Python 3 Cheat Sheet

EPFL CS 233

Introduction to Machine Learning
(Version 1)

Basic data types and introspection

Basic native data types:

Integer i=42

Float 3.14159

Complex number 2 + 3j

Boolean b =

String s =

None type. n =
Introspection functions:

Type of an object (var)

Built-in system help help(var)

Lists objetc’s attributes (var)

Class membership test (var, class)

\ 7

Operators <
Arithmetic operators:

Addition X +y

Subtraction x -y

Floating point division x / y

Integer division x /'y

Multiplication X %y

Exponentiation X K%y
Boolean operators:

And x and y

Or X or y

Negation not x

\

Printing and strings

Simple print statement:
print()

String formatting:

Integers %5
Floats % 3.14
Strings %

Multiple values via tuples

4, 2)

\

J

Cheat-sheet by J. Bednarik and T. Zeltner ([jan.bednarik|tizian.zeltner]@epfl.ch).

BTEX template by Michelle Cristina de Sousa Baltazar.

g Lists,

Ordered sequence of elements of arbitrary data types.

Immutable list of values.

Syntax [start:end] (start - incl., end - excl., step=1)

Explicit start/end al[2:4]

Implicit end (incl.) al2:]

Implicit start al:3]

Negactive indices altl:-1]
Syntax [start:end:step]

Explicit start/end/step al1:5:2]

Negative step - backwards a[4:1:-2]

Implicit start/end/step=1 al::]

No valid index in range af4:2:1]
Mapping of key-value pairs.

Create empty empty_d = {}

Create example d={ , : 25}

Retrieve entry dl]

Add / change entry d[1=

Delete entry del d[1

Delete all entries d.clear()

Test if key exists in d

Number of entries (d)

for key, val in d.items()

d.keys ()
d.values()

Looping through all key-value pairs:

Similarly, access all keys or values as:

def f(a, b, c=0):
return a + c, b + ¢

\.

greate emptyl empty_1 = [J . Create empty t = ()
Rrea.te examp e.d ; 5 1= » 1, 2.0, 3+ 05 Create with one element t = 123,
etrleve_ltem (idx from 0) _af2] Create example / packing t = 123, , 145
Change item 1[2] =
Query length (@B} t = (123, , 1453)
Append value to the end 1.append(4) Unpacking u, v, w=t
Extend by another list. l.extend([5, 51) Unpacking some entries u, _, w=t
appearances of item. 1.count(5) L
Looping through all items: ,_m
for it in 1: . .
Simple function:
def hello():
\ print ()
Slicing lists .)
- Function with arguments and a return value:
a=['a",)) , 1 def add(a, b):
0 1 2 3 4 5 return a + b
a|b|cfd]e Function with a default argument that has multiple return
6 -5 -4 -3 2 1 values as a tuple:

Conditional Statements

Conditional tests:

equal / not equal

25 , x !'= 25

greater / smaller than

x > 25

s>

x < 25

greater /smaller or equal to

X

>=

25

, x <= 25

If statement:
if x >= 0:
print(

If-elif-else statement:

if x < 0:

print()
elif x ==

print ()
else:

print()

\.

Use for to iterate over lists:
for x in [1, 2, 3]:
print (x)

Otherwise, use while loops:

i=0

while i < 3:
print (x)
i+=1

\

List comprehensions

Syntax:
[expr(v) for v in some_list (if predicate(v))]
Get powers of 2: [20,219]:

1 = [2#*x for x in (1n1l

Get extension-less names of files with " jpg" extension:
files = ['imgl.jpg', 'img2.png', 'img3.jpg'l
1 = [f[:-4] for f in files if f[-4:] == '.jpg']

Importing modules

Import entire module:
>>> import math
>>> math.sqrt(2)
1.4142135623730951

Import specific functions:
>>> from math import sqrt
>>> sqrt(2)
1.4142135623730951

Giving a module (or functions) an alias:
>>> import math as m
>>> m.sqrt(2)
1.4142135623730951

Importing all functions from a module:
(Don’t do this! It can result in naming conflicts.)
>>> from math import *

