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Reminder: Polynomial Regression

(Xn.tn) For1 <n < N:
th = 1f(xn) + €
/ * The (xi,ti) are given.
e {1s unknown.

M
* Find w = [wy, wy, ..., wy,] such that: Vx, f(x) ~ Z wl-xi
i=0

M
* Least squares solution: w* = argmin_ 2 (¢, — z w.x!)?
n =0

~or=; °* For M=1, reduces to linear regression.
=PrL



Reminder: Polynomial Approximation

M=0
M=1
M=2
M=3
M=4
M=6

M=10

For a given M, we plot in green:

M .
fyux) = Z wi*x’
i=0



From Simple to Complex

Order 1 Order 4 Order 15

The trick is to find the best compromise
between simplicity and goodness of fit.



1D Polynomial Feature Expansion

x = ¢px) = | x*

The polynomial can be rewritten as:

o
M
i T : Wi
Zwl-x =W-px) =w ¢(x) withw = :
i=0 W.M

The least squares solution becomes:

w* = argmin__ Z (z, — WT¢(Xn))2



Solving a Linear System

N
w" = arg min Z (th — Wl o(xp)) 2
w n=1
— arg min ||®w — t]|?
with
p(x1)" ] T M o
qb(Xg)T 1 ! % ]1\4 w1
o = , = 2o et | wy |, and t =
2 M e o o
_¢(XN)T_ 1 Ny oy Ty | oy
Intuitively: = dw™ ~
NxMMx1 N x1
Formally: = (T o)w* = d1't
M x M M x 1 M x 1




Reminder: Proof Sketch

1
We want to minimize: R = 5 | Pw — tH2

_ %(QDW )7 (Dw — t)

The gradient or R w.r.t w is: VR = ' (dw — t)

At the minimum: 0=VR = CIDT(@W — t)
=dl dw = Ot



Adding Noise

M=10



Regularization

w* = arg min || ®w — t|* + §HWH2
A%

= Solve: (®1® + A \Dw = &'t

« This 1s known as weight decay because 1n iterative
algorithms 1t encourages the weight values to decay to zero,

unless supported by the data.
* It discourages large weights and therefore quick variations.

PFL
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Increasing A without Noise

A =10 A =10"1

A =10 A =10°



Increasing A with Noise

Use cross-validation
data to select the
value of A.



m
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Into Higher Dimensions

Let {(x, € RYt, € RP), <n<nJ b€ N training pairs.

Let ¢ be a function from R¢ to RY.

Let y be the function X € RY — y(x) = W/h(x),

where W 1s an M X D matrix.

We seek to minimize

A
1HWf¢<xn>—rnH2+5HWH2

1
E(W) = Ezsz

Data term

Regularization



Weather in Switzerland

e Rain only:
d=72
D=1

* Rain
* Temperature
* Wind

”d=2
D> 1

The circles represent actual measurements



Polynomial Expansion

. Let {(x, e RI,t, € RP), ..<n} be aset N pairs.

e We seek to minimize
1 A
E(W) :Ezfj:mwrcﬁ(xn) — 1, |2+5| W] |?

* ¢(X) can be the polynomial expansion

1 2 2 .3 3 2 4 1
[ ,xl,...,xd,xl,...,xd,xl,...,xd,...,xlxz,...,xlxd,...,xd_lxd,xlxz,...] M x

 The least-squares solution satisfies
(PP + ADHW* = OT

O = [p(x))]...|P(x,)] M X N

T=1[t,|...|t,) NxD
» The computational complexity is in O(M?>) because ®®’ is of size M X M.

—> Let’s get rid of ¢ !



Kernel Trick

e Introduce dual variables
1
a,=—(Wpx,) - t,)

e At the minimum
[a,]...|ay]'= K+ AD)~!T

K, = 9(x) p(x,) = k(x,, X,,)
* The regressor becomes

y(x) = k(x)(K + AD~!'T

with

k(x) = [k(x,Xx,),..., k(x, xy)]’

0
k(x,X) = O(exp( — (71 [1x — x| [*) + 6, + O;x'x)

—>¢ 1s never explicitly computed



Kernel Ridge Regression

y(x) = k(xX)(K + AD~'T

« (¢ is never explicitly evaluated.

 k can be understood as a vector of
distances to the training samples.

e Using Kk 1s tantamount to making the
dimension of ¢ infinite.

« Complexity in O(N?) where N is the
number of samples.

« Can be used to evaluate not only
predictions but also uncertainties.

= Extremely effective when N 1s small.



m

Curse of Dimensionality

k(x) = [k(x,X,),..., kX, Xy)]

0
k(x,X") = O(exp( — ( 21 [1x — X'| [+ 6, + 0:X'X)

*In high dimensional spaces, the Euclidean
distance stops being meaningful.

* For dimensions D > 40, KRR tends to lose some
of 1ts effectiveness.

* A similar problem occurs with kNNs.
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Optional: Tracking Golf Swings

Can we recover the 3D pose from
the positon of the joints?

[Urtasun et al., ICCV’05]



Optional: Latent Space of Swings

Latent Space (X) Pose Space (Y)

e Use KRR to map from a 2D space to full body poses
e Fit the 2D model to image data



Optional: 3D Golf Swings

[Urtasun et al., ICCV’05]



Optional: KRR vs Deep Networks

Red arrows: Estimated forces exerted by the climber

e Now we tend to use deep networks for 3D pose
estimation.

e Deep Nets are not affected by the curse of
dimensionality but require large training sets.

EPFL We will get back to that.



Optional: KRR for 3D Shape Design

» Design a shape.
» Simulate its performance.

» Redesign.

It works but:

X It takes hours or days to produce a single simulation.

~ This constitutes a serious bottleneck in the exploration of
L the design space.

Designs are limited by humans’ cognitive biases.



Optional: Surrogate Models

Potential optimum

Simulator

e Drag
e Pressure Coefficients

* Boundary Layer Velocities ~ The response surface is approximated
° ... use Kernel Ridge Regression.



Optional: Aerodynamic Optimization

E PF |_ He, AIAA’19



Optional: Autonomous X-Ray Scattering

e KRR is used to interpolate the
measurements.

e The bean is then targeted at
areas of large uncertainty.

L Noack et al. Scientific Reports’20



Reminder: Boosted Decision Tree Regression

EpEL Piecewise constant predictions



KRR vs Trees

Kernel Ridge Regression

Strengths:

Yields smooth, continuous predictions

Provides uncertainty estimates

Naturally handles multi-output problems

Strong theoretical foundations in statistical learning theory
There is a closed-form solution

Weaknesses:

Scales poorly with dataset size (O(N3) training complexity)
Memory intensive for large datasets (large kernel matrix)
Hyperparameter tuning can be challenging

Can struggle with very high-dimensional data

Not ideal for categorical features unless properly encoded
Can overfit if regularization parameter isn't properly tuned

When to use:

*  Small to medium dataset
»  Dataset has more features than samples
*  Uncertainty estimates are needed.

Gradient Boosted Trees

Strengths:

Predictive performance on structured/tabular data
Handles mixed data types naturally

Works well with high-dimensional data

Robust to outliers and missing values

Can handle large datasets efficiently

Weaknesses:

Many parameters to tune

Produces discontinuous, piecewise constant predictions
Not ideal for problems with smooth underlying functions
Training is sequential (difficult to parallelize)

May struggle with highly correlated features

When to use:

e Large dataset with mixed feature types
e It may contain outliers or missing values
e Domains like finance, marketing, or healthcare

There is no clear winner. You have to be aware of the existence of both.

m

PFL



