Minimizing Functions of Multiple Variables

Pascal Fua
|C-CVLab

=PrL

Reminder: Logistic Regression

YX: W) = o(W - %)

Male

1

"1+ exp(—W - %)

s(a)

Height (in.)

Given a training set {(X,,7,);<,<y} minimize

with respect to w.

EW) =—) (t,Iny(x,) + (I — £,)In(l = y(x,))

L —> Convex optimization problem.

Reminder: Maximizing the Margin

. I P
W = argmm(w,{én})al |w ||+ CZ ¢ s

n=1

subjectto Vn, ¢ -(W-x,)>1—¢ and& > 0.

- C 1s constant that controls how costly constraint violations are.

« The problem is still convex.

 How do you minimize a function of several variables?
 Why do we prefer convex problems?
 How do you impose constraints?

—> Let’s talk about that today.
EPFL -

Derivative of a 1-Variable Function

y =/

X
Ax 0

- The derivative of a function y = f(x) of a single variable x is the
rate at which y changes as x changes.

- It 1s measured for an infinitesimal change in x, starting from a
point x,, and written as

f,(x()) — ﬂ — lim f(x() + AX) _f(xO)

dx Ax—0 Ax

—> The der1vative 1s the slope of the tangent at x,,. A

Ml
1
"N
r

Derivative of a Linear Function

(@2, 12) 8
/ |Ay=y2—u
/ /sl‘,’, H
T, Y1) g——ro
() Azr=x2—1
/()

- The tangent to the function is the function itself: The slope 1s constant.

. Forexample,y=2x—1land —=2.
dx

=PrL A

Derivative of a Non-Linear Function

457

357

257

15}

- The tangent to the function varies with x and so does the slope.

d
. For example, y = x* 4+ 2x + 2 and d_y = 2x + 2.
X

PrL A

Evolution of the Tangent

| f(x) =@ sin (2?) + 1 /\

\ A= (=2,251)

2-

/.

'2 \/'1 0 i v é Figure from Wikipedia
f'(—2) = —5.99
— . 2
y=xsm(x") + 1
dy

— = sin(x?) + 2x° cos(x?)
dx

=PrL

First and Second Derivatives

\ f(x) = sin (2*) + 1 /\

\ A= (-2,251) y =X sin(x?) + 1
2- d
& = sin(xz) + 2x% cos(xz)
A dx
/ %
AN/ S PR S e R _y2 = 6x cos(x?) — 4x7 sin(x?)
dx
f'(~2) = —5.99
dy d*y .
— =0 and — > 0 ;: Minimum
dx dx?
dy d*y .
— =0and — < 0 : Maximum
dx dx?
dy dzy

— =0and — =0:
cPFL ax A A

Convex vs Non-Convex

° ' ' ' \ f(x) =z sin (x*) + 1
451 j
4 = -—‘) ‘) B
| \ A= (~2,251)

4+t

35 5 -

3 L
25| -
| | /
]] 0]] 1]
157 ' 2 \/-q 0 1 3
1 . . .
-3 -2 ? O 1 of \ » AT 6
F(—2) = —5.99

* There 1s only one minimum. * There are several local minima.
* The second derivative 1s >= 0. * There 1s one global minimum.

—> Non-convex functions are much more difficult to
minimize than convex ones.

PrL A

Ml

Minimizing a Convex Function

The line segment between
any two points on the
curve lies above the curve.

dfe)
dx

0

For some simple functions this can be done in closed form, that is,
by solving an equation.

PrL A

Ml

Minimizing a Simple Convex Function

fX)=x>+2x+2

d
UC)N
dx
d ¥
S 0 e 2 42 = 0
dx
S xF=-=12
S x*F=—1

Minimizing a Generic Convex Function

When the minimum cannot be found in closed-form, we use the
derivative:

At x,, the slope 1s negative.
Hence, one should move 1n
the positive direction
(Ax > 0) to go towards the
minimum

At x,, the slope 1s positive.
Hence, one should move 1n
the negative direction
(Ax < 0) to go towards the
minimum

—> One should move 1n the direction opposite to the derivative
for minimization

B

Ml
1
"N
r

Minimizing a Convex Function

Simplest algorithm:
1. Imtialize x;, (e.g., randomly)

2. While not converged

df (x_1)
dx

2.1. Update x, < x,_; — 1

- 11 defines the step size of each iteration.

- In ML, 1t is often referred to as the learning rate.

