
Matplotlib Cheat Sheet
EPFL CS 328

Numerical Methods for Visual Computing
(Version 1)

Common magic commands for Jupyter:
Enable inline backend (plots within notebooks).

%matplotlib inline

Enable interactive inline backend.

%matplotlib notebook

Common import statements:
Package used for state-machine usage of Matplotlib

from matplotlib import pyplot as plt

Reading images.

import matplotlib.image

Plotting 3D plots.

import mpl_toolkits.mplot3d

Importing Matplotlib Packages

Preparing the data:
x = np.linspace(-2.0 * np.pi, 2.0 * np.pi, 1000)

y = np.sin(x)

Limiting displayed axes ranges:
plt.xlim([-3.0, 3.0]) # [from, to]

plt.ylim([-1.5, 1.5])

Adding title, axes labels, grid:
plt.title('My wonderful plot')

plt.xlabel('T')

plt.ylabel('amplitude')

plt.grid()

Plotting:
plt.plot(x, y, label='sine wave') # Linear axes.

plt.semilogx(x, y) # Logarithmic X axis.

plt.semilogy(x, y) # Logarithmic Y axis.

plt.loglog(x, y) # # Logarithmic both axes.

Legends:
Legend uses labels set in plotting statements.

plt.legend(loc='lower right')

loc={'best', 'upper center', ...}

Saving plotted image to file:
File format inferred from extension (.pdf,.png, ...).

plt.savefig('file.png', dpi=200)

'dpi' can be used to set custom resolution.

Plotting Lines Pipeline

Cheat-sheet by T. Zeltner and J. Bednarik ([tizian.zeltner|jan.bednarik]@epfl.ch).
LATEX template by Michelle Cristina de Sousa Baltazar.

Using (optional) plotting parameters:
linestyle, linewidth, color, marker, markersize, label

plt.plot(x, y, color='b', linewidth=1, linestyle='--',

label='b--')

plt.plot(x, y, color='r', linewidth=4, linestyle='-.',

label='r-.')

plt.plot(x, y, color='g', linestyle='', marker='+',

markersize=8, label='g+')

plt.plot(x, y, color='m', linewidth=10, label='m')

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0

80

60

40

20

0

20

40

b--
"r-."
"g+"
"m"

Line Styles

Draw the histogram of an array x :
plt.hist(x)

Returns three arrays of..

n histogram values

bins x-positions of bin edges

patches patches/rectangle objects drawn in the figure

Common optional parameters:

bins number of bins to use

normed if True, mimics a probability density.
(The histogram will integrate to 1.)

cumulative if True, mimics a cumulative distribution.

orientation {’vertical’, ’horizontal’}
color specifies color to be used for bars.

log if True, histogram axis is set to log scale.

Histograms

Read image from disk:
img = matplotlib.image.imread('path/to/image.png')

Plot the image:
plt.imshow(img)

Optionally show colorbar:
plt.colorbar()

Common optional parameters:

cmap colormap used for grayscale images.
{’gray’, ’hot’, ’plasma’, ...}

interpolation {’nearest’, ’bilinear’, ...}

Images

Three plots in a 1 x 3 matrix with shared y-axis:
fig, ax = plt.subplots(1,3, figsize=(9,3), sharey=True)

ax[0].plot(x, y, color='r')

ax[1].plot(x, y, color='g')

ax[2].plot(x, y, color='b')

0 2 4 6
1.0

0.5

0.0

0.5

1.0

0 2 4 6 0 2 4 6

Subplots

Create 3D figure:
fig = plt.figure()

ax = fig.gca(projection='3d')

Preparing the data:
X = np.arange(-5, 5, 0.25)

Y = np.arange(-5, 5, 0.25)

X, Y = np.meshgrid(X, Y)

Z = np.sin(np.sqrt(X**2 + Y**2))))

Plotting the surface:

ax.plot_surface(X, Y, Z)

Other common plot styles:

ax.plot(..) 3D Line plot

ax.scatter(..) 3D Scatter plot

ax.plot trisurf(..) Triangulated mesh data

3D Plots

1

Easily add interactivity with sliders in Jupyter notebooks:
from ipywidgets import interact

@interact(omega=(0, 10, 1)) # min, max, step

def plotSin(omega = 1):

x = np.linspace(0.0, 2*np.pi, 1000)

y = np.sin(omega * x)

plt.plot(x, y)

Interactivity

2

