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Reminder: Logistic Regression

Female y(X; W) - G(W . i)

Male
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1+ exp(—w - X)
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Given a training set {(X,,,?,); <, <y} minimize

=) (t,Iny(x,) + (1 — ,)In(1 = y(x,)

with respect to w.




Reminder:

Female
Male

 Logistic regression can handle a few outliers.

Non Separable Distribution
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Positive: 100(zs — 23)? 4+ (1 — 21)* < 0.5

Negative: Otherwise

* But but not a complex non-linear boundary.
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How can we learn a function y such that y(x;w) 1s close to 1 for
positive samples and close to 0 or -1 for negative ones:

« AdaBoost:
e Forests:
e SVMs:

=PrL

Use several hyperplanes.
Use several hyperplanes.
Map to a higher dimension.

« Neural Nets: Map to a higher dimension and use lots of hyperplanes. !




Reformulating Logistic Regression

O y(X) = o(W - X + b)
) —’C! | . X = [xl, Xoy oons xn] !

T
W = [Wl,Wz, ,Wn]




Repeating the Process

hl = O'(Wl ‘X'I‘bl)

T
W = [Wlla Wi2, W13, W14]

h2 —_ O'(Wz'X‘l‘bz)

T
W, = [WZI’ Woo, Wp3, W24]

T
Wg = [WHlv Whos Wh3s WH4]

PFL e




Repeating the Process

h=0c(Wx+Db),

with W =

and b =




Multi-Layer Perceptron (MLP)

hidden laye

input layer
z ‘ output layer

PFL A




Multi-Layer Perceptron (MLP)

hidden layer

input layer - '
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The process can be repeated several times to create a vector h.
It can then be done again to produce an output vy.

—> This output is a differentiable function of the weights.

PFL A




Activation Functions

1 | | 1
78 sgm: o(e) = oo
/ . tanh: o(z) = exp(r) — exp(—x)

exp(z) + exp(—x)

sigm tanh

RelLu : 0(x) = max(0,x)

e One problem with the sigmoid and tanh functions is that
when the argument is not close to zero the gradients
vanish.

e Empirically, replacing the them by RelLu has significantly

boosted performance in many cases.
EPEL -




o (W;x +b)
o,(Woh + b,)

Binary Case
h
Y

In this case w> is vector.

hidden
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Training
o Let the training set be {(X,, ) <,<n} Where ¢, € {0,1} is the class
label and let us consider a neural net with a 1D output.

« We write
yn — 62(W2(01(W1Xn + bl)) + bz) & [01]

 We want to minimize the binary cross entropy

1 N
E(Wl’ Wz, bl’ b2) — N ; En(Wl’ W29 bla b2) ’

En(wla W29 b19 b2) - (tn ln(yn) + (1 _ tn)ln(l _ yn)) ’
with respect to the coefficients of Wi, w2, by, and b..

 E 1s a differentiable function and this can be done using a gradient-

based technique. @
=PrL




RelLu Behavior
+

> () —

N |
N

N |—
_|_
N —

h = ReLu(W;x)
y = Wgh + bo g




Multi-Class Case

hidden layer

input layer
z ‘ output layer

_ L7 h = UI(WIXn + bl)
Yy = 02(W2h + b2)

In this case W> is a matrix.




Training

Let the training set be {(X,, [£,, - .., IX]); <<y} Where t* € {0,1} is the
probability that sample x,, belongs to class k.
* We write

= W,(6,(W;x, + b)) + b, € R
Dk = exp(y,[k])
T 2 exp(y,Lil)

* We want to minimize the cross entropy

E(W,,W,,b;,b,) = ZE(WI,Wz,bl,b»

n 1

E (WI’WZ’ bl,bz) —_ Z tk ln(pn

=psL with respect to the coefficients of Wi, W2, by, and b..



More Compact Notation

h = o0,(Wix+by)
Yy = O'Q(th‘|‘b2)
w = [wi|bi|wa|bs]
N
n=1
]
h = o 1([W1‘b1] ] 1 _) wn: Matrix Wi represented by a 1D vector.
]
y = o02([Walbs]| | )

EPFL A




Optional: PyTorch Translation (1)

class MLP(nn.Module): Wi is an nln X n; matrix. | |W> is an nl x nOut matrix.

hidden layer

def __init__(self,n1=10,nIn=2,#0ut=1):
self.l1 = nn.Linear(nIn,nl) input layer _—7
self.I2 = nn.Linear(n1,nOut) =7

output layer

def forward(self,x): -
h = sigm(self.l1(x))
return sigm(self.l2(h))

nin n1 nOut




Optional: PyTorch Translation (2)

class MLP(nn.Module):

def __init_ (self,n1=10,nIn=2,n0Out=1):
self.]1 = nn.Linear(nIn,nl)
self.l2 = nn.Linear(n1,nOut) input layer _——

-

- : output layer

hidden layer

-

def forward(self,x): =
h = sigm(self.I1(x))

return self.12(h) S

def loss(self,x,target):
loss_fn = torch.nn.CrossEntropyLoss()
output = self(x)

return loss_fn(output,target)
] nin n1 nOut

Return  — Z t* In(pk
=PFL A




Multivariate Optimization

» Given a training set be {(X,, [}, ..., 2X]); <<y} Where t* € {0,1} is
the probability that sample x,, belongs to class k, we write:

Y, =/fy(X,) € R®
Dk = exp(y,L4])
b2 exp(y,LiD)

* We want to minimize the cross entropy

E(w)=— ) tkIn(pf),

_ . with respect to the coefficients of w. A
=PrL




Reminder: Gradient Descent

XT——l — ~7T _ nvf(X7'>|

—> 5 is known as the learning rate and must be carefully
chosen.