Ml
1
"N
r

Minimizing a Convex Function

=PrL

Minimizing a Convex Function

-70 -60 -50 -40 -30 -20 -10

M Y

=PrL

Minimizing a Convex Function

=PrL

Minimizing a Convex Function

10 ' ' ' ' ‘
-70 -60 -50 -40 -30 -20 -10

=PrL

Minimizing a Convex Function

Potential stopping Criteria:
- Change in function value less than threshold: | f(x;_;) — f(x,)| < 6.
- Change in parameter value less than threshold: |x,_; —x;| < o.

- Maximum number of iterations reached without a guarantee to have
reached the minimum.

22

20 1

18 1

16 1

14 1

12 |

10 ' ' ' ' ‘
-70 -60 -50 -40 -30 -20 -10

A

Ml
1
"N
r

22

201

18 ¢

16 1

14t

12 ¢

10

Influence of the Step Size

-70 -60 -50 -40 -30 -20 -10

The steps are of the appropriate
size for convergence.

n =120

22

-70 -60 -50 -40 -30 -20 -10

The steps are too large and the
algorithm starts jumping

between these two points.

=P

=

22

201

18 ¢

16 1

14t

12 ¢

10

L

Influence of the Starting Point

-70 -60 -50 -40 -30 -20 -10

Converges.

22

201

18 1

16 1

14 |

12 ¢

10

-70 -60 -50 -40 -30 -20

Converges to the same place,
but faster.

-10

.

Minimizing a Non-Convex Function

| Global minimum

2 r 0 1 2 3 2 r 0 1 2 3
’XO = 1 8 .XO —_ 1
“P-L Local minimum Saddle point

Minimizing a Non-Convex Function

n=0.01, x,=1.5 n=0.1, x,=1.5

Global minimum Saddle point

* No guarantees when the function is not convex!
e Choosing n is not always easy. We'll get back to that.

PrL é

Ml

Ml
"N

Functions of Multiple Variables

Multivariate function:

f:RP - R
y =f(X) = fx, ..., xp)

Partial derivative:

Oy o fGeoxy+Ax) =L xg,)
—— =]im
OX; Ax—0 Ax

(Gradient vector:

LU

OXq OXp

Vi=1

Quadratic Function

f(X) = x7 + x}

0 AXX
a_f == le . OO0

X1 6 -

0 J(X) 4. 4
f — ZX2

aX2

B 2x, 5
Vi = | eR
2

The color also represents the value of f(x)

=PrL

Sinusoidal Function

f(X) = sin x; + cos x,

o
6_x1 = cos(x;)
of .
6_x2 = — sin(x,)
B cos(x;)
VI = [— sin(x,)

The color also represents the value of f(x)

EPFL A

ns
n

1
-+
2x,

+

X3+ X3Xy

)

2+ X1

2 X3

= X]

J(x) =

of
. 4
of)
* S
=,
(x) = o
Vf af
X7 + Xy X3 _a_x4_
21X
of _
3
a_)Cl xl2 + XX
2x5
of _
a_xz + Xy
J = XX
ox; |
af — .X3 +
oy

1
: 1
“I
r

Gradient Properties

{ o ,;‘\\
":":\.- E
NG
-1 R
AN
R
B
fx) -
(N -
-3 P e Y
. -~ .. > . > -
-~ . === — — - "
_jc::' « - > -— ——— e - - * -:;:‘
- . - e g - — .
S0 - -.,_ -— — 7’”.‘ . » ’_,’- SO
s) 60
—40 g \ " 0
pall - N . i ’ . b e A
) T LA {0
x2 20 ™~ St () 'xl
0 ™ g 10
o0 <7
=~ Ll

« The gradient at a point x indicates the direction of greatest
increase of the function at x.

e Its magnitude is the rate of increase in that direction.

=PrL A

Gradient Properties

The gradient vanishes (becomes a zero vector) at the stationary
points of the function:

e Minima,
e Maxima,
e Saddle points.

=PrL

Convex vs Non-Convex

0
50D
XA,
ORI -‘,‘".',;’;Illllll,// 4
g
Oo: :0':':'?':1,/'/';2;/;/’1///’/”- |
4 /
%', III;,',’,I;/II//({,/:{(

(X
()
(XK

-10 -10

Convex: The line segment Non-convex: At least one line
between any two points on the segment between two points
function lies above the function lies in part below the function.

