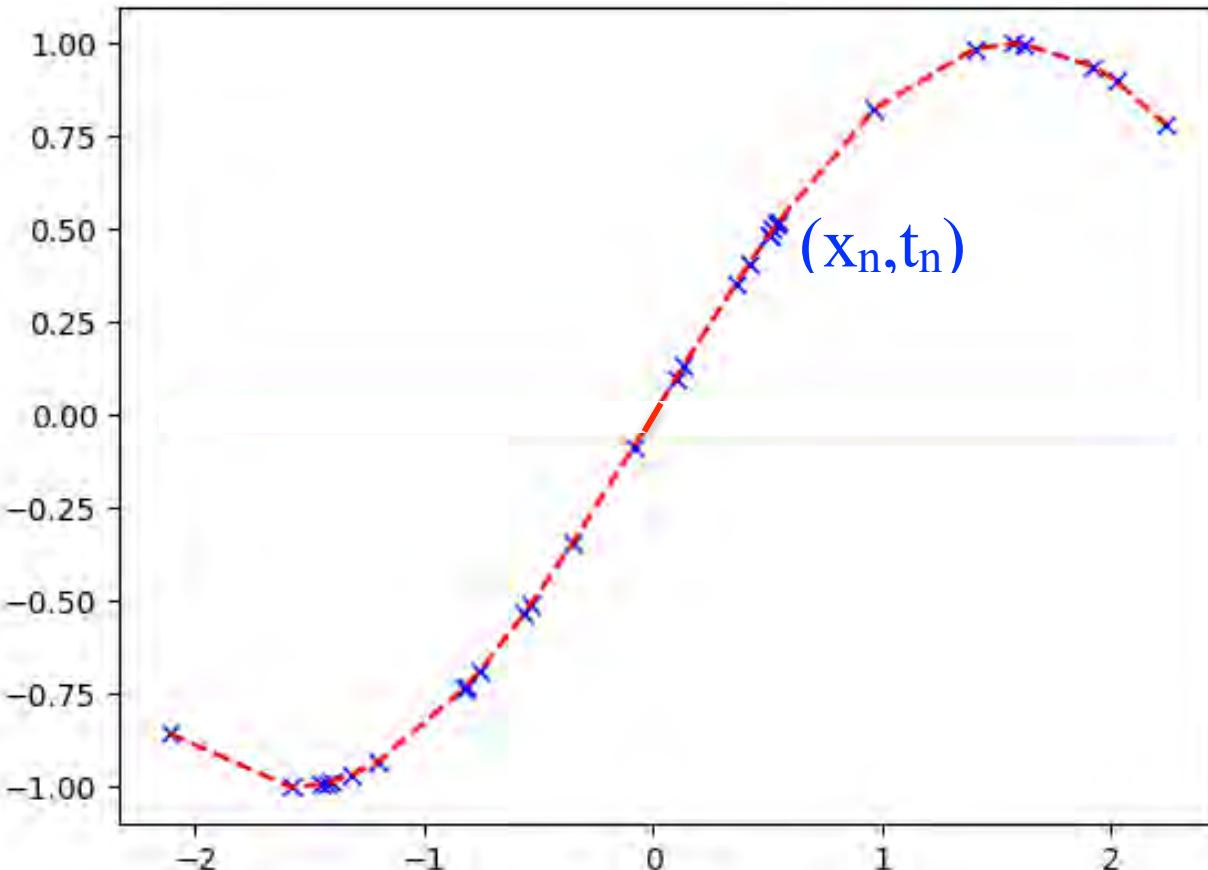


Non Linear Regression

Pascal Fua
IC-CVLab

Reminder: Polynomial Regression



For $1 \leq n \leq N$:

$$t_n = f(x_n) + \epsilon$$

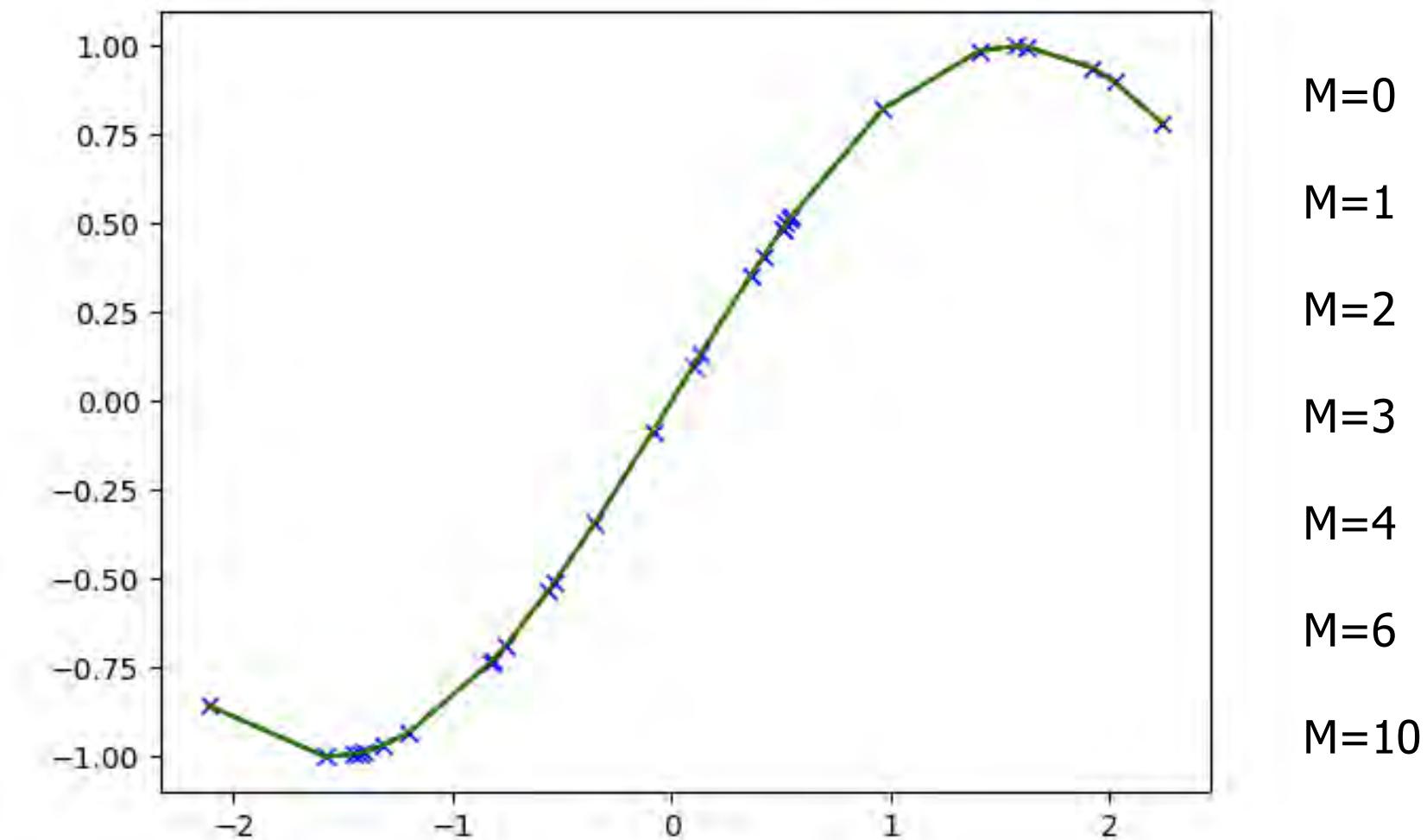
- The (x_i, t_i) are given.
- f is unknown.

- Find $\mathbf{w} = [w_0, w_1, \dots, w_M]$ such that:

$$\forall x, f(x) \approx \sum_{i=0}^M w_i x^i$$

- Least squares solution: $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \sum_n (t_n - \sum_{i=0}^M w_i x_n^i)^2$
- For $M=1$, reduces to linear regression.

