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Reminder: Polynomial Regression

(xn,tn)

∀x, f(x) ≈
M

∑
i=0

wixi• Find  such that: 

• Least squares solution:  

• For M=1, reduces to linear regression.

w = [w0, w1, …, wM]

For :  
tn = f(xn) + 

• The (xi,ti) are given. 
• f is unknown.

1 ≤ n ≤ N
ϵ

w* = argminw ∑
n

(tn −
M

∑
i=0

wixi
n)2



M=0

M=1

M=2

M=3

M=4

M=6

M=10

For a given M, we plot in green:

Reminder: Polynomial Approximation

fM(x) =
M

∑
i=0

w*i xi
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From Simple to Complex

The trick is to find the best compromise 
between simplicity and goodness of fit. 

Order 1 Order 4 Order 15
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1D Polynomial Feature Expansion

x → ϕ(x) =

1
x
x2

⋮
xM

 with 
M

∑
i=0

wixi = w ⋅ ϕ(x) = wTϕ(x) w =

w0
w1
⋮

wM

The least squares solution becomes: 

 w* = argminw ∑
n

(tn − wTϕ(xn))2

The polynomial can be rewritten as:
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Solving a Linear System

) �w⇤ ⇡ t
<latexit sha1_base64="AjuajwdHtr+rmJn/YW+LnuvJrI4="></latexit>

) (�T�)w⇤ = �T t
<latexit sha1_base64="8to9n4IJehQpPGk9wcqpdupzSzs="></latexit>

Intuitively:

Formally:

N × M̃ M̃ × 1

M̃ × M̃ M̃ × 1 M̃ × 1

N × 1

w⇤ = argmin
w

NX

n=0

k(tn �wT�(xn))k2

= argmin
w

k�w � tk2

with

� =

2

6664

�(x1)T

�(x2)T

...
�(xN )T

3

7775
=

2

664

1 x1 x2
1 . . . xM

1

1 x2 x2
2 . . . xM

2

. . . . . . . . . . . . . . .
1 xN x2

N . . . xM
N

3

775 , w =

2

66664

w0

w1

w2

. . .
wM

3

77775
, and t =

2

66664

t0
t1
t2
. . .
tN

3

77775
.

<latexit sha1_base64="wSZI04iF/PrUms+xSTlKXU/wJD8="></latexit>

1
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Reminder: Proof Sketch

R =
1

2
k�w � tk2

=
1

2
(�w � t)T (�w � t)

<latexit sha1_base64="bSaw37T1K6Y0G+GYTVTkfYenqQg="></latexit>

rR = �T (�w � t)
<latexit sha1_base64="PQ2m5mfStWJmmljtJncrNVm4I38="></latexit>

0 = rR = �T (�w � t)

)�T�w = �T t
<latexit sha1_base64="ArocVf46ldfIFUK7XTVl7KOxpOs=">AAAHqnicfdX9T9NAGMDxDpVh8QX0R2NykWiQANkwRn8xAXHhLSDC3shukuv12l3Wa5f2yhhN/1DjP+N1DPHZgzTZdunne+163VJnEMhEVyq/SjMPHj6aLc89tuefPH32fGHxRTOJ0piLBo+CKG47LBGBDEVDSx2I9iAWTDmBaDn97cJbFyJOZBTW9Wgguor5ofQkZ9rsOl9IqSN8GWYskH64ktsV8o58ITRkTsDISTE87smfdbJcfBLqDMmaedfvCSGU2vRE+j3N4jgamnmT9G95O9vMsKkI3ZvTnC8sVdYr443gQXUyWLIm2/H54uxr6kY8VSLUPGBJ0qlWBrqbsVhLHojcpmkiBoz3mS86ZhgyJZJuNl6fnLw1e1ziRbF5hZqM9/47I2MqSUbKMaViupdMW7HzLuuk2vvczWQ4SLUI+fWJvDQgOiLFYhNXxoLrYGQGjMfSfFfCeyxmXJtbYtNvwlxLLA7Ncb8PRMx0FK9klMW+Ype5uTafrhaj+0IZ3oRm9L8wMYueZ+P3exI1TtTdSUZreUaLFXCcrJbntk1DMeSRUszcVups5Z1KdxJ42ZYJoNeA15DvAN9Bvgt8F/ke8D3kB8APkO8D30deB15H3gDeQN4E3kTeAt5C3gbeRn4G/Ky4QVMFAwVDR3CAO8g5cI7cdUHgosDzQOChwAfuI+8B7yGXEgQSBX3gfeQKuEIeAY+Qa+AaeQo8RX4B/AL5EPgQ+SXwS+Qj4CPkV8Cv0L9cbd8GnAXZ9vQR1BEMjlBwCINDFJzC4BQFdRjUxz9180CpTj8+8KC5sV79sP7xx8bS5tfJo2XOemW9sZatqvXJ2rR2rWOrYXHrd6lUskvz5dXySfms3LlOZ0qTOS8tsJXdP0z5xDw=</latexit>