EPFL A

Minimizing a Convex Function

VixF) =0

« Because the gradient is a vector, this yields a system of
equations.

e It can still be solved in closed form for some functions.
=PrL

Minimizing a Simple Convex Function

f(x) = x12 + x22

of of

. . N
ox 1 axz "

RIS 2%
R RRIRRRRLLLA 2
‘\‘\t\s:‘;s:o’o’,o"»"";"’,’l 5

[
-)
N o

¥

Vix)=0 < v,

|
-

®X1=XZ=O

=PrL

Revisiting K means

nk

y . Cluster k is formed by the points {Xi{" o Xt I
arge

* i, 1s the center of gravity of cluster k.
Hy s

Ml

jo==

 The distances between the points within a cluster should be
small.

 The distances across clusters should be large.

* This can be encoded via the distance to cluster centers
UHs -5 M)

K n
... 2
—> Minimize Z Z (X,-k — ,Mk)
J
k=1 j=1

'_Lwhere (X, ..., Xy } are the n* samples that belong to cluster k. a

Revisiting K means

The minimization problem can be reformulated as:

N K

min R({m}. {rfH) with R =)") rflx; —]|

{/’lk}a{rik} i=1 k=1

such that I’l-k e {0,1}, Vi, k
K
k _ .
and Zri =1, Vi
k=1

—> We find the solution by alternating between the two
types of variables.

PrL A

Ml

Ml

v
"N
r

Revisiting K means

N K
k 2
amZZr,. 1% =

l=1 k=1
suchthat r*e {0,1}, Vi, k

l

K
k
2.1 =

k=1

- Because of the constraints, for each sample, only one rf can be 1.

« We take it to be the one corresponding to the nearest center:
1, if k = argmin||x; — ,u]-||2
reo= < J

0, otherwise

o~

Ml

Revisiting K means

K
@52 2. %= el

i=1 k=1

 This can be done by zeroing out the partial derivative for each center:

OR Al
— =12 r.k(Xl-—//tk)=O
Oy Z‘ |
« This yields: N
zizl rszz
Hi = iy,
2 1t

 This corresponds to the mean of the samples assigned to cluster «.

-

"N
r

Back to Logistic Regression

e Replace the step function by a smooth function o.
e The prediction becomes y(x;w) = o(W - X).

e Given the training set {(xn,%n)1<n<n} wWhere ¢, € {0,1}, minimize the
cross-entropy

~y

E(w) == {talny, + (1 —t,)In(1 — y,)}

~y

Yn — y(X’n; W)

with respect to w.

E 1s convex but cannot be minimized 1n closed form!

PrL A

Ml

Gradit Descent

Simplest algorithm: The gradient replaces the derivative.

1. Imtialize X, (e.g., randomly)
2. While not converged
2.1. Update x, < x;,_; —nVf

- 1 defines the step size of each iteration.

 In ML, 1t 1s often referred to as the learning rate.
=EpEL g

Minimizing a Non-convex Function

f(X) = sin x; + cos x,

COS(X
e) c R?

V(x)

—sin(x,)

Stopping criteria:
- Thresholding the change 1n function value.

- Thresholding the change in parameters, i.e. ||X,_; — X.|| < 6.

=PrL

Ml

Theoretical Justification

Steepest gradient descent:

X, < X —nVf

First order Taylor expansion:

f(x +dx) ~ f(x) + Vf(x)"dx
f(x = Vf() & f0) =l VA)II* < f(x) k

Issues:
« Justification but no guarantee
« How do we choose 7?

e Many iterations in long and narrow valleys.

L Triggs et al., Bundle Adjustment, 2000 A

Potential Trouble Spots

"

o
v
v
‘.

v’

X, = [7.0,6.0]"
0.1

2222227

"z

B
ST
255205
520%

=
Il

10

CLTRRRLY
IR
CSsS SRR

OS5
e te s
S

<>
0":. >
ol

Q505¢
S
00

SRR,
\\\\\\\\\\\\‘

S
S

[7.0,6.017
2.0

Xg = [7.0,6.5]"
n=0.1

= &
ol

Sensitive to initialization Large # causes oscillations

=PrL

Learning Rate
X — 2V f

X

Vf ~\X;771 Vf

4

n too large:

e The first order approximation stops being valid.
e f can increase instead of decrease.

n too small:
e Convergence rate will be very slow.

Partial solution:
e Instead of using a fixed learning rate perform a line search in the direction

of the gradient.
=PrL ‘II

Line Search

\ _ .
\ A A \..

\ AN D B
Current position and gradient direction

e Search along the gradient direction for a minimum.
e This is a 1D search and therefore doable.