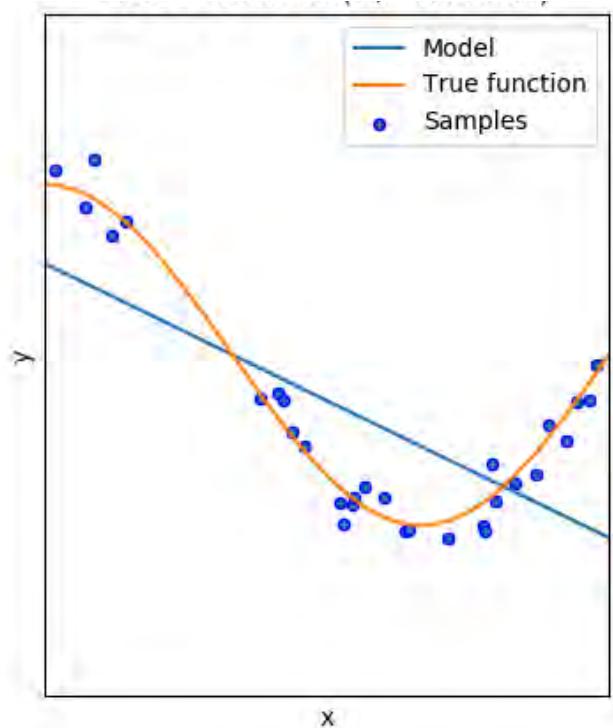
Reminder: Polynomial Approximation



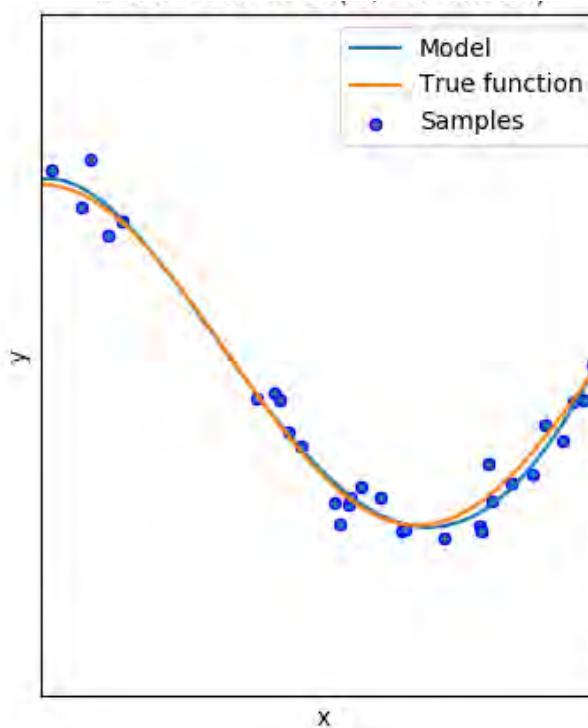
For a given M , we plot in green:

$$f_M(x) = \sum_{i=0}^M w_i^* x^i$$

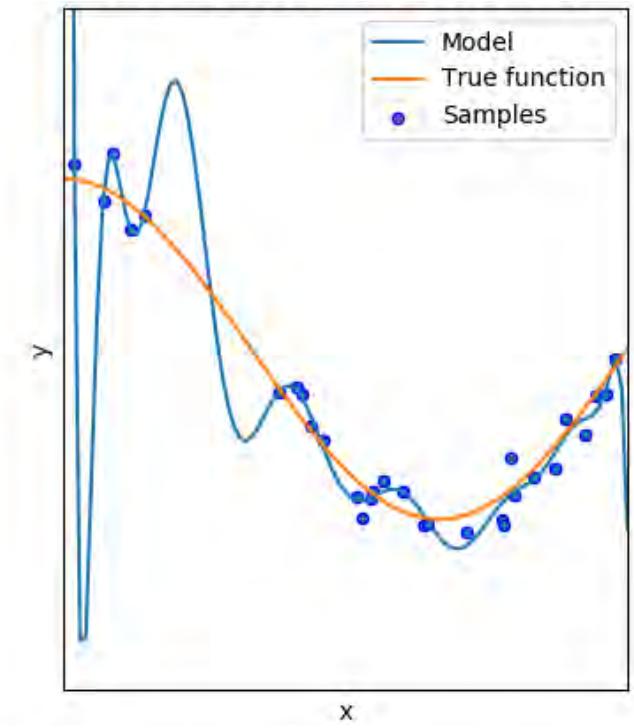
From Simple to Complex



Order 1



Order 4



Order 15

The trick is to find the best compromise between simplicity and goodness of fit.

1D Polynomial Feature Expansion

$$x \rightarrow \phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix}$$

The polynomial can be rewritten as:

$$\sum_{i=0}^M w_i x^i = \mathbf{w} \cdot \phi(x) = \mathbf{w}^T \phi(x) \text{ with } \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_M \end{bmatrix}$$

The least squares solution becomes:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \sum_n (t_n - \mathbf{w}^T \phi(x_n))^2$$

Solving a Linear System

$$\begin{aligned}\mathbf{w}^* &= \arg \min_{\mathbf{w}} \sum_{n=1}^N (t_n - \mathbf{w}^T \phi(\mathbf{x}_n))^2 \\ &= \arg \min_{\mathbf{w}} \|\Phi \mathbf{w} - \mathbf{t}\|^2\end{aligned}$$

with

$$\Phi = \begin{bmatrix} \phi(\mathbf{x}_1)^T \\ \phi(\mathbf{x}_2)^T \\ \vdots \\ \phi(\mathbf{x}_N)^T \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^M \\ 1 & x_2 & x_2^2 & \dots & x_2^M \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_N & x_N^2 & \dots & x_N^M \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_M \end{bmatrix}, \quad \text{and} \quad \mathbf{t} = \begin{bmatrix} t_0 \\ t_1 \\ t_2 \\ \dots \\ t_N \end{bmatrix}.$$

Intuitively: $\Rightarrow \Phi \mathbf{w}^* \approx \mathbf{t}$

$N \times \tilde{M}$ $\tilde{M} \times 1$ $N \times 1$

Formally: $\Rightarrow (\Phi^T \Phi) \mathbf{w}^* = \Phi^T \mathbf{t}$

$\tilde{M} \times \tilde{M}$ $\tilde{M} \times 1$ $\tilde{M} \times 1$

Reminder: Proof Sketch

We want to minimize:

$$\begin{aligned} R &= \frac{1}{2} \|\Phi\mathbf{w} - \mathbf{t}\|^2 \\ &= \frac{1}{2} (\Phi\mathbf{w} - \mathbf{t})^T (\Phi\mathbf{w} - \mathbf{t}) \end{aligned}$$

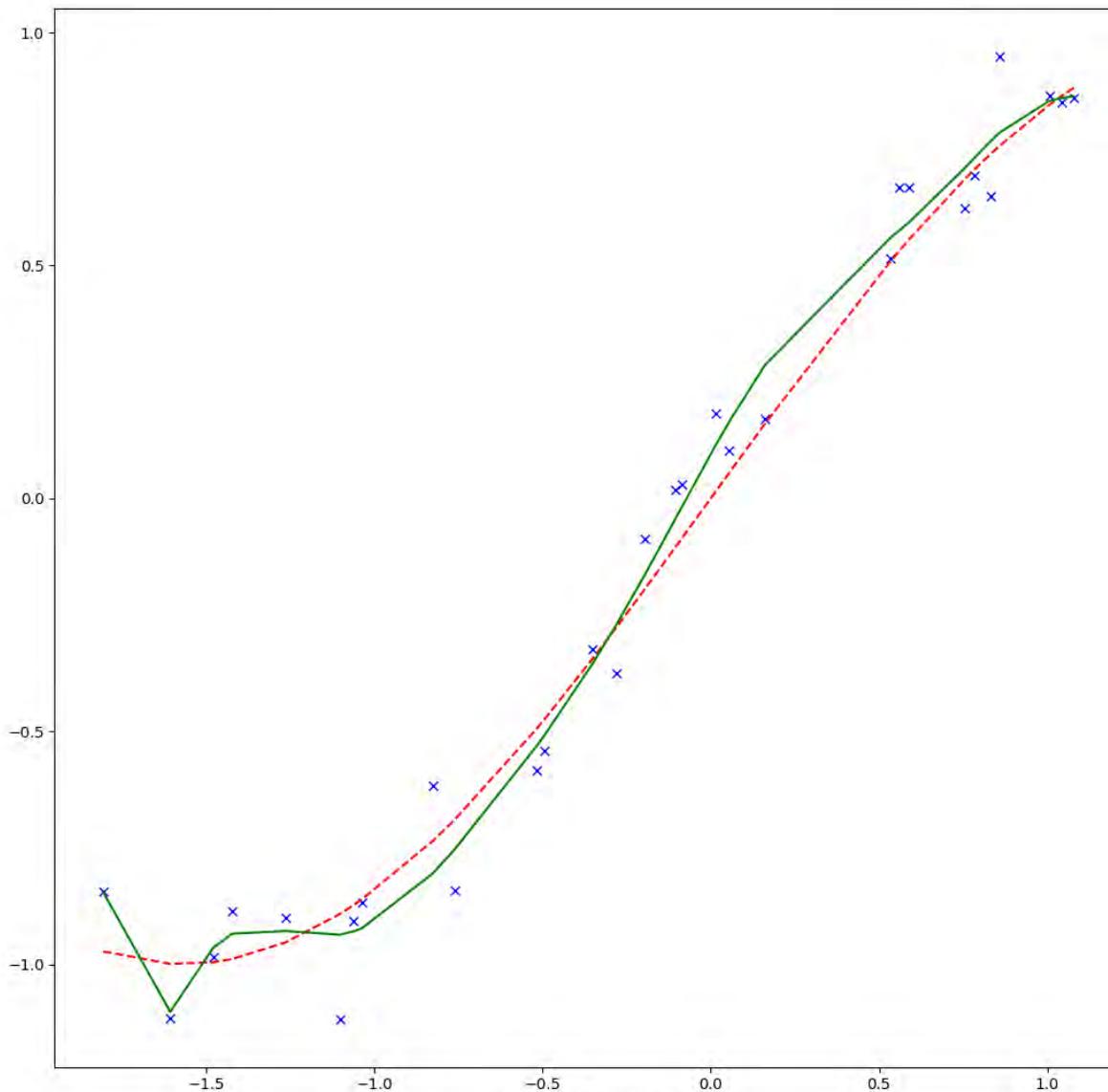
The gradient of R w.r.t \mathbf{w} is:

$$\nabla R = \Phi^T (\Phi\mathbf{w} - \mathbf{t})$$

At the minimum:

$$\begin{aligned} 0 &= \nabla R = \Phi^T (\Phi\mathbf{w} - \mathbf{t}) \\ \Rightarrow \Phi^T \Phi\mathbf{w} &= \Phi^T \mathbf{t} \end{aligned}$$

