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Non-Linearly Separable Data
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Adaboost can handle this using But not this.
linear classifiers.

—> Map the data to a higher dimension.




Mapping to a Higher Dimension:
Three Examples
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1D classification. 2D classification. Polynomial approximation.
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1D Classification Example

How can we handle this 1D/2-class data?
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We can map it to 2D:

sl -




2D Classification Example

How about this 2D/2-class data?
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2D Classification Example

We can map the 2D data to 3D:
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=ps —> We can now use a linear classifier. ‘
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Lifting from 2D to 3D

SVM with a polynomial
Kernel visualization

Created by:
Udi Aharoni
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Polynomial Approximation

=P

2
R f
/X x
/7
/7
/7
f (antn)
/
%l
/
X
/
/
7/
,X
/
X
%l
x\\ ///
\\x—xx)(
-2 -1 0 1 2

¢ Flnd W = [Wo, Wl, ..

., Wys] such that:

Forl <n <N:

th = f(Xn) + €
* The (x,ti) are given.
e f1s unknown.

M
Vx, f(x) & Z wl-xi
i=0

M
* Least squares solution: w* = argmin_ 2 (¢, — z w.x!)?

L ° For M=1, reduces to linear regression.

n =0
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Polynomial Approximation
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M

fyux) = Z wi*xi

i=0

M=0

M=1

M=2

M=3

M=4

M=6

M=10

i




Polynomial Feature Expansion

x = ¢px) = | x°

The polynomial can be rewritten as:

o
M
i T : Wi
Zwl-x =W-px) =w ¢(x) withw = :
i=0 W.M

The least squares solution becomes:

w* = argmin__ Z (z, — WT¢(Xn))2




Least-Squares Formulation

N
w* = arg min Z (tn — W' ¢(x5)) *

W
n=1

= argmin | Pw — t||*

with
_¢(X1)T_ 1 T 72 M Wo to
d(x2)" I 1y i w1 b
b = , = 2o e , W= | wy |, andt=| 1o
2 M o o
_¢(XN)T_ - L TN TN TN | WM i tN 1
Intuitively: = Odw* ~ t
NXM M x1 N x 1
Formally: = (d1d)w* = &1t




Optional: Proof Sketch

1
We want to minimize: R = 5 | Pw — tH2

_ %(QDW )T (Dw — t)

The gradient or R w.r.t w is: VR = ' (dw — t)

At the minimum: 0=VR = CI)T(@W — t)
=dl dw = Ot

EpEL .




Adding Noise
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Regularization

w* = arg min ||®dw — t||* + §HWH2
A%

= Solve: (®1® + \Dw = &'t

« This 1s known as weight decay because 1n iterative
algorithms 1t encourages the weight values to decay to zero,

unless supported by the data.
» It discourages large weights and therefore quick variations.
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—— Validation
—— Training
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Use cross-validation
data to select the
value of A.




Linear and Non-Linear Regression

—— Model —— Model —— Model
——— True function ——— True function
e Samples e Samples

Order 1 Order 4 Order 15

For both kind of regressions, the trick is
to find the best compromise between
simplicity and goodness of fit.
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Application: Rainfall in Switzerland

The circles represent actual measurements

Precipitation (mm)

AR @f{? 'ﬁ"@ @:*3’ 'gf’ @)" &

=pEL —> Extends to Higher Dimensions.



Application: Stock Price Prediction

S&P/TSX COMPOSITE
as of 4-Apr-2008
1500+ T ————
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Y (X¢; W) = Tt+At

cprL —> Regression problem A




But Be Careful!