We want to minimize:

The gradient or R w.r.t w is:

At the minimum:
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Adding Noise

M=10
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Regularization

w⇤ = argmin
w

k�w � tk2 + �

2
kwk2

) Solve: (�T�+ �I)w = �T t
<latexit sha1_base64="wd1eo3pOycjAhO6VQDIxaGixRdY="></latexit>

• This is known as weight decay because in iterative 
algorithms it encourages the weight values to decay to zero, 
unless supported by the data.  

• It discourages large weights and therefore quick variations. 
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Increasing l without Noise
λ = 10−4 λ = 10−1

λ = 104 λ = 108
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Use cross-validation 
data to select the 
value of . λ

Increasing l with Noise
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Into Higher Dimensions 

• Let  be  N training pairs.  
• Let  be a function from  to . 
• Let y be the function , 

where  is an  matrix. 
• We seek to minimize  

{(xn ∈ ℝd, tn ∈ ℝD)1≤n≤N}
ϕ ℝd ℝM

x ∈ ℝd → y(x) = Wtϕ(x)
W M × D

E(W) =
1
2

ΣN
n=1 | |Wtϕ(xn) − tn | |2 +

λ
2

| |W | |2

Data term Regularization
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Weather in Switzerland

The circles represent actual measurements

• Rain only: 
 d = 2

D = 1

• Rain 
• Temperature 
• Wind 
• … 

 d = 2
D > 1
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Polynomial Expansion  
• Let  be  a set N pairs.  
• We seek to minimize  

 

•  can be the polynomial expansion 
 

• The least-squares solution satisfies 

  

• The computational complexity is in  because  is of size . 

—> Let’s get rid of  ! 

{(xn ∈ ℝd, tn ∈ ℝD)1≤n≤N}

E(W) =
1
2

ΣN
n=1 | |Wtϕ(xn) − tn | |2 +

λ
2

| |W | |2

ϕ(x)
[1,x1, …, xd, x2

1 , …, x2
d , x3

1 , …, x3
d , …, x1x2, …, x1xd, …, xd−1xd, x2

1 x2, …]t

(ΦΦt + λI)W* = ΦT
Φ = [ϕ(x1) |… |ϕ(xn)]
T = [t1 |… | tn]t

O(M3) ΦΦt M × M

ϕ

N × D

M × N

M × 1
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Kernel Trick
• Introduce dual variables 

 

• At the minimum 

 

• The regressor becomes 
 

with 

an =
1
λ

{WTϕ(xn) − tn}

[a1 |… |aN]t = (K + λI)−1T
Kn,m = ϕ(xn)Tϕ(xm) = k(xn, xm)

y(x) = k(x)(K + λI)−1T

k(x) = [k(x, x1), . . . , k(x, xN)]t

k(x, x′￼) = θ0(exp( − (
θ1

2
| |x − x′￼| |2 ) + θ2 + θ3xtx′￼)

—>  is never explicitly computed ϕ
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Kernel Ridge Regression
 

•  is never explicitly evaluated. 
• k can be understood as a vector of 

distances to the training samples. 
• Using k is tantamount to making the 

dimension of  infinite.  
• Complexity in  where N is the 

number of samples.  
• Can be used to evaluate not only 

predictions but also uncertainties.  