=PrL A

Python Implementation

def steepestGrad(objF,x0,nlt=100,eps=1e-6,step=1.0):

for 1 in range(nlt):

y0,g0=0bjF(x0) # Compute the value of objF and its gradient.
x1=x0-step*g0 # Take a step in the direction of the gradient.
y1, =objF(x1) # Compute the new value of objF.
while(y1>y0): # Check that the function value has decreased.

if(np.allclose(x0,x1,eps)): # Stopping condition.

return x0
step=step/2.0 # Reduce the step size.
x1 =x0-step*g0 # Try again.

yl, =objF(x1)
x0,y0=dichoSearch(objF,x0,y0,x1,y1,params) # We have y, < y,. Perform dichotomy search.

return x0 A
def dichoSearch(objF,x0,y0,x2,y2,minD=1e-5):

if(np.allclose(x0,x2,minD)):
return x0,y0
Find interval mid point
x1=(x0+x2)/2 .
yl=0bjF(x1) —
Pick left or right interval
if(y0<y2):
return(dichoSearch(objF,x0,y0,x1,y1,minD))
else:
return(dichoSearch(objF,x1,y2,x2,y2,minD))

Local Minima

The result depends critically on the starting
point and is very likely to be closest local
minimum, which is not usually the global one.

=PrL

Ml

P

Zig-Zagging towards the Solution

* Successive line searches tend to be perpendicular to each other.
* They would be 1f we found a true local minimum each time.

L A

Conjugate Gradient

Take the search direction to be a weighted average of
the gradient vector and the previous search directions:

1. Start at xg.

2. go = VF(xg).

3. For k from 0 to n — 1:
(a) Find aj that minimizes f(xr + gk)-
(b

)

) Xk+1 = X + a8k
(c) B = IV f (xpey)|

)

[V f(xk)]]? -
(d) gr+1 = —Vf(Xpy1) + Brgr-

4. X9 = X, and go to step 2 until convergence.

—> Faster convergence.

PrL

Ml

Optional: Python Implementation

def conjugateGrad(objF,x0,nlt=100,eps=1e-10,step=1.0):

y0,20=0bjF(x0)
h0=-g0 # g: Function gradient.
g0 =h0 # h: Conjugate direction.

for 1 in range(1,nlt):
10=np.linalg.norm(h0)
if(10<eps):
print('Gradient has vanished.")
break
x1 =x0+(step/10)*h0
yl, =objF(x1)

while(y1>y0): # Check that the function value has decreased.
if(np.allclose(x0,x1,eps)): # Stopping condition.
return x0

step=step/2.0
x1 =x0+(step/np.linalg.norm(h0))*h0
yl, =objF(x1,False)

x1,y1=lineSearch(objF,x0,y0,x1,y1)

yl,gl=0bjF(x1) # Recompute value and gradient.

gl=-gl

hl=gl

if((i%n)>0): # Compute conjugate direction but reset every n iterations.
gamma=np.dot((gl-g0),g1)/np.dot(g0,g0) # Modified Polak Ribiere, i.e. only if gamma > 0.
if(gamma>0):

hl=gl+gamma*h0

Switch variables
g0=gl
hO=hl1
x0=x1
y0=yl

Optional: In Real Life (1)

import scipy

...... # return the value of the function.
....... # return the gradient of the function.

x0=.... # starting point.
x 1= scipy.optimize.fmin_cg(f,x0,fprime=g,epsilon=eps,maxiter=nlt)

L A

Google

=Pi-L

Optional: In Real Life (2)

conjugate gradient python _!, Q

All Images Videos News Shopping More Settings Tools

About 196.000 results (0,81 seconds)

scipy.sparse.linalg.cg — SciPy v1.2.1 Reference Guide - SciPy.org
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cg.html ~
scipy.sparse.linalg. cg (A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None,
atol=None)Y|. Use Conjugate Gradient iteration to solve Ax=b .

scipy.optimize.fmin_cg — SciPy v0.14.0 Reference Guide
https://docs.scipy.org/doc/scipy-0.14.0/reference!.../scipy.optimize.fmin_cg.html| ~

Minimize a function using a nonlinear conjugate gradient algorithm. ... Defaults to None, in which
case the gradient is approximated numerically (see epsilon, ...

conjugate gradient method implemented with python - GitHub
https://gist.github.com/sfujiwara/b135e0981d703986b6c2 ~

from scipy.sparse.linalg import cg. ... Solve a linear equation Ax = b with conjugate gradient method.
... A: 2d numpy.array of positive semi-definite (symmetric) matrix.