CURVE-FITTING METHODS
AND THE. MESSAGES THEY SEND
"HEY, IDDA “I \UANTED A CURVED 100K, T5
REGRESSION! LINE, 50 T MADE ONE TAPERING OFF™
UITH MATH"
"LOOK, IT'S GROWING *TM SOPHISTICATED, NOT “TM MAKING A
UNCONTROLLABLY™ LIKE THOSE BUMBLING SCATTER PLOT BUT
POLYNOMIAL PEOPLE® T DON'T WANT TO°
[} - . .. 0. . . . /.‘./ﬂ‘}
*T NEED TO CONNECT THESE  “LISTEN, SCIENCE IS HARD, “T HAVE A THEORY,
7L UNES, BUT MY FIRST IDEA ~ BUT IM A SERIOUS AND THIS 15 THE ONLY
DIDN'T HAVE ENOUGH MATH!  PERSON DOING MY BEST® DATA T COULD FIND®
*T CLICKED ‘SMOOTH “THPD AN IDEA FOR HOU A5 YOU CAWN SEE, THIS
LINES IN EXCELY 0 CLEA UP THE DATA.  MODEL SMOOTHLY FiTS
WHAT DO YOU THINK?®  THE— LAl MOND DONT
EXTEND IT APAAAA!"

Never trust a
statistic you have
not faked yourself!

https://xkcd.com/2048/




But Be VERY Careful!

Dow Jones Industrial Average
+ Follow
INDEXDJX: .DJI -

19°173.98 -913.21 (4.55%) +

20 Mar, 18:31 GMT-4 - Disclaimer

1 day 5 days 1 month 6 months YTD 1 year 5 years Max

30°'000 25'962.51 21 Mar 2019

25'000 !

20°000

15°000—

|
2020
Open 20'253.15 Low 19°094.27
High 20'531.26

March 2019 to March 2020
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Recap:
Mapping to a Higher Dimension

. /X,’ X“"S(\X
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oo L. . y
*ee 4 Vs
1D classification. 2D classification. Polynomial approximation.

e We have seen three examples in which mapping to a higher
dimension makes the problem linear.
e This idea also applies to classification.
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Classification in Feature Space

4 x) =20
ARdAAA RD /f()

D x = P(x) R? — RD

* Map from Rd to RD
e [ .earn a linear classifier in RP

y (x) = o(w’ ¢(x) + wo)

. mpd D
o : R — R A




Polynomial Feature Expansion
i J constant

1-Dimensional Input d-Dimensional Input

x— ¢Px) = x* ¢ (x) <

* The dimension of ¢(Xx) grows quickly
with the degree M of the polynomial.

X1X4

Xd—1Xd
xl X2

* ¢(x) can be used in any algorithm that
we have seen so far.

=PrL
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Reminder: Llnear SVM

wW* = argmin,, Eh7 | |w|]*+ CZ ¢,

n=1

subjectto Vn, ¢, -(W-x,)>1—-¢& and&, > 0.

- C 1s constant that controls how costly constraint violations are.

» The problem 1s still convex.

400 A 400 A

300 300 4
2004 °

2004 °

100 A 100 +



http://www.cristiandima.com/basics-of-support-vector-machines/

Polynomial SVM

. I PR \
wk = argmm(wa{fn})zl lw||”+ CZ ¢,

n=1

subjectto Vn, ¢t -(W-¢(x,))>1—-¢ and &, > 0.

- C 1s constant that controls how costly constraint violations are.

» The problem 1s still convex.

100Y% T T T 100%

byA ' ' 100% 0%




Interpretation

The linear decision boundary in a high dimensional space becomes a curvy one in the
original low dimensional space.
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2.0

