
CS-233 Theoretical Exercise 4

1 When will CFF trains break down?
You are given the task to predict whether a CFF train will break down or not under certain weather
conditions. The dataset, represented by {x(i), y(i)}Ni=1, has N = 1000 data entries, and is explained as
follows: For each data entry (x(i), y(i)),

• x(i) has 5 features: Train line, time of the day, temperature of the day, precipitation of the day, and
maximum wind speed of the day.

• y(i) is either 0, which means that the train reaches its final destination with a delay of less than
3 minutes (negative - not broken down), or 1 if the train is delayed by more than 3 minutes or is
cancelled (positive - broken down).

The dataset has 900 cases where y(i) = 0 and 100 cases where y(i) = 1. On this dataset, your model has the
following performance:

• Among the 900 cases where the train doesn’t break down, i.e., y(i) = 0, you successfully predicted 800
cases;

• Among the 100 cases where the train breaks down, i.e., y(i) = 1, you successfully predicted 10 cases.

Now let us evaluate your prediction model!

Question 1: Draw the confusion matrix.

Question 2: What is the accuracy of the model?

Question 3: What is the precision of the model?

Question 4: What is the recall of the model?

Question 5: What is the F1 score of the model?

Question 6: Do you think this model is a good model or a bad model ? Explain your reasoning.

Solution: We have the following confusion matrix:

Pos Neg
Yes TP=10 FP=100
No FN=90 TN=800

P=TP+FN=100 N=FP+TN=900

As a result, accuracy ACC = (TP + TN)/(P +N) = 810/1000 = 0.810, Precision = TP/(TP +FP ) =
0.091, Recall = TP/P = 0.100, FP_rate = FP/N = 0.110, F1_score = 2(Precision∗Recall)/(Precision+
Recall) = 0.095.

The model is not a good model because it fails to recognize most positive cases. Furthermore the algorithm
can be outperformed by simply random guessing.
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2 Multiclass classification
Your boss wants to differentiate a canceled train from a delayed train. Therefore, the dataset is now labeled
with three classes:

• 0 - a train on time;

• 1 - a train delayed;

• 2 - a train canceled.

FOr this task, you decide to use a least-square classifier with a one-hot encoding of the label. The prediction
for the entire dataset (same dataset as in the previous question) can be formalized in matrix form as

Ŷ = X ·W .

Question 1. Write down the one-hot encoding of each class.

Question 2. What are the shapes of Ŷ , X and W ? Note that we append a 1 to each input when
performing classification to account for the bias.

Question 3. Write down the loss function for the MSE loss. Given a learning rate η, what is the update
of a single gradient descent step? When the gradient descent algorithm converges (i.e., the gradient goes to
0), what is the final W ? (Hint: Solve for each column vector of W .)

Solution: The representations for {train on time, train delayed, train canceled} are, respectively,
[1, 0, 0]⊤, [0, 1, 0]⊤, [0, 0, 1]⊤.

The shapes of Ŷ , X and W are, respectively, 1000× 3, 1000× 6 and 6× 3.
The loss function is (N = 1000)

L =
1

N

N∑
i=1

||W⊤xi − yi||22.

For each column vector j = 1, 2, 3, the gradient is

∇w(j)
L(w(j)) =

2

N

N∑
i=1

(w⊤
(j)xi − yi(j)) · xi =

2

N
X⊤Xw(j) −

2

N
X⊤Y(j).

As a result, the update step for j = 1, 2, 3 is

w(j) ← w(j) − α∇w(j)
L(w(j)) = w(j) − α

(
2

N
X⊤Xw(j) −

2

N
X⊤Y(j)

)
.

This can also be written in matrix form as

W ←W − α

(
2

N
X⊤XW − 2

N
X⊤Y

)
.

When the algorithm converges, the gradient is zero. Solving

2

N
X⊤XW − 2

N
X⊤Y = 0

gives us the optimal weight matrix
W = (X⊤X)−1X⊤Y .

Note that this is identical to the solution on Slide 35 in the lecture. The converged weight matrix is the
optimal solution, because the MSE loss is a convex function.
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3 Connection between binary and multi-class logistic regression
Consider a binary logistic regression task. Your model (model 1) using a sigmoid function has a weight
vector w. If you now use another model (model 2) with a one-hot representation and a soft-max function,
is there a weight matrix W such that model 2 has the same decision boundary as model 1? If not, explain
your reasoning; if yes, compute W .

Solution: Yes. W = [0,w]. This can be verified by comparing the softmax function and the sigmoid
function: For model 2 with a one-hot encoding, we have

ŷ(0)(x) =
eW

⊤
0 x

eW
⊤
0 x + eW

⊤
1 x

=
e0

⊤x

e0⊤x + ew⊤x
= 1− σ(w⊤x)

and

ŷ(1)(x) =
eW

⊤
1 x

eW
⊤
0 x + eW

⊤
1 x

=
ew

⊤x

e0⊤x + ew⊤x
= σ(w⊤x).

This is exactly the same output as for model 1.
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