
Python 3 Cheat Sheet
EPFL CS 233

Introduction to Machine Learning
(Version 1)

Basic native data types:

Integer i = 42

Float 3.14159

Complex number 2 + 3j

Boolean b = True

String s = 'spam'

None type. n = None

Introspection functions:

Type of an object type(var)

Built-in system help help(var)

Lists objetc’s attributes dir(var)

Class membership test isinstance(var, class)

Basic data types and introspection

Arithmetic operators:

Addition x + y

Subtraction x - y

Floating point division x / y

Integer division x // y

Multiplication x * y

Exponentiation x ** y

Boolean operators:

And x and y

Or x or y

Negation not x

Operators

Simple print statement:
print("Hello!")

String formatting:

Integers "int: %d" % 5

Floats "float: %f" % 3.14

Strings "str: %s" % "foo"

Multiple values via tuples "two ints: %d %d" % (1, 2)

Printing and strings

Cheat-sheet by J. Bednarik and T. Zeltner ([jan.bednarik|tizian.zeltner]@epfl.ch).
LATEX template by Michelle Cristina de Sousa Baltazar.

Ordered sequence of elements of arbitrary data types.

Create empty empty_l = []

Create example l = ['zero', 1, 2.0, 3 + 0j]

Retrieve item (idx from 0) d[2] # Returns 2.0

Change item l[2] = 'two_point_o'

Query length len(l) # Returns 4

Append value to the end l.append(4)

Extend by another list. l.extend([5, 5])

appearances of item. l.count(5) # Returns 2

Looping through all items:
for it in l:

do something...

Lists

a = ['a', 'b', 'c', 'd', 'e']

Syntax [start:end] (start - incl., end - excl., step=1)

Explicit start/end a[2:4] # ['c','d']

Implicit end (incl.) a[2:] # ['c','d','e']

Implicit start a[:3] # ['a','d','e']

Negactive indices a[1:-1] # ['b','c','d']

Syntax [start:end:step]

Explicit start/end/step a[1:5:2] # ['b','d']

Negative step - backwards a[4:1:-2] # ['e','d','c']

Implicit start/end/step=1 a[::] # ['a','b','c','d','e']

No valid index in range a[4:2:1] # []

Slicing lists

Mapping of key-value pairs.

Create empty empty_d = {}

Create example d = {'name': 'Alice', 'age': 25}

Retrieve entry d['age'] # Returns 25

Add / change entry d['city'] = 'Lausanne'

Delete entry del d['age']

Delete all entries d.clear()

Test if key exists 'name' in d # Returns True

Number of entries len(d)

Looping through all key-value pairs:
for key, val in d.items():

do something..

Similarly, access all keys or values as:
d.keys()

d.values()

Dictionaries

Immutable list of values.

Create empty t = ()

Create with one element t = 123, # Trailing comma

Create example / packing t = 123, 'abc', 1+5j

Optional with parenthesis

t = (123, 'abc', 1+5j)

Unpacking u, v, w = t

Unpacking some entries u, _, w = t

Tuples

Simple function:
def hello():

print("Hello!")

Function with arguments and a return value:
def add(a, b):

return a + b

Function with a default argument that has multiple return
values as a tuple:

def f(a, b, c=0):

return a + c, b + c

Functions

Conditional tests:

equal / not equal x == 25 , x != 25

greater / smaller than x > 25 , x < 25

greater /smaller or equal to x >= 25 , x <= 25

If statement:
if x >= 0:

print("Non-negative")

If-elif-else statement:
if x < 0:

print("Negative")

elif x == 0:

print("Zero")

else:

print("Positive")

Conditional Statements

Use for to iterate over lists:
for x in [1, 2, 3]:

print(x)

Otherwise, use while loops:
i = 0

while i < 3:

print(x)

i += 1

Loops

1

Syntax:
[expr(v) for v in some list (if predicate(v))]

Get powers of 2 : [20, 210]:
l = [2**x for x in range(11)]

[1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

Get extension-less names of files with ”jpg”extension:
files = ['img1.jpg', 'img2.png', 'img3.jpg']

l = [f[:-4] for f in files if f[-4:] == '.jpg']

['img1', 'img3']

List comprehensions

Import entire module:
>>> import math

>>> math.sqrt(2)

1.4142135623730951

Import specific functions:
>>> from math import sqrt

>>> sqrt(2)

1.4142135623730951

Giving a module (or functions) an alias:
>>> import math as m

>>> m.sqrt(2)

1.4142135623730951

Importing all functions from a module:
(Don’t do this! It can result in naming conflicts.)

>>> from math import *

Importing modules

2