.. v, "
.oﬂ ooooo oo" Qco *
o
13 ..“.. I ...... “ta've
P Mg ooof 0e® ¢ ° o X o |
| ; y . L S . H
we® e ° PR g o’ ’ ;
o, ° K
S * ™ e o ] | !
. lo o..o oo.o o e ° [ ]
= ‘e o‘o.oo ®e " s ok
‘.o o ooo v I‘ °® i o oy o @& -
-. e ® L) ol .. “ . oo -3 ..
.. o oo - mo ®’ oooo ooo o o oooo. D
o e, % . N : x
° L4 L] F L o ..'. ‘oo lo
3 ao : o ; oodu 3% o“o. o |
o % 1 ................s... s o - /1KT
YR AR R v
o o ... .‘ ... " S E e
E o . o o? . .o . e [ 5] y.S
o“.o .. . o e °° d AY ) 7 :
Foh L TR e o 5 g
~. .. :..” L] PYRE ) .o. o (ml\ Q
3 oh\.o A mono&...... o9 | fh
o p . | t
o ’... o *° ¢ b4 y 3 . lnv. : .-
: oooo .oooo ° ® oooo FY 0. o
: " . pL 0.. ° o ... ° *
0 ! 0.‘ . o ] o *° L (1] i
g -, 2 [ ] o™ e, * R o Pl
o * °® e °° o ® L) . n =
O % ® ° . e S o ° : 1 \
- ° oo S ¢ ] ARELE A [T
oo.Ooooooooooooo ° ' % e P N * o !
.o‘ L o.. .Oo oo..o‘oooo . oo‘oooﬁo.'.oJ __ __
o
o o.oo. L .o‘ ®oge’ ‘ A oo. o i
o °* L] o0 y . . . i y :
RED) o X l.oo o % A I - N
| f\o X fooooo e® e olo o.o * g% ) -
o %e P o‘oo %’ o‘oo o.oo (T\ (w\
| | o y o e ¢ ° S~
! . ‘..“ ~ o3 ) 0. .. .0. L] N 5
o~ 0 T °op® o * e ooonl
| — o T ] o o’ ) oooo _
| — n : P L
IR T
| (=] o _ Y
— a T
— -k
o~

Rosenbrock:




10%noise

0.0

-0.5

-1.0

-1.5

-2.0

10%n0i

nolse

5%

=PrL



15 2.0

1.0

-1.0 —0,5 0.0 0.5

-1.5

10%mnoise

5%noise

=Pr-L



Polynomial SVM

A higher-degree polynomial expansion yields a more flexible boundary.

* It also increases the dimensionality of the problem.

* The computational complexity of training SVMs grows like the cube of
the dimension.

—> Inherent limitation of polynomial SVMs.




Another Way to Map to a Higher Dimension

People Detection in Imgs

https://github.com/richaagrawa/



Training Data

» Positive data — 1208 positive window examples




Histogram of Oriented Gradients

_ dominant
Image direction HOG

I

» tile window into 8 x 8 pixel cells

» each cell represented by HOG

frequency

orientation

Feature vector dimension = 16 x 8 (for tiling) x 8 (orientations) = 1024

=Pr-L A




Training and Testing

Training:
e Represent each example window by a HOG
classifier.

x; € R%, with d = 1024

- 7

e Train a linear classifier.

Testing:
e Sliding window classifier.

cPFL y(x; W, wo) = o(wx + wo) A




Sliding Window

Detection window




Non Maxima Suppression

Raw Detection before NMS

=PrL




N: Dimension of the space

Cover’s Theorem

A complex pattern-classification problem, cast in a high-dimensional space nonlinearly, is more likely to
be linearly separable than in a low-dimensional space, provided that the space is not densely populated.

Geometrical and Statistical properties of systems of linear inequalities with applications,1965

100

80 A

60

20 40 60 80 100
P: Number of samples

— 1.0

- 0.8

N : Dimension of space

p : Number of samples

: Percentage of separable partitions

g




Optional: Recursive Computation

Vn, C(1,n) =2
Vp, C(p,1)=p+1

Cp,N)=C(p—1,N)+C(p—1,N —1)

=Pr-L http://www.cns.nyu.edu/~eorhan/notes/covers-theorem.pdf



High Dimension is Good

When N is large, almost all
partitions are separable if the

number p of samples is less
than 2N.




Problem Solved*
T T T T 100 1.0
i — ]
N =300 )
N = 30 r |
X 2
Py 2 60 0.6
Z 0.5} -
- 2
) .g 40 - 0.4
[a)
3 :
20 1 0.2
o Nmeemmm——
L 0.0
0 1 20 40 60 80 100

P: Number of samples

Operating range

« Facebook or Google deal with BILLIONS of images.
* p and therefore N should be of that magnitude.

* Dealing with matrices of dimension NxN is impractical.
#~ HOUSTON

“) AN

i “EIN
WEHAVEAPROBLEM..
L | LA




Neither Solved nor Hopeless

Bad news: Good news:

* The ratio of the number of points  The world is structured and the
to the dimension must be less points we want to classify are
than 2. NOT randomly distributed.

