_2] = Max-Min(A[l:n-1])
Return [max(max_1,max_2), min(min_1,min_2)]

```

It is clear that $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 2$, and $T(1) = 0$. We will now show by induction that $T(n) = \lceil 3n/2 \rceil - 2$. The assertion is true for $n = 1$.

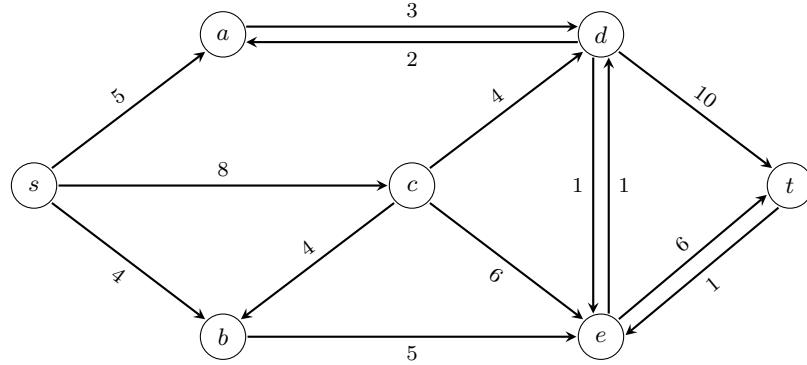
Assume now that the assertion is true for all $m \leq n - 1$. We want to prove it for n .

Case 1. $n = 2m$, m odd. In this case, we write $T(n) = T(m-1) + T(m+1) + 2 = 3(m-1)/2 + 3(m+1)/2 - 2 = 3n/2 - 2$.

Case 2. $n = 2m$, m even. In this case, we write $T(n) = 2T(m) + 2 = 2 \cdot 3m/2 - 2 = 3n/2 - 2$.

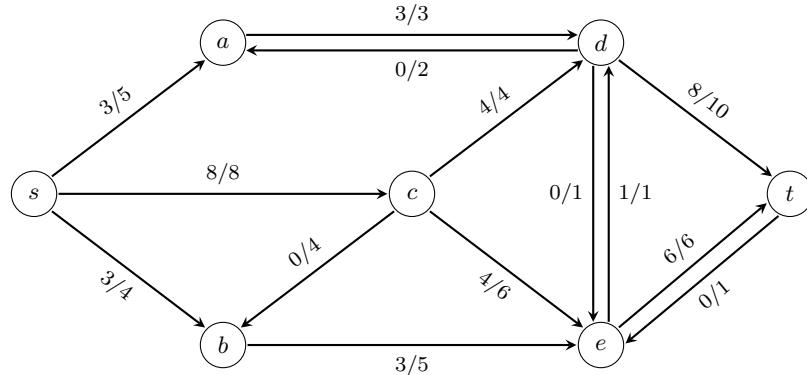
Case 3. $n = 2m+1$. In this case, we write $T(n) = T(m) + T(m+1) + 2 = \lceil 3m/2 \rceil + \lceil 3(m+1)/2 \rceil - 2$. Let us assume that m is even. In this case the expression is equal to $3m/2 + 3(m+1)/2 + 1/2 - 2 = \lceil 3n/2 \rceil - 2$. The case where m is odd is handled similarly.

Problem 6 (20 points) Calculate a maximal flow and a minimal cut on the following network using the Ford-Fulkerson algorithm. At every step, draw the residual graph corresponding to the current flow.



Solution: (15 points for the max-flow, 5 points for the min-cut)

The value of the maximal flow is 14. The following is a possible maximal flow:



A possible minimum cut is given by the subsets $\{s, a, b, c, e\}$ and $\{d, t\}$.

Bonus Problem (20 points) Consider a binary heap containing n numbers where the root stores the largest number. Let $k < n$ be a positive integer, and x be another integer. Design an algorithm that determines whether the k th largest element of the heap is greater than x or not. The algorithm should take $O(k)$ time and may use $O(k)$ additional storage.

Hint: don't try to *find* the k th largest element.

Solution: Starting from the root of the tree, traverse the children of a node until the value of the node is strictly smaller than x . Put the index of this node into an array of length $2k$. If there is an overflow, then state that the k th largest element is strictly larger than x . *Claim: if the k -th largest element is smaller than or equal to x , then the array will contain at most $2k$ entries.* Proof. For every node in the array, the value of the ancestor is greater than or equal to x . There are thus at most k such ancestors. Each ancestor has at most 2 children, hence the number of entries in the array is at most $2k$. *Claim: running time is $O(k)$.* Proof. The number of nodes traversed is at most the number of direct descendants of nodes whose values are greater than or equal to x , hence at most $2k$.

Now we will use the new array to see whether the k th largest element of the array is at least x .