Adding Noise



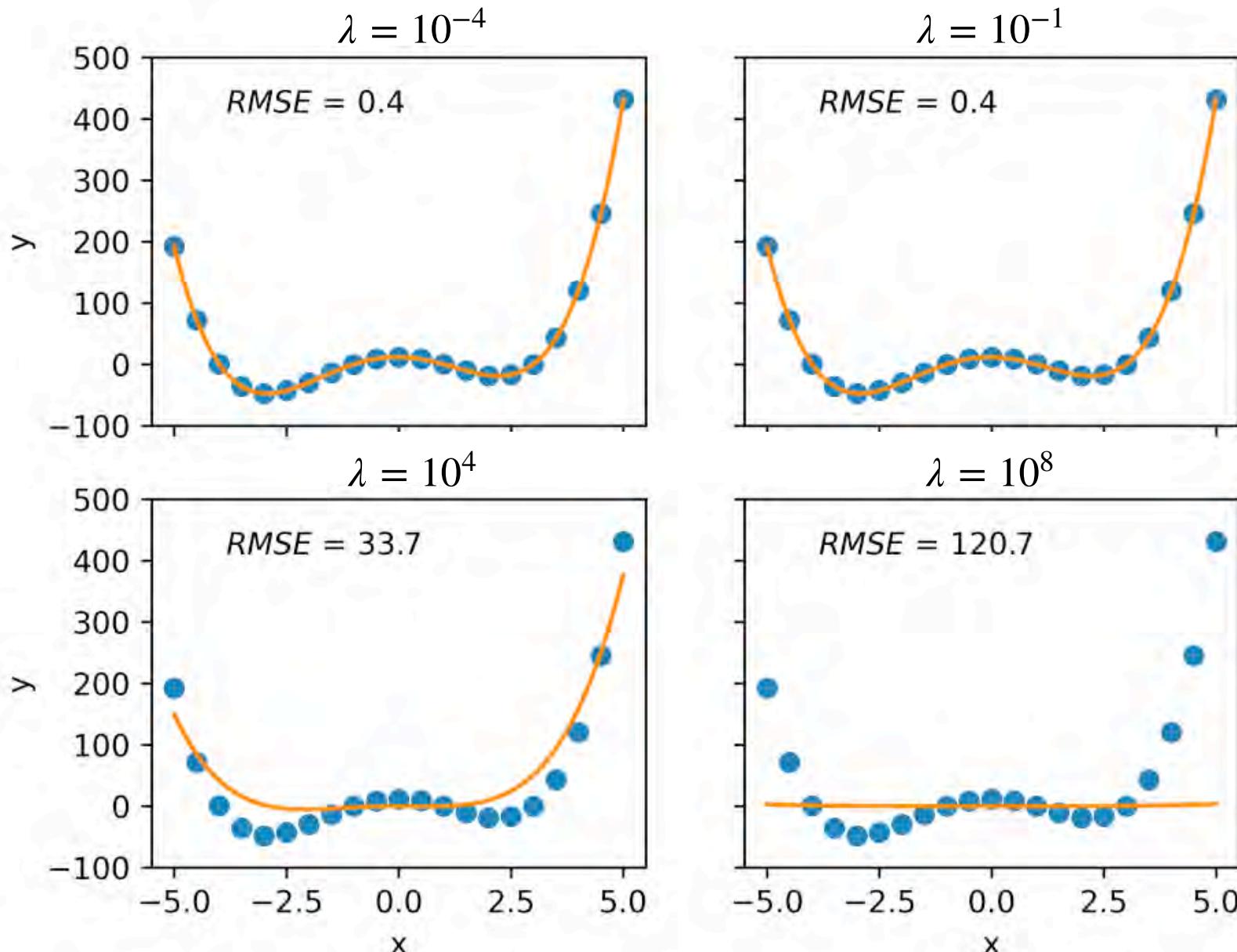
Regularization

$$\mathbf{w}^* = \arg \min_{\mathbf{w}} \|\Phi \mathbf{w} - \mathbf{t}\|^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

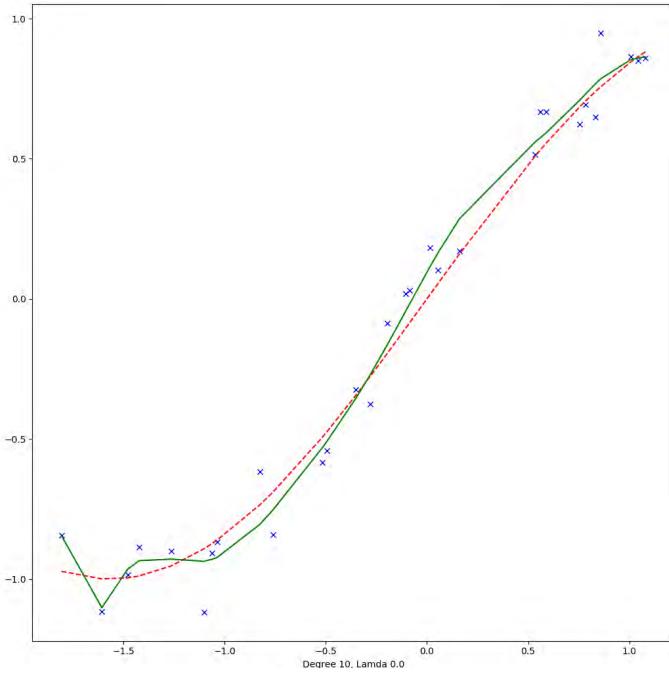
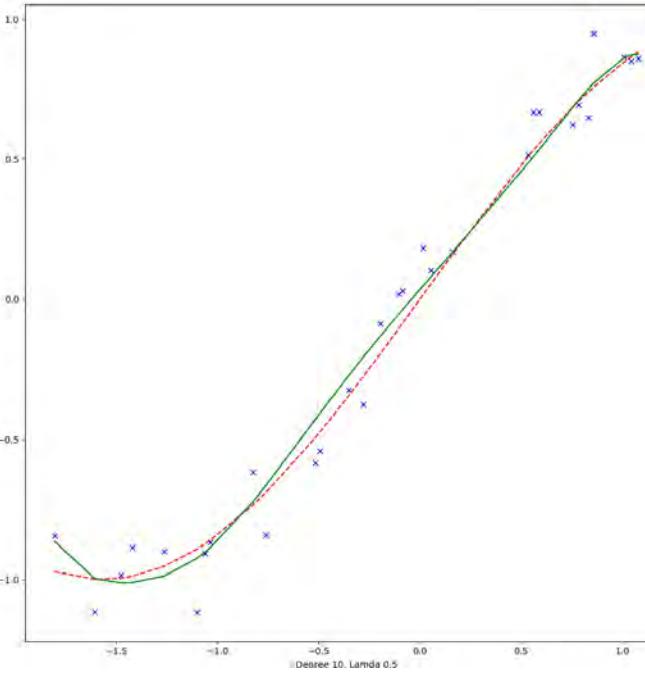
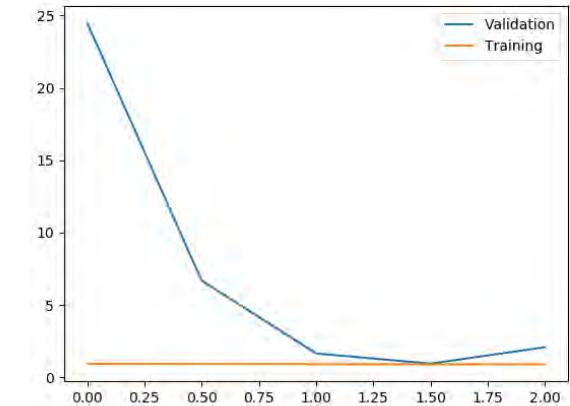
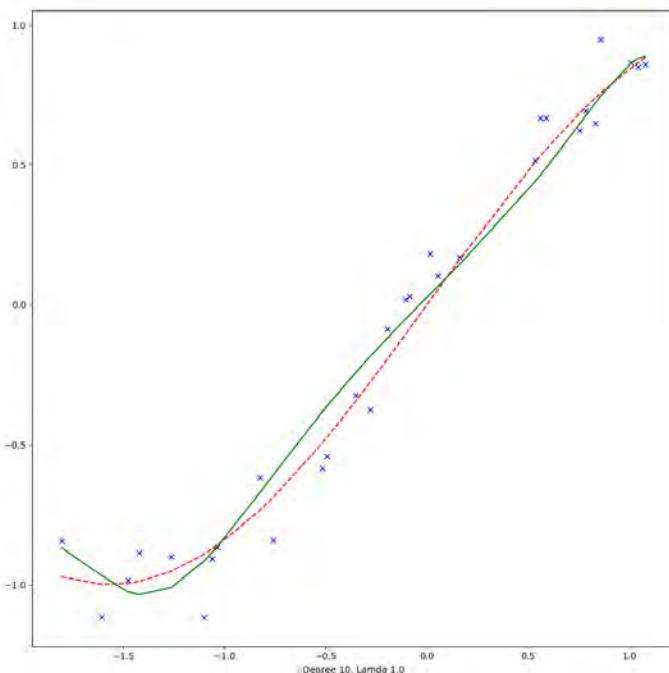
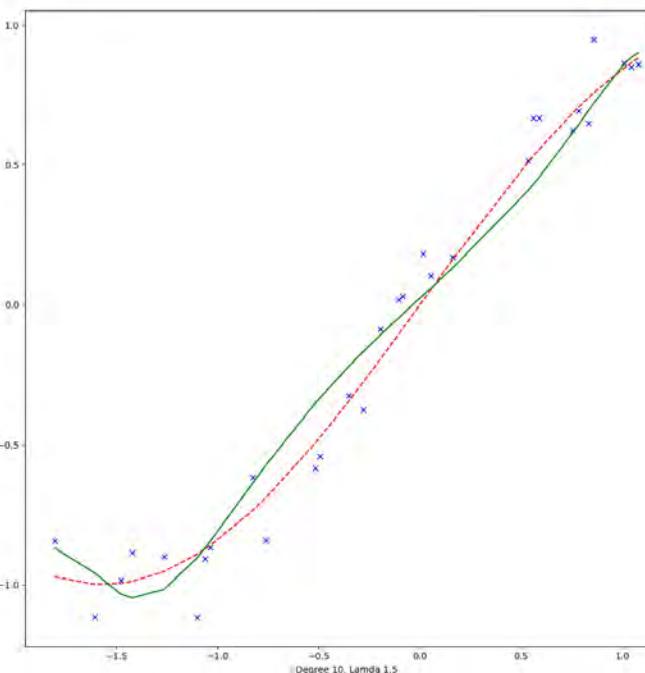
$$\Rightarrow \text{Solve: } (\Phi^T \Phi + \lambda \mathbf{I}) \mathbf{w} = \Phi^T \mathbf{t}$$