 The dimension must be huge for « We can compute feature vectors
large databases. that are “close” for objects that

belong to the same class.
 As the dimension increases, the

boundaries become increasingly
iIrregular and sensitive to noise.




Dimensionality Reduction

e The MNIST images are 28x28 arrays.
e They are not uniformly distributed in R784,
e In fact they exist on a low dimensional manifold.

o




Face Images
i ie Ny
LS i ol

) ‘,.4.3

e The same can be said about face images.
e And of many other things.
—> Non linear classification is a practical proposition.

EPFL Fan et al. AVBPA’05 A




Increasing the Dimension Further

Can we increase the dimension massively:
e in a principled way,

e while keeping the computational burden
down?

—> Non-linear support vector machines that
use the so-called kernel trick.

=PrL A




Reminder: Polynomial SVM

. I PR -
w* =mln(w’{§n})5||W|| +CZ fn,

n=1

subjectto Vn, ¢, -(W-¢@(x),)>1-¢ and &, > 0.

- C 1s constant that controls how costly constraint violations are.
0 1007 100%




Polynomial SVM w/o Slack Variables

 For simplicity
S o 2
W —mmwzl lw ||,

subjectto Vn, ¢ -(W-¢p(x),) > 1.
 We will re-introduce the slack variables later.

—> Constrained optimization.




Optional: Constrained Optimization

* Blue dotted lines are “level” lines.

Global minimum  In this example, di <d2 <ds.

* The blue arrows represent V.

: . e The red arrows represent V g.
Constrained minimum H

gx,y) <c

>
X

» Minimize f(x, y)subject to g(x,y) < c.
At the constrained minimum

dA e R,Vf=1Vg
 Ais known as a Lagrange multiplier.

=PrL A




Optional: Lagrangian Formulation

Lagrangian:

1 N
LW, A) = —IWI? = 2 2,,% - x,) = 1)
n=1

_ Lagrange multipliers.
A=14,...4,] One per constraint.

Theorem:

A solution of the constrained minimization problem must be such that L 1s
minimized with respect to the components of w and maximized with respect
to the Lagrange multipliers, which must remain greater or equal to zero.

Will be discussed again an upcoming lecture.

=Pr-L Bishop, Chapter 7.1 A




Support Vectors

n=1

y(x) = w' ¢p(x)+b,
| N

with k(x,x') = ¢(x)! o(x) .

« Only for a subset of the data points is 4, is non zero.

* The are denoted by green circles.

e The corresponding x, are the support vectors and satisfy tay(xn)=1.
* They are the only ones that need to be considered as test time.

=pe —> That 1s what makes SVMs practical! A




At Inference Time

y(X) = Zl tk(x,X,)+ b

= 2,1 k(x,X,) + b

neds

 Only for a subset of the data points 1s 4, 1s non zero.

* The feature vector f(x) does not appear explicitly anymore.
» The kernel function k(.,.) can be understood as a similarity measure.

=PrL A




The Kernel Trick

y(X) = Z At k(X,X,) + D

neds

k(x, x') = (%) p(x")

e ¢) is implicit: In practice, we never compute it.
* We only need to compute k.

» This 1s known as the kernel trick and 1s used 1n
many different algorithms besides SVMs.

PFL -




Role of the Kernel

© o
o ° o) | . Decision surface
o) o) 0 L
o e ® Egh
°© g_m m_ LT B
o o E"E gm kernel arg e
o} | o
©o m w g%y > l:.ll=..
o " mm =& Em
© "oglg W O,
o O 0O @) © e OO 00 _0 [®) O O
© 8 o © < °Q, 0 60> % 08
o © 8 000099
o© 8 000,920
© © o0 o 0°.
O ST

Polynomial kernels: From small to high dimension.
Gaussian kernels: From small to infinite dimension.