The Concept of Conjugate Gradient Descent in Python - llya Kuzovkin
ikuz.eu/2015/04/15/the-concept-of-conjugate-gradient-descent-in-python/ v

Apr 15, 2015 - While reading “An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain” | decided to boost understand by repeating the ...

Optional: In Real Life (3)

p|avground Load a preset...

Assume that f is a function and g its gradient written in python, use conjugate gradient to minmize them.

#import necessary packages
import numpy as np
from scipy.optimize import minimize

#define the function and gradient
def f(x):

return np.sum(x**2)

def g(x):
return 2*x

#set the initial guess
x0 = np.array([1,2,3])

#minimize using conjugate gradient
res = minimize(f, x0, method='CG', jac=g)

#print out the result
print(res.x)

=PrL

Ml

Optional: Second Order Methods

Second order Taylor expansion:

f(x+dx) =~ f(x)+ Vf(x)'dx + %dXTH(X)dX
Vflx+dx) = Vf(x)+ H(x)dx

Newton method:
Solve H (x)dx = —V f(x)

= dx = —H(x) 'Vf(x)
Vfx+dx) =0
fx+dx)) = f() V())V f(x
+ - Vf)T H(x 1H>>< 1Vf
~ f(x)——Vf()V f(x

Triggs et al., Bundle Adjustment, 2000 A

"N
r

Optional: Newton in 1D

0=g(x +dx) = g(z) + g'(v)dz

9@
== g'(x)
. g(x)
9<f T4 X 7 (2)
g(x1) //
o X _/

=PrL

Optional: Finding Polynomial Roots

f(x)

/(') = 62° — Dzt — 4% + 322

. —ii'here IS o;nore thaosn one ro:)t.
* The one you find depends on the starting point. g

Ml
"N

Optional: Potential Instability

/

* Individual steps can be very large, leading to instability.

.

Ml

Optional: Damped Newton

Second order Taylor expansion:

f(x+dx)~ f(x)+ Vf(x)'dx + %dXTH(X)dX
Vf(x+dx)~ Vf(x)+ H(x)dx

Introduce a damping term:

Regular Newton Method: H(x)dx = —V f(x)

X < X+ dx with { Damped Newton: (H(x)+ AI)dx = -V f(x)

e)\ = 0: Regular Newton

e)\ >> (: Gradient descent

-

"N
r

-0.1

0.02

0.14

0.26

0.38

0.5

0.62

0.74

0.86

0.98

11

Optional: Qualitative Comparison

) &

-0.1 0.02 0.14 0.26 0.38 0.5 0.62 0.74 0.86 0.98 1.1

Steepest gradient

0.1

0.02

0.14

0.26

0.38

0.5

0.62

0.74

0.86

0.98

g b

) &

-0.1 0.02 0.14 0.26 0.38 0.5 0.62 0.74 0.86 0.98 1.1

Conjugate gradient

-0.1
0.02
0.14
0.26
0.38

0.5
0.62
0.74
0.86

0.98

) &

11

-0.1 0.02 0.14 0.26 0.38 0.5 0.62 0.74 0.86 0.98 1.1

Damped Newton

Damped Newton converges much faster!

Optional: Python Implementation

def dampedNewton(objF,x,nlt=10,lbda=None):

for 1 in range(nlt):

f,g, H=0bjF(x) # Evaluate f, its gradient, and its Hessian.
x -= linSolve(H,g,Ibda=Ibda) #Solve(H+AD)x=¢g
return x

def linSolve(A,b,Ibda=None):

if(Ibda is not None):

A=A-+Ibda*np.eye(A.shape[0]) #A<—A+ 11
x=np.linalg.solve(A,b) # Solve Ax=Db
return(x)

Back to Maximizing the Margin

. 1 P -
W = argmm(w’{én})al |w ||+ CZ ¢ s

n=1

subjectto Vn, ¢ -(W-x,)>1—¢ and& > 0.

- C 1s constant that controls how costly constraint violations are.

+ The problem 1is still convex.

—> Minimization under constraints.

Ml
v
"N
r

Adding Constraints

 In general, a constrained optimization problem can then be
written as:

min f(x)

subjectto f(x) <0, i=1,....M (M inequality constraints)
h(x)=0, i=1,..,P (P equality constraints)

 Note that the constrained problem will typically not have the
same solution as the unconstrained one.