➡Extremely effective when N is small. 

y(x) = k(x)(K + λI)−1T

ϕ

ϕ
O(N3)
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Curse of Dimensionality

k(x) = [k(x, x1), . . . , k(x, xN)]t

k(x, x′￼) = θ0(exp( − (
θ1

2
| |x − x′￼| |2 ) + θ2 + θ3xtx′￼)

• In high dimensional spaces, the Euclidean 
distance stops being meaningful.  

• For dimensions D > 40, KRR tends to lose some 
of its effectiveness. 

• A similar problem occurs with kNNs. 
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Optional: Tracking Golf Swings

[Urtasun et al., ICCV’05]

Can we recover the 3D pose from 
the positon of the joints? 
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Optional: Latent Space of Swings

Pose Space (Y)
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Latent Space (X)

• Use KRR to map from a 2D space to full body poses 
• Fit the 2D model to image data
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Optional: 3D Golf Swings

[Urtasun et al., ICCV’05]
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Optional: KRR vs Deep Networks
Red arrows: Estimated forces exerted by the climber

• Now we tend to use deep networks for 3D pose 
estimation. 

• Deep Nets are not affected by the curse of 
dimensionality but require large training sets. 

We will get back to that.
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Optional: KRR for 3D Shape Design

▸ Design a shape.  
▸ Simulate its performance.  
▸ Redesign.

It works but: 

 It takes hours or days to produce a  single simulation.  

 This constitutes a serious bottleneck in the exploration of 
the design space.  

 Designs are limited by humans’ cognitive biases.   
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Simulator

…….

…….

Optional: Surrogate Models
Potential optimum

The response surface is approximated 
use Kernel Ridge Regression.

23

• Drag  
• Pressure Coefficients 
• Boundary Layer Velocities 
• …
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Optional: Aerodynamic Optimization 

He, AIAA’19
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Optional: Autonomous X-Ray Scattering

Noack et al. Scientific Reports’20

• KRR is used to interpolate the 
measurements. 

• The bean is then targeted at 
areas of large uncertainty.  
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Reminder: Boosted Decision Tree Regression

Piecewise constant predictions 
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KRR vs Trees
Kernel Ridge Regression 

Strengths: 

• Yields smooth, continuous predictions  
• Provides uncertainty estimates 
• Naturally handles multi-output problems 
• Strong theoretical foundations in statistical learning theory 
• There is a closed-form solution 

Weaknesses: 

• Scales poorly with dataset size (O(N³) training complexity) 
• Memory intensive for large datasets (large kernel matrix) 
• Hyperparameter tuning can be challenging 
• Can struggle with very high-dimensional data  
• Not ideal for categorical features unless properly encoded 
• Can overfit if regularization parameter isn't properly tuned 

When to use:  

• Small to medium dataset 
• Dataset has more features than samples 
• Uncertainty estimates are needed.  

   

Gradient Boosted Trees 

Strengths: 

• Predictive performance on structured/tabular data 
• Handles mixed data types naturally  
• Works well with high-dimensional data 
• Robust to outliers and missing values 
• Can handle large datasets efficiently  

Weaknesses: 

• Many parameters to tune 
• Produces discontinuous, piecewise constant predictions 
• Not ideal for problems with smooth underlying functions  
• Training is sequential (difficult to parallelize) 
• May struggle with highly correlated features 

When to use:  

• Large dataset with mixed feature types 
• It may contain outliers or missing values 
• Domains like finance, marketing, or healthcare

There is no clear winner. You have to be aware of the existence of both. 