- This is known as weight decay because in iterative algorithms it encourages the weight values to decay to zero, unless supported by the data.
- It discourages large weights and therefore quick variations.

Increasing λ without Noise



Increasing λ with Noise



Use cross-validation data to select the value of λ .

Into Higher Dimensions

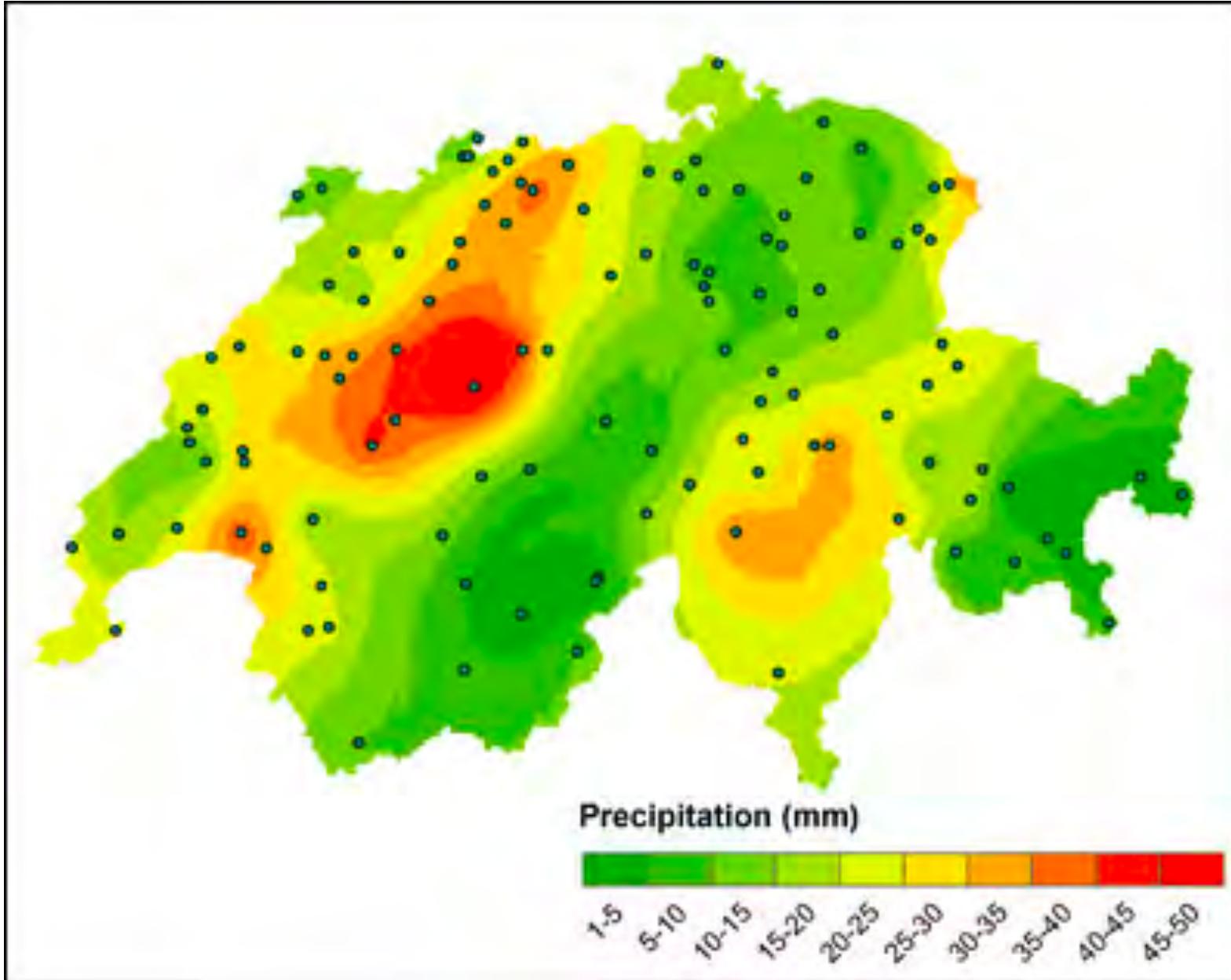
- Let $\{(\mathbf{x}_n \in \mathbb{R}^d, \mathbf{t}_n \in \mathbb{R}^D)_{1 \leq n \leq N}\}$ be N training pairs.
- Let ϕ be a function from \mathbb{R}^d to \mathbb{R}^M .
- Let y be the function $\mathbf{x} \in \mathbb{R}^d \rightarrow y(\mathbf{x}) = \mathbf{W}^t \phi(\mathbf{x})$, where \mathbf{W} is an $M \times D$ matrix.
- We seek to minimize

$$E(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^N \| \mathbf{W}^t \phi(\mathbf{x}_n) - t_n \|^2 + \frac{\lambda}{2} \| \mathbf{W} \| ^2$$

Data term

Regularization

Weather in Switzerland



- Rain only:
 $d = 2$
 $D = 1$
- Rain
- Temperature
- Wind
- ...

$d = 2$
 $D > 1$

The circles represent actual measurements

Polynomial Expansion

- Let $\{(\mathbf{x}_n \in \mathbb{R}^d, \mathbf{t}_n \in \mathbb{R}^D)_{1 \leq n \leq N}\}$ be a set N pairs.
- We seek to minimize

$$E(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^N \|\mathbf{W}^t \phi(\mathbf{x}_n) - \mathbf{t}_n\|^2 + \frac{\lambda}{2} \|\mathbf{W}\|^2$$

- $\phi(\mathbf{x})$ can be the polynomial expansion

$$[1, x_1, \dots, x_d, x_1^2, \dots, x_d^2, x_1^3, \dots, x_d^3, \dots, x_1 x_2, \dots, x_1 x_d, \dots, x_{d-1} x_d, x_1^2 x_2, \dots]^t \quad M \times 1$$

- The least-squares solution satisfies

$$(\Phi \Phi^t + \lambda \mathbf{I}) \mathbf{W}^* = \Phi \mathbf{T}$$

$$\Phi = [\phi(\mathbf{x}_1) \mid \dots \mid \phi(\mathbf{x}_n)] \quad M \times N$$

$$\mathbf{T} = [\mathbf{t}_1 \mid \dots \mid \mathbf{t}_n]^t \quad N \times D$$

- The computational complexity is in $O(M^3)$ because $\Phi \Phi^t$ is of size $M \times M$.

→ Let's get rid of ϕ !