.

Ml
v
"N
r

Adding Constraints: Example

f(x) = xsin(x?) + 1

Constrained

Unconstrai
onstrained f)=x—1<0

Best solution

l ol
@/ Best solution
l 41
) . . .

=PrL

Adding Constraints: Example

fx) = x12 + x22

Constrained
hl(.x) =x1 +x2— 1 =0

Unconstrained

2 2 Best solution 2 -2 Best solution

=PrL

Implicit Function Theorem

* Blue dotted lines are “level” lines.

Global minimum

Constrained minimum A

 In this example, di < d2 <ds.
» The blue arrows represent V.
e The red arrows represent V g.

gx,y) <c

>
X

« Minimize f(x, y)subject to g(x,y) < c.

e At the constrained minimum

dAER,Vf=AVg

A 1s known as a Lagrange multiplier.

Ml

PrL

8

Ml

Lagrangian

min f(X)

subjectto f:(x) <0, i=1,....M
h(x)=0, i=1,..,P

The Lagrangian 1s taken to be:
M P
L(x, A, 0) = f(X) + Y LA +) vhx)
i=1 i=1

e 1, is the Lagrange multiplier associated with fi(x) <0
ey, is the Lagrange multiplier associated with #(x) = 0

Bishop, Chapter 7.1 A

"N
r

Lagrangian

min f(X)

subjectto f:(x) <0, i=1,....M
h(x)=0, i=1,..,P

M P
L(x, A, 0) = f(X) + Y LA +) vhx)
i=1 i=1

A solution of the constrained minimization problem must be such that L is
minimized with respect to the components of vector w and maximized with
respect to the Lagrange multipliers, which must remain greater or equal to
ZEro.

PrL Bishop, Chapter 7.1 A

Ml

Ml

KKT Conditions
min f(x)

subjectto f.(x) <0, i=1,....M
h(x)=0, i=1,...,P

M P
L(x, A, 0) = f(X) + Y LA +) vhx)
=1 =1

At the minimum V.L=0

V P L. = O System of equations that can be solved.
V,L=0

A.f(x) =0 .=1,...,M
lf(l) : Bishop, Chapter 7.1 A

"N
r

Example 1

199.0%%%,0.9.
22 ° S
min x; + x SRR
RSSO O %
RSttt e <
1) 52
X 5 O S O SO K S5
NS ‘\‘" % 0’0’0""&"':":"’?
<SS otoloseste st
3830325 03205%7 7,
0505052727 o, %
¢
0 S5

X
)

.
S

‘\
X

subjectto X; +x, —1 =0 2

L(X,y1)=x12+.x22+yl x1+x2—1

At the minimum:

2X1 +l/1 _Ullz

V.L(X,v,) = =0 o x* =
X (1/1) 2X2+1/1 X _U1/2

=PrL

Example 1

(v) =L 2 _] 2+1 24 : : 1
gl = —1/1/2’1/1 —41/1 4v1 U 21/1 21/1

1
= — 51/12 — 1
1
ol
1t
g(vy) .
3t
-4 "
-4 3 2 -1 0 1 2
Yy
« We can v, find that maximizes g: vy = — 1.0..

. In turn this gives us x* = [

—vy/2
—vy/2

-l

Ml
1
"N
r

Example 2

min x sin(x?) + 1
X

subjectto x —1 <0 AR

L(x,2A) = xsin(x?) + 1+ 1, (x—1)

There 1s no closed form solution to the minimization of L w.r.t. x.

« Wewrite g(4;) = min L(x, 1)
= min xsin(x?) + 1 + Ai(x—=1)

X

« We maximize w.r.t. 4,
PrL

Ml
"N

Lagrange Dual Function

g(A,v) =1nf L(X,4,v)

M P
= inf (f(x) + Y A+ Y v,-hl(x))
i=1 i=1

X

- g(4,v) 1s a concave function, 1.e. opposite of convex, single maximum
also.

* We can find 4 and v by maximizing g:
A*,v* = argmax; , g(4,v)
x* = argminy L(X, A*, U*)

—> We have turned our constrained optimization problem into an

PFLunconstrained one.

Ml

Optimization in Short

e Convex functions have a global minimum.

o It can be found using either 1st or 2nd order
methods. The latter is usually faster but
requires computing second derivatives.

e Non-convex functions can be optimized in a
similar manner but this will usually yield a
local minimum.

e Constraints can be imposed using the
Lagrangian formalism.

8

Ml
T
"N
r