Influence of the Kernel

linear kernel polynomial degree 2 polynomial degree 5

1.0

-1'-01.0 -05 00 05 10-10 -05 00 05 1.0-1.0 -0.5 0.0 0.5 1.0

N
y(x) = Z Atnk(xX,%x,) + b,
n=1
k(x,x') = 14 (x'x)¢ (Polynomial terms up to degree d).
12
k(x,x') = exp(— I 2X | ) (Gaussian, feature space of infinite dimension).

O

=PrL A
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Back to Cover’s Theorem

—— P: 1000

o
wn

—— Polynom of degree 2
—— Polynom of degree 3
—— Polynom of degree 4
—— Polynom of degree 5
—— Polynom of degree 6

Polynom of degree 7
—— Polynom of degree 8

o o
w )
1

o
N

Clp. N)/2

Probability of finding a partition

o
=

©
o
Il

0 100 200 300 400 500
N: Dimension of the space

« Good news: Working with a Gaussian kernel virtually
makes the dimension as large as the number of samples.

 Bad news: It is still not ideal for very large values of the
number of points N due to the O(N3) computational
complexity.

=PrL A




Overlapping Class Distributions
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e Some training examples must be allowed to be misclassified.
e Cannot satisfy all the hard constraints.
e For linear SVMs, we used slack variables to achieve this.
e For kernel SVMs, we can do so by bounding the Lagrange multipliers.
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Inference with Slack Variables

*x

The green circles denote the support vectors.

2
y(X) = ) At,k(x.X,) +bwith 0 < 4, < C,Vn

nes
where S 1s the set of support vectors.

e A, <C: xn lies on the margin.
e A= C: Xq lies inside the margin.

=Pr-L A




- - - v ® v 1.00
° .! e o o ° . o, o Yo [ ., o,
!:o. .: { . . .. I3 . ) - ° ? o .... . ° . o . .$ N
S L A SRR T A R S I T S i SRR 0.75
. oe® 'Y ® . pe e ® * o o Y .
Se* conn O * .o . ° ° ]
e o ° ° oy ® e "',‘ LY '° Ky o °9
o b L] ®e o % o P * r4 - e®
o e o P o e * .
-1.04, :. o . .. ': o’ e o ::Q \. ° e e ° . 0.50
Y o .« o® .. o .. -t . e : e o :.. L
om ° ® o o° o 28 ° . s %o oot ¢
05 s o% o =9 et Sea ot T e o * 0.25
--.::'.. * :z'o 0'.:. .. .’o.. ....° . ‘....'o ° .o b ’
o w® * " Ce ® e °, & e o e e %% . .
. . ©
004,% * eg°* ° o . Ce 2 P, “teee 0.00
® e e o * 9 o oo e ... “ o’ o ol
o o, ° e LY ° L . . f e °
° ®e o * o e ° o ° ° o
®e e o 2% s % Fa)
R I N T L O IILE dh Y -0.25
. L] ° o o
o LS . : "..o.oo.d' ® e, °'~ 0.'.. LA N .'.....o: ®,00 * ]
o o hd
1.0 -'.... * . ... fos :; o. © :.. ’ ‘..‘ by o s o.... v —0-50
e o L ° L d o %o 0 L
. o9 e o, e e o ® ® e
* .".' e .. .. .o. ...'. ° O. L] .... .... ® ‘.:‘
1.5 4 ee o 0% ° L, o o ® e . oo ° g . -0.75
° ¢ & > @ o ®e *% S ° e o
° 'o o . ® ° ., L f. oo
e ® . . . . A o ® .
o‘. h .' e 3 o %, ° X ® o e . X °
2.0 - T T — T .l - T T T a _1.00
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 0 20 40 60 80
Rbf, 6 = 1.0, C=1.0
1.00 1.00
0.75 0.75