Kernel Trick

- Introduce dual variables

$$a_n = \frac{1}{\lambda} \{ \mathbf{W}^T \phi(\mathbf{x}_n) - \mathbf{t}_n \}$$

- At the minimum

$$[a_1 | \dots | a_N]^t = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{T}$$

$$K_{n,m} = \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m)$$

- The regressor becomes

$$y(\mathbf{x}) = \mathbf{k}(\mathbf{x})(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{T}$$

with

$$\mathbf{k}(\mathbf{x}) = [k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_N)]^t$$

$$k(\mathbf{x}, \mathbf{x}') = \theta_0(\exp(-(\frac{\theta_1}{2} ||\mathbf{x} - \mathbf{x}'||^2) + \theta_2 + \theta_3 \mathbf{x}^t \mathbf{x}'))$$

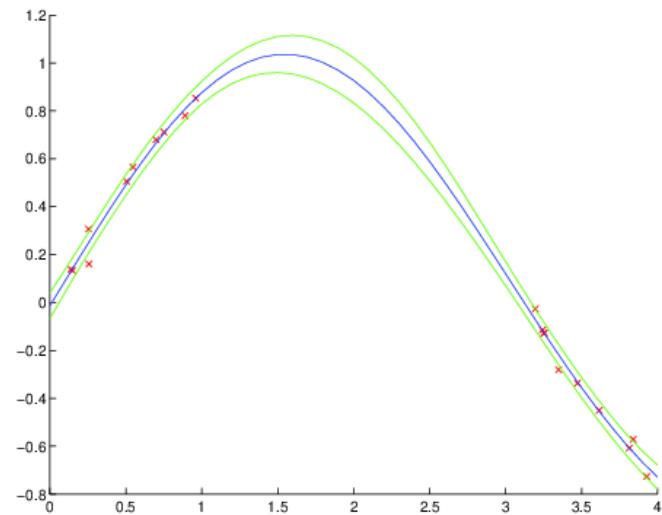
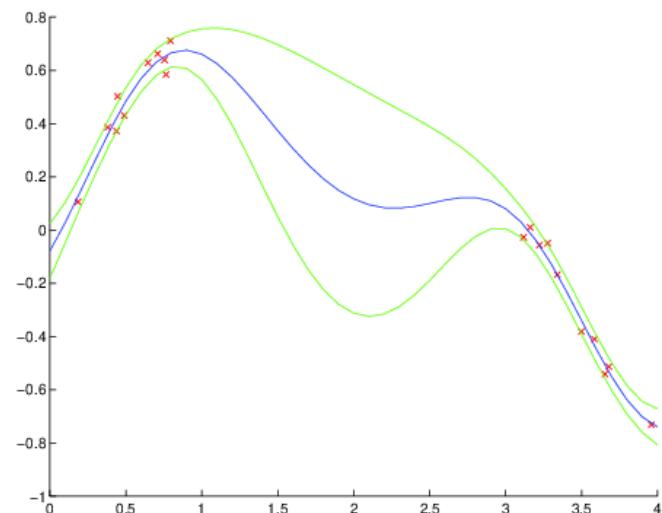
→ ϕ is never explicitly computed

Kernel Ridge Regression

$$y(\mathbf{x}) = \mathbf{k}(\mathbf{x})(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{T}$$

- ϕ is never explicitly evaluated.
- \mathbf{k} can be understood as a vector of distances to the training samples.
- Using \mathbf{k} is tantamount to making the dimension of ϕ infinite.
- Complexity in $O(N^3)$ where N is the number of samples.
- Can be used to evaluate not only predictions but also uncertainties.

→ Extremely effective when N is small.



Curse of Dimensionality

$$\mathbf{k}(\mathbf{x}) = [k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_N)]^t$$

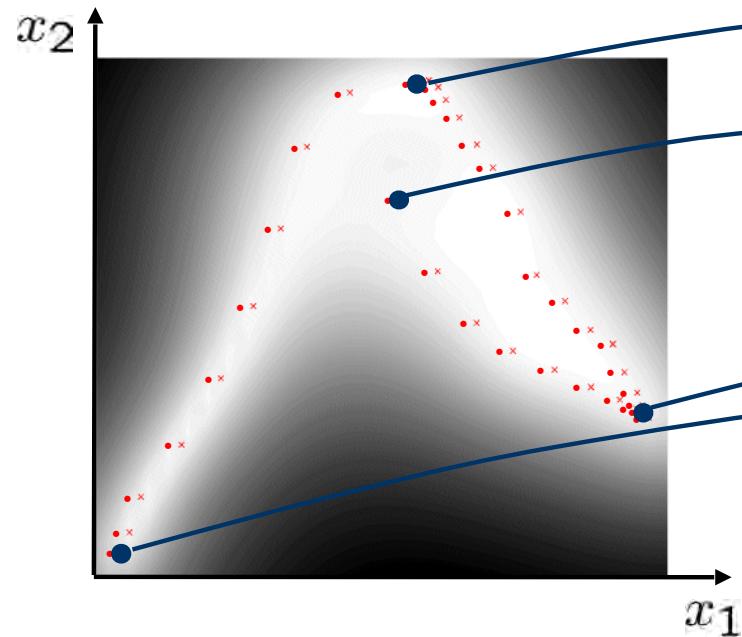
$$k(\mathbf{x}, \mathbf{x}') = \theta_0 \left(\exp \left(- \left(\frac{\theta_1}{2} \left| \left| \mathbf{x} - \mathbf{x}' \right| \right|^2 \right) \right) + \theta_2 + \theta_3 \mathbf{x}^t \mathbf{x}' \right)$$

- In high dimensional spaces, the Euclidean distance stops being meaningful.
- For dimensions $D > 40$, KRR tends to lose some of its effectiveness.
- A similar problem occurs with kNNs.

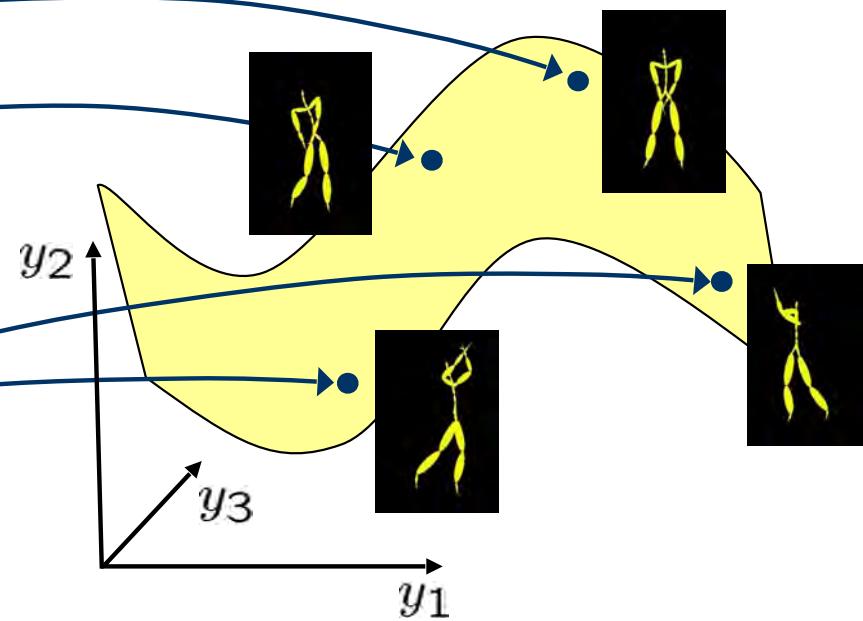
Optional: Tracking Golf Swings

Can we recover the 3D pose from the position of the joints?

Optional: Latent Space of Swings



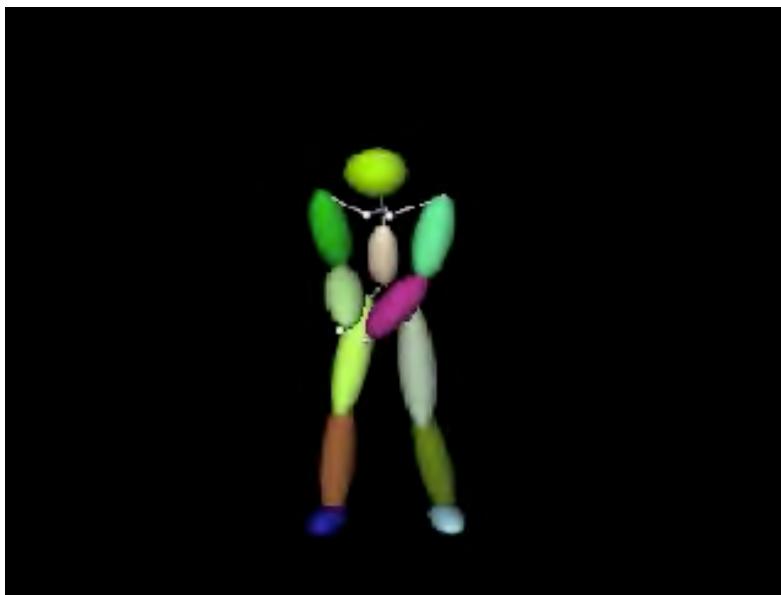
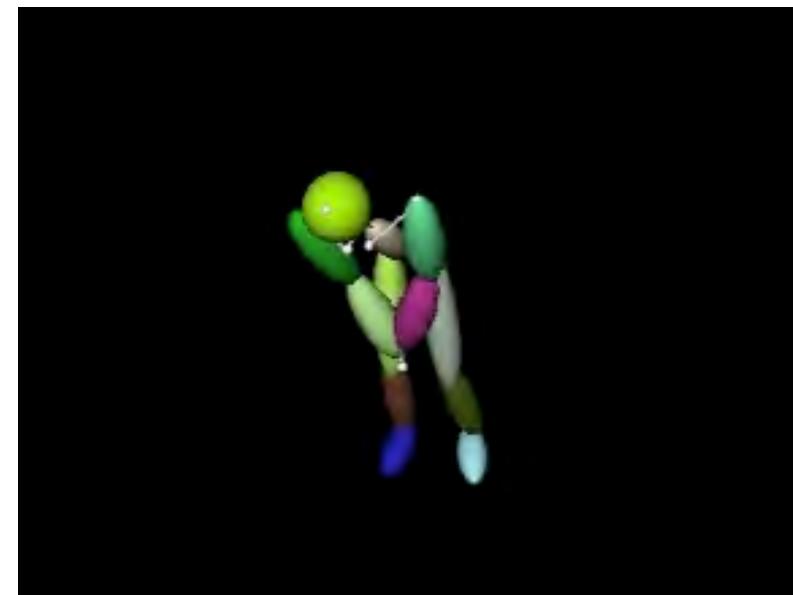
Latent Space (X)



