
Problem 1 (10 points)

1. Give a formal specification of the following problem: given an array of
integers, and another integer x, determine whether there are two elements
in the array that sum up to x.

2. Design an algorithm that solves the problem of the previous part in
O(n log n) steps, where n is the length of the array, and a step is either
an addition or a comparison of integers.

Solution:

1. (4 points) The input set I is (∪∞n=1Zn)×Z. The output setO is {TRUE,FALSE}.
The relation is

R =
{

((σ, x),TRUE)
∣∣∣ ∃ 0 ≤ i < j < |σ|: σi + σj = x

}
∪{

((σ, x),FALSE)
∣∣∣ ∀ 0 ≤ i < j < |σ|: σi + σj 6= x

}
where |σ| is the length of the sequence σ.

2. (6 points) Given an array σ consisting of n elements, and the integer x,
we first sort σ using O(n log n) operations. Next, we initialize two indices
i and j to i = 0 and j = n−1. As long as i < j, we perform the following:
if σi+σj > x, then we decrease j by one. If σi+σj < x, then we increase i
by one. We stop and return the value TRUE if we hit (i, j) with σi+σj . If
during the course of the algorithm i ≥ j, then we return the value FALSE.
The running time of this algorithm is obviously O(n), so the total running
time is O(n log n).

Problem 2 (15 points) Suppose that you are given a sorted sequence of n
distinct integers {a1, . . . , an}. Give an algorithm to determine whether there
exists an index i such that ai = i, outputting one i if such an i exists, and
which uses O(log(n)) steps. For example, in {−10,−3, 3, 5, 7}, a3 = 3, whereas
{2, 3, 4, 5, 6, 7} has no such i.

Solution: The key is the following realization: if ai < i, then for all ` ≤ i
we have a` < `, and if ai > i, then for all ` ≥ i we have a` > `. To see this,
note that in the former case, ai−` ≤ ai − ` ≤ i − ` since the ai’s are distinct
and integers. In the latter case, a` ≥ ai + (` − i) ≥ `, again since the ai’s are
distinct.

Now we use binary search on the sequence (ai − i|1 ≤ i ≤ n) to find a zero
of this sequence if it exists.

Problem 3 (15 points) Given an O(n log(k))-algorithm that merges k sorted
list of integers with a total of n elements into one sorted list.

1

Hint: Use a heap of size at most k.

Solution: Let the arrays be A1, . . . , Ak and assume that they are sorted in
an ascending way. We will create sorted array S consisting of the union of the
Ai’s.

Create min-heap for elements (1,A_1[0]),...,(k,A_k[0]) where

the minimization is with respect to the second variable.

i = 0;

while (i < n) do

(j,A_j[l]) = DeleteMin of the Heap;

S[i] = A_j[l];

i = i+1;

if (l is not the length of A_j) then

Insert A_j[l+1] into the min-heap.

For every entry of S we need to do one deletemin operation and at most one
insertion operation into the heap. The heap size is at most k, so these operations
cost O(log(k)). In total we will have an O(n log(k))-algorithm.

Problem 4 (20 points) Show the successive node values computed in the
execution of the Moore-Bellman-Ford algorithm on this graph, assuming that
node 0 is the starting node s. Moreover, for every node v, determine a shortest
path from s to v.

0

1

2

3

4

5

6

7

8

3 3

5

2

2

2

2

12

2

13

3

2

4

5 1

52

Your output should look like this:

0 1 2 3 4 5 6 7 8

Step 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Step 1 0
Step 2 0
· · · 0 ·

2

Solution: (12 points for the trace, 3 points for each step. 8 points for the
shortest paths, 1 point for each path)

The trace of the MBF algorithm is the following:

0 1 2 3 4 5 6 7 8

Step 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Step 1 0 3 ∞ ∞ 2 ∞ ∞ 5 12
Step 2 0 3 4 ∞ 2 5 6 5 12
Step 3 0 3 4 7 2 5 6 5 6
Step 4 0 3 4 7 2 5 6 5 6

