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Reminder: Image Specificities

x

• In a typical image, the values of neighboring pixels 
tend to be more highly correlated than those of 
distant ones.  

• An image filter should be translation equivariant.  

—> These two properties can be exploited to 
drastically reduce the number of weights required by 
CNNs using so-called convolutional layers. 
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Reminder: ResNet to U-Net
Image Tubularity Map

s
Conv Layer

Conv Layer

x

x+l2(s(l1(x))

ResNet block U-Net

Downsampling Upsampling

—> Long range connections are handled via downsampling. 
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Natural Language Example
The restaurant refused to serve me a ham sandwich, 
because it only cooks vegetarian food. In the end, they just 
gave me two slices of bread. The ambience was just as good 
as the food and service.

Given your preferences should you go this restaurant? 

What does “it” refer to? 

Seriously? 

https://www.borealisai.com/en/blog/tutorial-14-transformers-i-introduction/
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Context Matters

• Meaning cannot be had from the syntax alone! 
• Some words are given “attention” by others.  
• Such words are not necessarily close to each other. 

—> Assuming that words have been converted to 
vectors, transformers have been invented to deal with 
this issue.
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Attention

• Attention to a specific word is the 
importance given to it by each other 
word. 

• Models long-range relationships. 
• Provides some interpretability.  
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Reminder: Word2Vec
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Once the training is complete, the W matrices associate to each 
word a vector of dimension N.  
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Fully Connected Layers Revisited

h = σ(Wx + b)
= σ(W̃x̃)

x̃ = [1 |x]

Standard fully connected layer

➡We can drop the bias terms. 
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Self Attention

Given I words , compute the self attention xi

∀i, sa[xi] =
I

∑
j=1

a[xi, xj]Wvxj

{

Value of xjAttention given 
by  to xj xi

{

Attention given 
to  by all  xi xj

{
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1. Each word is assigned a key, value, and query vector. 
2. The keys and queries are multiplied to produce a score. 
3. The value is multiplied by that score and the results added. 

Basic Mechanism
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Self Attention in Matrix Form (1)
Given I words , let  xi X = [x1, …, xi]

Xq = XWq

Xk = XWk

Xv = XWv

Query:
Key:

Value:
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Self Attention in Matrix Form (2)
Xk = XWk

Xv = XWv

Xq = XWq

X

Xq Xk Xv

A

Ã Z

Sa(X) = Z = softmax[XWqWT
k XT]XWv

A =
1
dk

XqXT
k

=
1
dk

XWqWT
k X

Ãt = softmax(At,:)

Z = ÃXv

Compute scores

Normalize scores
Weighted sum
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Self Attention in Matrix Form (3)

∀i, sa[xi] =
I

∑
j=1

a[xi, xj]Wvxj

a[xi, xj] =
exp[(Wqxi)TWkxj]

∑I
j=1 exp[(Wqxi)TWkxj]

Softmax



14

Sparse Attention Weights

Given , we compute  using far 
fewer weights than if we used a fully connected 
network. 

X = [x1, …, xI] Sa(X)
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Transformer Layer

X ← X + Sa(X)
X ← LayerNorm(X)
xi ← xi + mlp[xi] ∀i
X ← LayerNorm(X)
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Self Attention in Python
 class SANet(nn.Module): 
     
    def __init__(self,kDim,dTok,sigm=1e-6): 

self.Wv  = torch.nn.Parameter(sigm*torch.randn(dTok,dTok)) 
        self.Wk  = torch.nn.Parameter(sigm*torch.randn(dTok,kDim))      # Allocate the 3 matrices 
        self.Wq  = torch.nn.Parameter(sigm*torch.randn(dTok,kDim)) 
         
    def forward(self,xt): 
         
        xv = torch.matmul(xt,self.Wv)  
        xk = torch.matmul(xt,self.Wk)                                   # Compute value, key, and query 
        xq = torch.matmul(xt,self.Wq)                                   
               
                           
        A = torch.matmul(xq,xk.transpose(1,2))        
        A = F.softmax(A,dim=2)                                          # Compute the self attention 
        A = torch.matmul(A,xv) 
              
        return (A)

-> The heart of chatGPT! 
• It is very simple.  
• Yet it delivers impressive results. 
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Optional: Bidirectional Encoder 
Representations from Transformers (BERT)

• A sequence of transformer blocks is trained 
to predict a missing word in a sentence.  

• This forces the transformer to learn 
something about the syntax of the language.
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Given additional training data, the representation learned is 
this way can be used to perform various tasks.

Optional: Bidirectional Encoder 
Representations from Transformers (BERT)
Rate the positivity

Classify words
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Optional: ChatGPT

Vaswani’17

• At this point, the transformer 
layer is fed both the prompt and 
the already generated text.  

• It uses this information to guess 
the next word.  

• The process is then iterated. 

Keys to ChatGPT success: 
• The network looks back as far 

as needed.  
• It uses a huge  corpus.  
• Human guided training. 
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Optional: Stalls and Spins

• These are dangerous.  
• There are well-known recovery procedures. 

Spin
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Optional: ChatGPT’22 / 23

12.12.2022

27.01.2023

A little late for that. 

That’s going to get you killed!! 

Correct. You will live.

It is.

What changed? Presumably, enough people 
complained and the system was re-retrained 
with  correct responses.  
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Optional: ChatGPT’24

It’s getting quite good!
06.12.2024
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Vision Transformers

P1 P2

P3 P4

X1 = Φ(P1)
X2 = Φ(P2)
X3 = Φ(P3)
X4 = Φ(P4)

• Computing a feature vectors for each image patch is 
known as tokenization.  

• It loses spatial information within the patches.  
• Can be mitigated using “positional encoding”. 
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MLP Mixers

Tolstikhin et al. , ArXiv’21
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Depth from Single Images

Ranftl  et al. , CVPR’21

• Pros: Good at modeling long range relationships.  
• Cons: Flattening the patches looses some amount of information. 
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UNet + Transformers

• A CNN operates at low-resolution and produces a feature vector.  
• A transform operates on that feature vector.  
• The upsampling is similar to that of UNet 

—> Best of both worlds? 
Chen et al., ArXiv’21
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Weather Forecasting

• It is important to model non-local interactions.  
• Transformers have a role to play. 
• But so does physics and prior knowledge.  

Kochkov’24, Nature
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Three Kinds of Deep Networks

• MLPs: Everyone talks to everyone. Good for 
small problems but unmanageable for larger 
ones.  

• CNNs: Communications are local and global 
i n fo rmat ion t rans fe r i s ach ieved by 
downsampling.  

• Transformers: Global communication is made 
possible by tokenization.

Mix and match as needed!