Pose Space (Y)

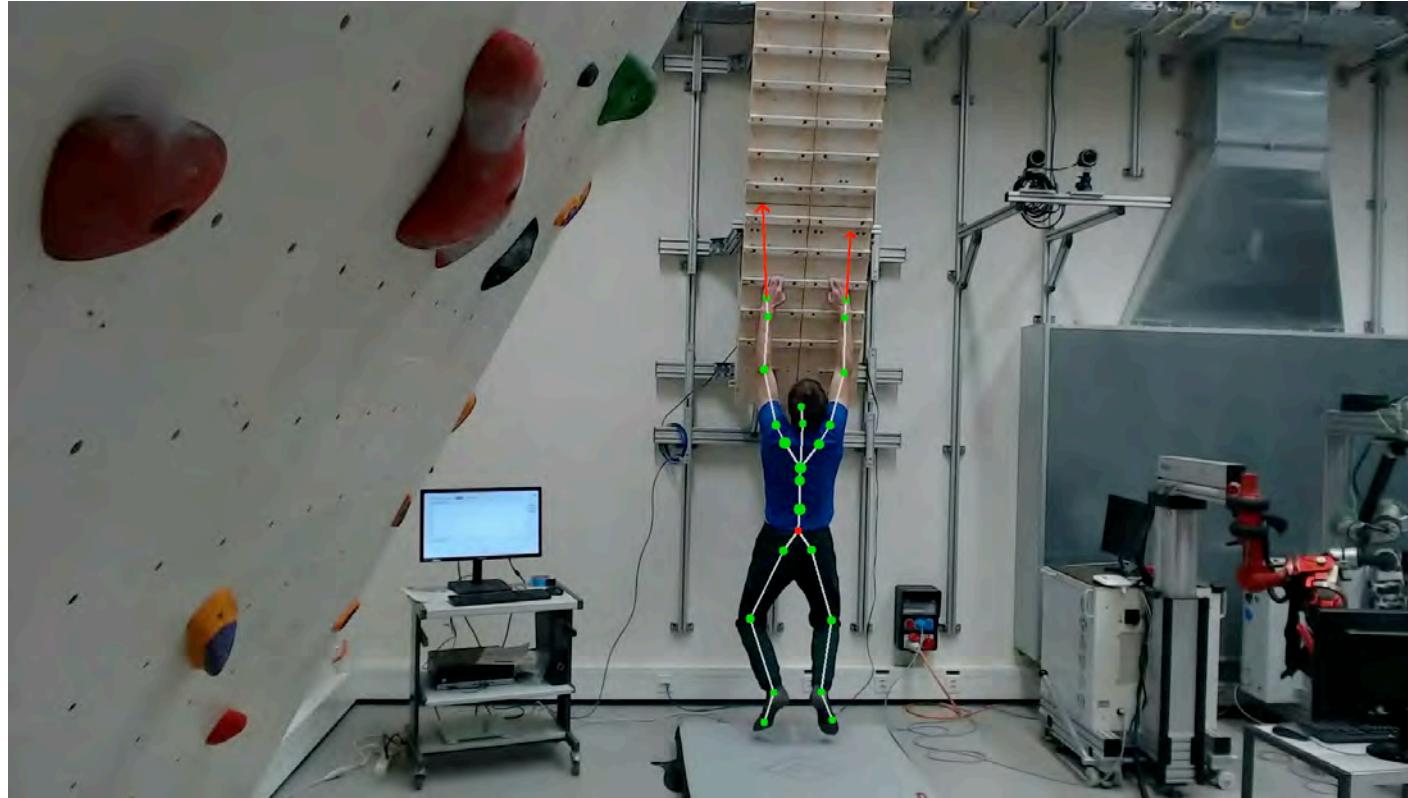
- Use KRR to map from a 2D space to full body poses
- Fit the 2D model to image data

Optional: 3D Golf Swings



Optional: KRR vs Deep Networks

Red arrows: Estimated forces exerted by the climber

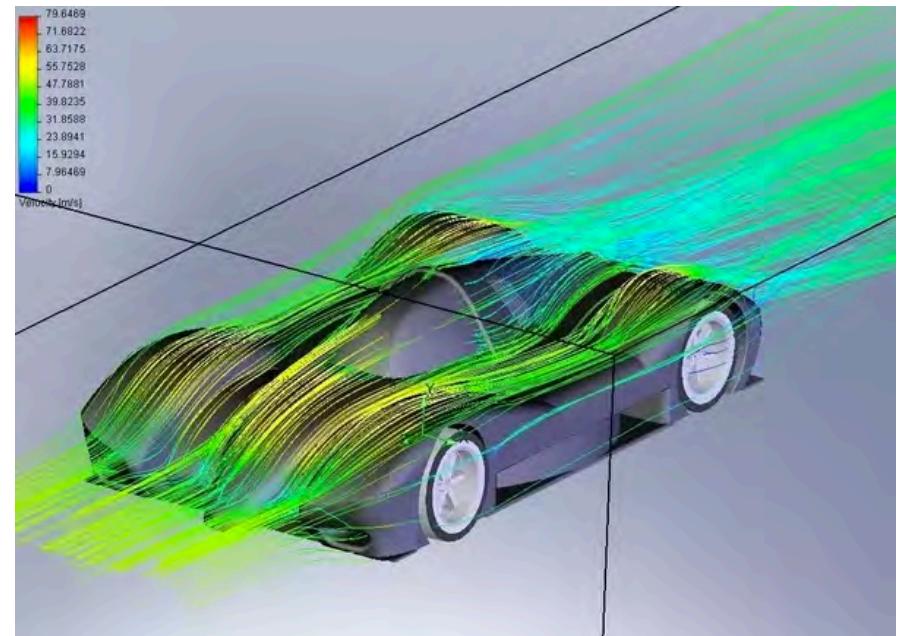


- Now we tend to use deep networks for 3D pose estimation.
- Deep Nets are not affected by the curse of dimensionality but require large training sets.

We will get back to that.

Optional: KRR for 3D Shape Design

- ▶ Design a shape.
- ▶ Simulate its performance.
- ▶ Redesign.



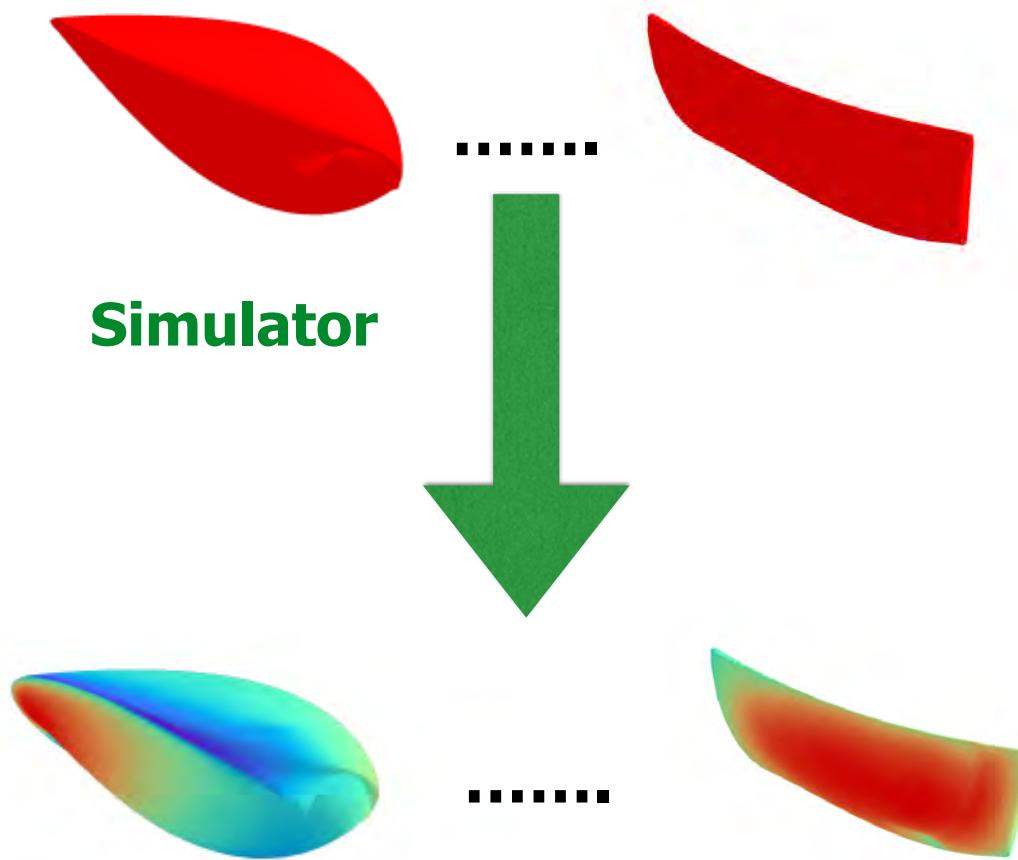
It works but:

It takes hours or days to produce a single simulation.