The shortest paths are the following:

0→ 1
0→ 1→ 2
0→ 1→ 2→ 3
0→ 4
0→ 1→ 5
0→ 7→ 6
0→ 7
0→ 1→ 8

Problem 5 (20 points) A max-min algorithm finds both the largest and the
smallest elements in an array of n integers. Design and analyze a divide-and-
conquer max-min algorithm that uses d3n/2e−2 comparisons for any integer n.
(You will receive 10 points if you can show this for the case when n is a power
of 2, and an additional 10 points if you can prove it for general n.)

Hint: If T (n) denotes the number of comparisons of your algorithm, try to
find a recursion relating T (n+m) to T (n) and T (m). Then study first the case
where n is a power of 2.

Solution: Here is the algorithm:

A is an array of n integers

Max-Min(A) returns [max,min], the maximum and the minimum of A

if (n == 1) then

return max=min=A[0]

l = ceil(n/2), m = n-l

[max_1, min_1] = Max-Min(A[0:l-1])

[max_2,min_2] = Max-Min(A[l:n-1])

Return [max(max_1,max_2), min(min_1,min_2)]

It is clear that T (n) = T (dn/2e) + T (bn/2c) + 2, and T (1) = 0. We will now
show by induction that T (n) = d3n/2e − 2. The assertion is true for n = 1.

3

Assume now that the assertion is true for all m ≤ n − 1. We want to prove it
for n.
Case 1. n = 2m, m odd. In this case, we write T (n) = T (m−1)+T (m+1)+2 =
3(m− 1)/2 + 3(m+ 1)/2− 2 = 3n/2− 2.
Case 2. n = 2m, m even. In this case, we write T (n) = 2T (m) + 2 = 2 · 3m/2−
2 = 3n/2− 2.
Case 3. n = 2m+ 1. In this case, we write T (n) = T (m) + T (m + 1) + 2 =
d3m/2e + d3(m + 1)/2e − 2. Let us assume that m is even. In this case the
expression is equal to 3m/2 + 3(m + 1)/2 + 1/2 − 2 = d3n/2e − 2. The case
where m is odd is handled similarly.

Problem 6 (20 points) Calculate a maximal flow and a minimal cut on the
following network using the Ford-Fulkerson algorithm. At every step, draw the
residual graph corresponding to the current flow.

s

a

b

c

d

e

t

5

8

4

3

2

4

4
6

5

1 1

10

6

1

Solution: (15 points for the max-flow, 5 points for the min-cut)
The value of the maximal flow is 14. The following is a possible maximal

flow:

s

a

b

c

d

e

t

3/
5

8/8

3/4

3/3

0/2

4/
4

0/
4

4/6

3/5

0/1 1/1

8/10

6/
6

0/
1

4

A possible minimum cut is given by the subsets {s, a, b, c, e} and {d, t}.

Bonus Problem (20 points) Consider a binary heap containing n numbers
where the root stores the largest number. Let k < n be a positive integer, and
x be another integer. Design an algorithm that determines whether the kth
largest element of the heap is greater than x or not. The algorithm should take
O(k) time and may use O(k) additional storage.

Hint: don’t try to find the kth largest element.

Solution: Starting from the root of the tree, traverse the children of a node
until the value of the node is strictly smaller than x. Put the index of this node
into an array of length 2k. If there is an overflow, then state that the kth largest
element is strictly larger than x. Claim: if the k-th largest element is smaller
than or equal to x, then the array will contain at most 2k entries. Proof. For
every node in the array, the value of the ancestor is greater than or equal to x.
There are thus at most k such ancestors. Each ancestor has at most 2 children,
hence the number of entries in the array is at most 2k. Claim: running time is
O(k). Proof. The number of nodes traversed is at most the number of direct
descendants of nodes whose values are greater than or equal to x, hence at most
2k.

Now we will use the new array to see whether the kth largest element of the
array is at least x.

5