0.50 0.50

0.25 0.25

0.00 0.00

—0.25 —0.25

—-0.50 —-0.50

-0.75 -0.75

-1.00
0 20 40 60 80 0 20 40 60 80

Rbf, 6 = 1.0, C=100.0 Rbf, 6 = 1.0, C=0.1

—-1.00




X

%

*

X

X
X

X

X B

Xy X
s
XX X

A5

X
%

X

X

* o‘.o.o Mou . . *% o ¢ ﬂo\oo“
%e (] - P . . .
) . % ® ® ® o o8
o * oo o S 0 %0 5
i . o’ e ® L] oo e® o L] ° ©
re L 4 *e % . . L o’ o od
.0.0 o .. ﬂ..‘ H & e * w ° o.“...
.-‘ ¢ %o o o' by ooooo {
[ %o 2 e oo ofoo . oo . ® % ool‘ S %
o [ Y L L) rS L R LR -
e . . o * cooo o . oa . S
® 2° oo.o ooo . Q.oo' ‘e’ ., ‘0 oﬂo o s ooo
. ° . X ooo e %, . oooo . oo . ooh .
o ofoo ooo * o . s oo . * o
d ot o0 .o o.o.o * . * o .oo.oo
o 0°7 00 o 0% a0’ o %o oo e ©® o
ooo C el e “oo : <
® g0 * o Oof,oo ¢ %oo\ oo‘ LA =
80 g0 e e . 0% , .d
oo. e °*° o‘o..oo H 0.0‘ o oo _ ©
e @ o w ° e ® L *
o « ° %o , ° 4 s °° o
oy Se® o ° 2 o?
ooo ° hoo ®* ooooo R o ce
% o.® e ° o oy o eg o°*
[ « °* ‘e’ %® ., . ¢ oo ® g
" on® e 3.",% *oy *a®’ ad =N
®oe o ks eoe o *° e %t 0
“cet N, . . % g0 : el
t I ooool . oooo . o0 oOoooo- B} . h
« e 2 > ., " Y o
S ’ 'S * ‘esg 0 O 00t o Nt oooo
o [ ooo o b e e® o g © e g .e° of
g8 o %o ° .o o o % e
o ® Oooo ° . N ® ® .0 LI oon
[ oo o ooo e ® oo - ° ] (Y oﬁo ° .
° —' . —r. 1 2 “— o .— e .. —“ — .—
(=] el o n o n o n o
o ~ N o~ s} ~N 1 ™~ o
.ﬂ n_v n_v 0_ o o o o —

1.00

0.75

0.05,C=1.0

Rbf, o

=0.1,C=1.0

Rbf, o

=PrL



Non-SeparabIe' Distributions

The slack variables allow some training points to be misclassified.

e A large s sigma tends to smooth the decision boundary.
e A large C tends to minimize the number of misclassified training points.

—> Validation data is required to choose them properly.

=PrL A




CPF

Recognizing Hand-Written Digits
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k-Nearest Neighbors vs SVM

Knn: 96.8% Rbf-SVM: 98.6%

e Better accuracy.

e But the kernel and its parameters must be well
chosen.

=PrL A




SVMs in Short

e The data can be separable in a high-
dimensional feature space without being
separable in the input space.

o Classifiers can be learned in the feature space
without having to actually perform the mapping.

e However the O(D3) or O(N3) complexity at
training time makes it hard to exploit large
training sets.
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Reminder: SLIC Superpixels

1024x1024 256x256

256x256 64x64

e Superpixel segmentations with centers on
a 64x64, 256x256, and 1024x1024 grid.

e Can be used to describe the image in
=prL terms of a set of small regions.




Optional: Electron Microscopy

A




Optional: Mitochondria Segmentation

ATP synthase particles

Intermembrane space

Ribosome Cristae

Granules

Inner membrane
Outer membrane

Deoxyribonucleic acid (DNA)

=PrL
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Optional: Modeling Membranes

2ad . : s
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Here we use three classes instead of two:

e Inside
¢ Membrane
e Everything else

—>Because the inside is fully enclosed by the membranes, we
can still find a global optimum.

=Pr-L Lucchi et al. MICCAI’ 14 A




Optional: Speeding up the Analysis

3.21 pm x 3.21 ym x 1.08 pm: 53 mitochondria

Ay N

A TR
A
A

A,

H (T
"| . ds - A

--'(.9.‘4
W
. ]

=) )

Yk

h\’)

Automated result Interactively cleaned-up result

e By hand: 6 hours.
e Semi-automatically: 1.5 hours

—> Substantial time saving for the neuroscientists.
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