This constitutes a serious bottleneck in the exploration of the design space.

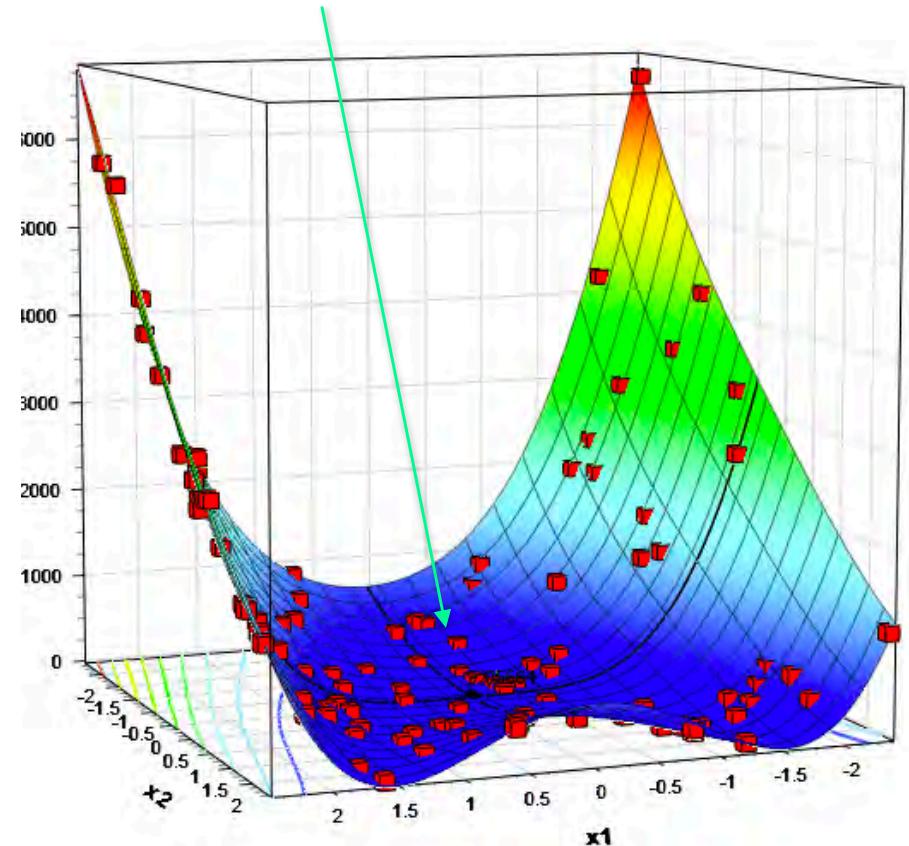
Designs are limited by humans' cognitive biases.

Optional: Surrogate Models



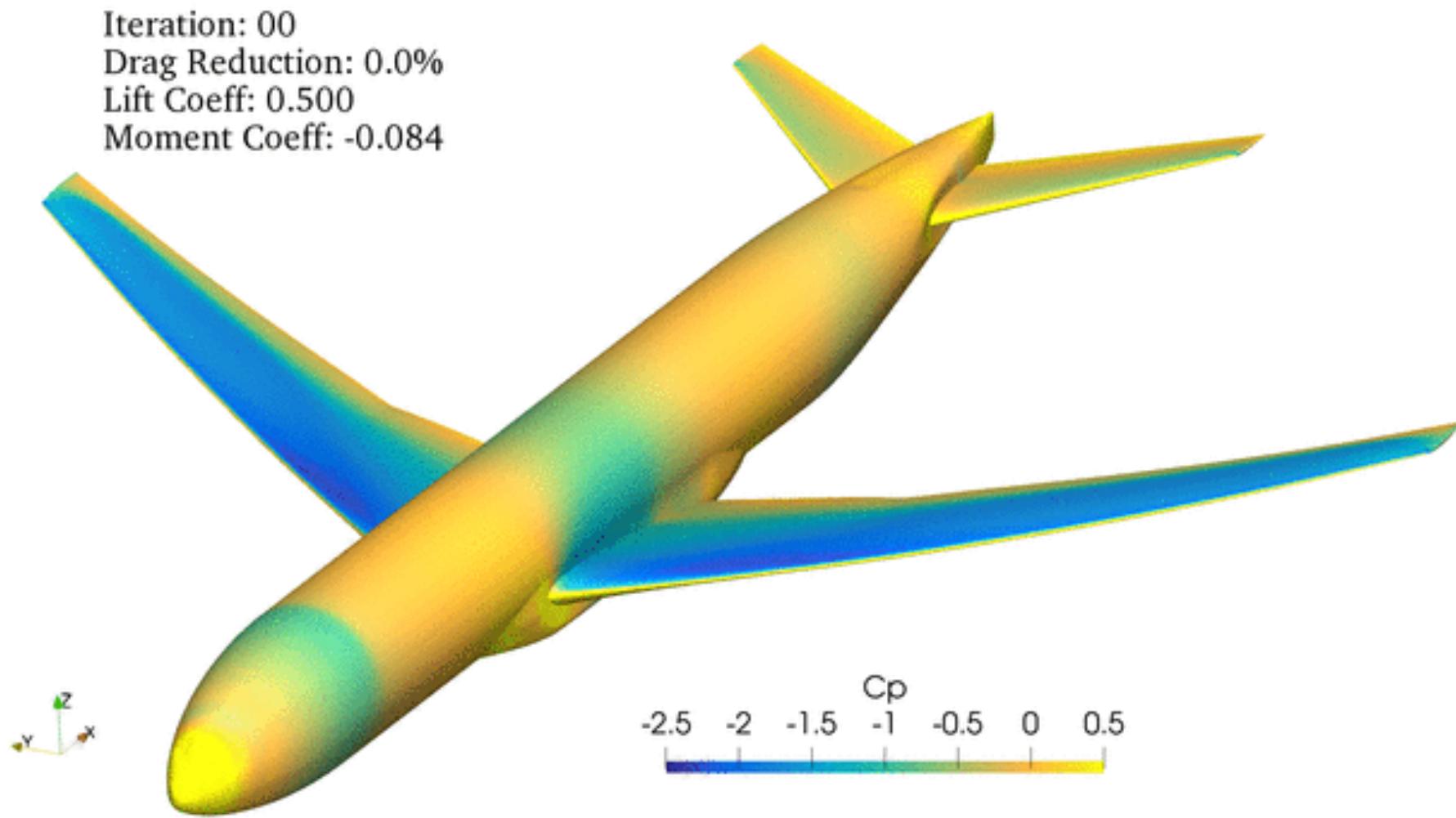
- Drag
- Pressure Coefficients
- Boundary Layer Velocities
- ...

Potential optimum

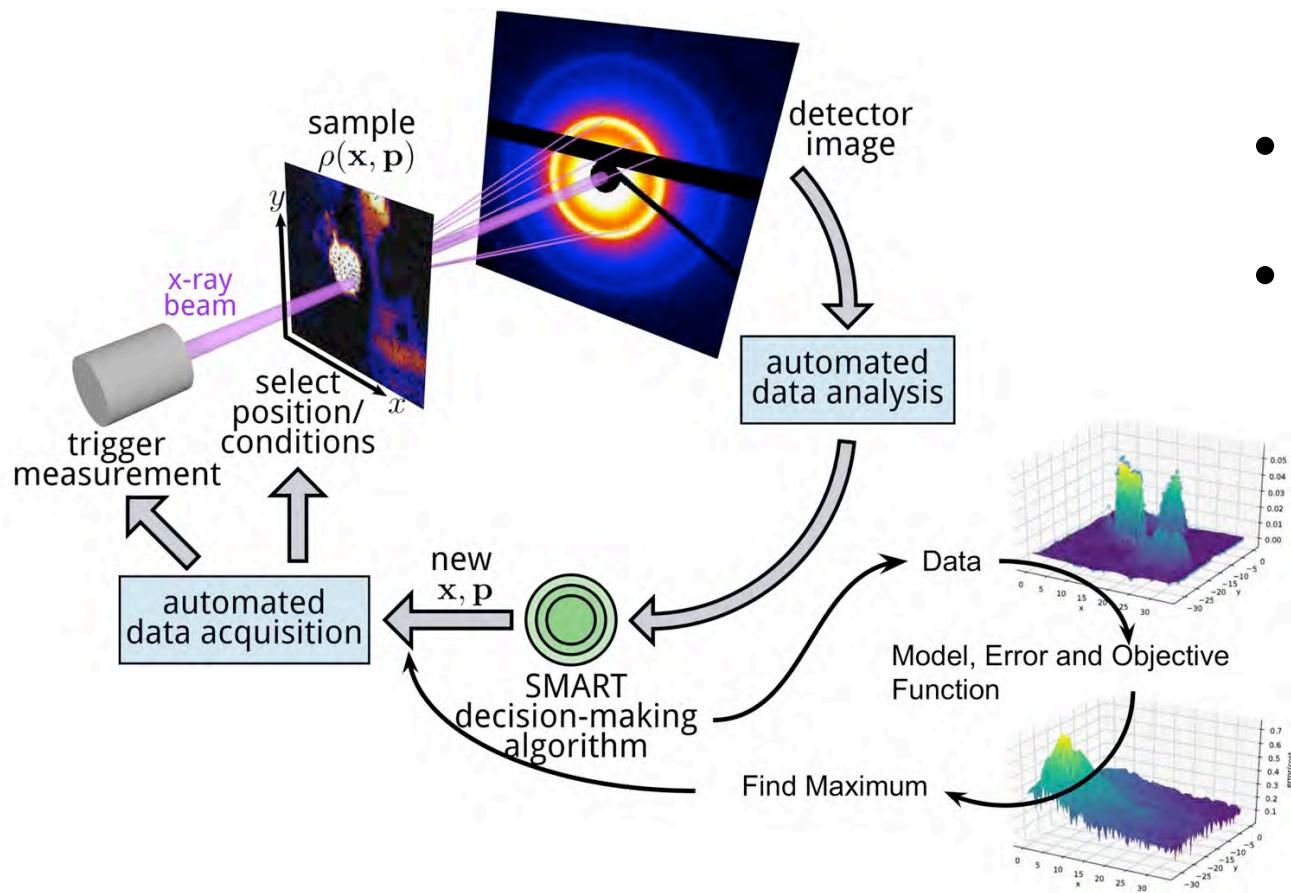


The response surface is approximated using Kernel Ridge Regression.

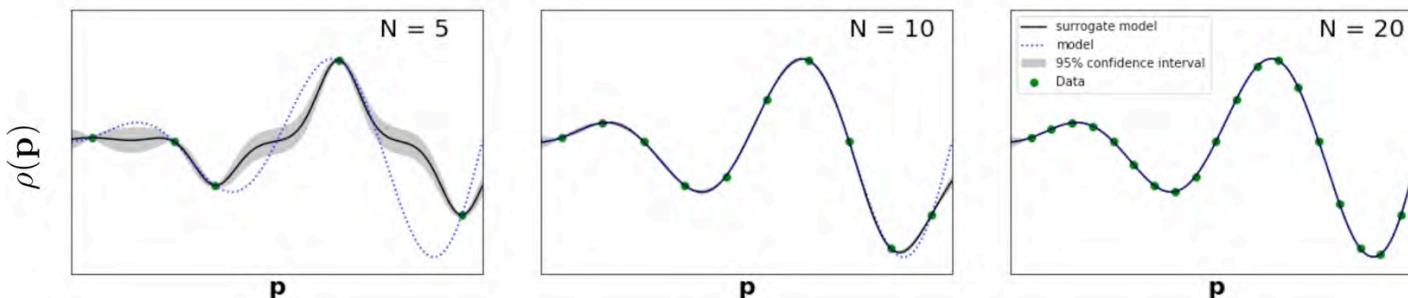
Optional: Aerodynamic Optimization



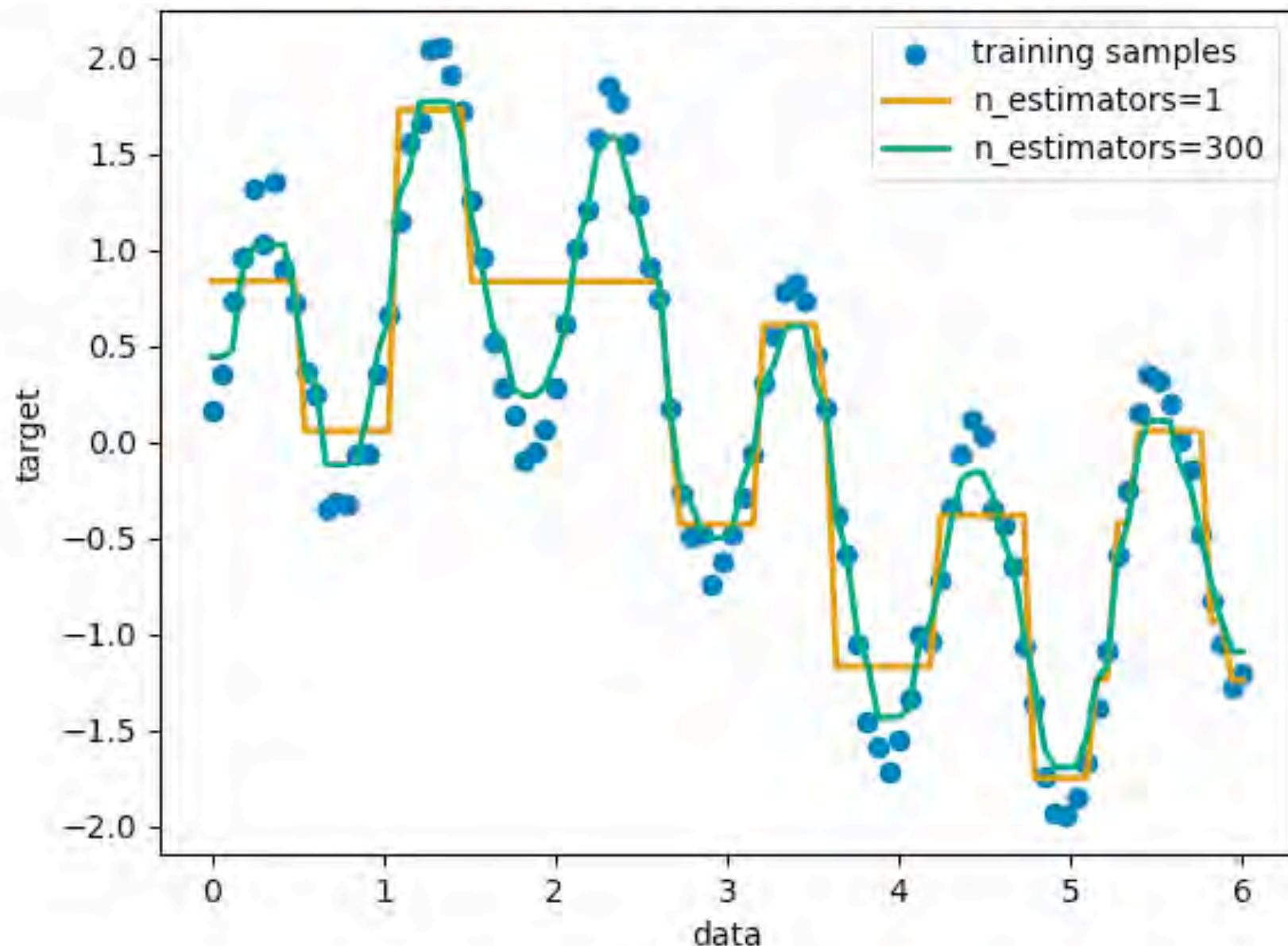
Optional: Autonomous X-Ray Scattering



- KRR is used to interpolate the measurements.
- The beam is then targeted at areas of large uncertainty.



Reminder: Boosted Decision Tree Regression



Piecewise constant predictions

KRR vs Trees

Kernel Ridge Regression

Strengths:

- Yields smooth, continuous predictions
- Provides uncertainty estimates
- Naturally handles multi-output problems
- Strong theoretical foundations in statistical learning theory
- There is a closed-form solution

Weaknesses:

- Scales poorly with dataset size ($O(N^3)$ training complexity)
- Memory intensive for large datasets (large kernel matrix)
- Hyperparameter tuning can be challenging
- Can struggle with very high-dimensional data
- Not ideal for categorical features unless properly encoded
- Can overfit if regularization parameter isn't properly tuned

When to use:

- Small to medium dataset
- Dataset has more features than samples
- Uncertainty estimates are needed.

Gradient Boosted Trees

Strengths:

- Predictive performance on structured/tabular data
- Handles mixed data types naturally
- Works well with high-dimensional data
- Robust to outliers and missing values
- Can handle large datasets efficiently

Weaknesses:

- Many parameters to tune
- Produces discontinuous, piecewise constant predictions
- Not ideal for problems with smooth underlying functions
- Training is sequential (difficult to parallelize)
- May struggle with highly correlated features

When to use:

- Large dataset with mixed feature types
- It may contain outliers or missing values
- Domains like finance, marketing, or healthcare

There is no clear winner. You have to be aware of the existence of both.