EPFL .
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Reminder: Local Minima

The result depends critically on the starting
point and is very likely to be closest local

minimum, which is not usually the global one. I




Stochastic Gradient Descent

E(w) =) En(w)

— [ -
n=1 Gradient Descent . ~——

N
Gradient descent: w™ ™ = w”™ — 7 Z VE,(w") .
n=1 o
Stochastic descent: w” T =w" — 17 Z VE,(w"),
neBT

where B” represents a different randomly chosen set of indices at each iteration,

also known as a mini-batch.

Randomly choosing batches
* helps reduce the chances of falling into local minima,

» makes the computation possible on GPUs even when dealing
with LARGE databases.

=PrL A




Escaping Local Minima

cost
Movement =

Negative of Gradient+ Momentum

- Negative of Gradient

«susp Momentum

—fp Real Movement

E*‘""' :lllll> «E..'.>

Gradient=0

=Pr-L A




Improved Gradient Descent

Gradient descent

Gradient descent with momentum




Adaptive Moment Estimation

- - . my = vo = 0,
g1 = E VEn(W ) Minibatch gradient. 8, — 0.0,
nebr By = 0.999,
m;,qj = ﬁlmT + (l — ﬁl)gﬂ_l Mean gradient. a = 0.001,
2 _1n—38

Vr41l = ﬁ2vr + (1 — 52)g7-|_1 Mean gradient squared. ¢ =10
~ mMrq
Mri1 = 1 — gt Corrective factor.

M1
R V
Vr+1 = 1 T+ﬂlt Corrective factor.

M2

m
Wri1 =W — O—F= T+l Gradient step.
\/VT—|—1 + €

=PrL Kingma and Ba, ICLR’15 A




Tralnlng the Network

10
| — AdaGrad
) L"-. —  RMSProp
) "‘-. —  SGDNesterov
T — AdaDelta
\‘.\ "‘-.,.“L —  Adam
&
o
on
c
<
P
0 50 100 150 200

terations over entire dataset

e The loss decreases over time but not monotonically.
cp=p * It can take a very long time to converge.




Geometric Interpretation

hidden layer

= O\ h=06/(W;x,+b))

o,(W>h + b,)

=
|

Each node defines a hyperplane.
The resulting function is piecewise smooth and continuous.

EPFL ﬁ




One Single Hyperplane

y = max(w'x +b,0) roA
y =10 “%
L1
k/Q
< 4.5
< y=w x+b




Two Hyperplanes

. WT bl
h = max(Wx + b, 0) with W = W%p and b =

y=wTh+¥ sz




Three Hyperplanes

A

{ h = max(Wx + b, 0) T

y = W/Th

with dim(h) = 3




Reminder: AdaBoost

y(x) = ar1y1(x) + asy2(x) + asys(x) + asys(x)

Y3




AdaBoost vs MLP

AdaBoost MLP

Both methods find a set of hyperplanes:
e One at a time for a AdaBoost.
“PrL e All together for MLPs. A




Rosenbrock using Adaboost

500

400

r(z,y) = 100x* (y —2%)* + (1 — 2)?
f(z.y) { -1 ifr(x,y) < T

1  otherwise

300 {XANN

200 - ORTXEX

100 AR

0 T iOO !éobA V.“300 400 500
Training (100 iterations)

e Adaboost adds one linear classifier at a time.

e MLP works with a fixed number of classifiers and
optimizes them all at the same time.

=Pr-L A




Rosenbrock using a MLP
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-2.0: =1.5, =1.0- =05

One hidden layer: 3 <n <100

1.00
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0.96
0.94

0.92
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Accuracy as a function of n:

— Adaboost

— MLP




Checker Board using Adaboost

500

400

[

300

o

200

100
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2
-1
-2
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0 100 200 300 400 500

Training (100 iterations)

0
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Validation (56% accuracy)

Individual weak classifiers cannot do better than chance.

=PrL

—> AdaBoost with linear weak classifiers fails in this example. a




500

400

300

200 %X Y P

100 ~

Checkerboard using a MLP

One hidden layer: n=10

2.0 1 y X X
xx % X 8 X )e<
1.5 - K X y b % x
X x X
X % X
1.0 X » X x X
v X
X X
0.5 + X
. X
X X X
0.0 - % X x X
X, X
X X
—0.5 - X x X X
X X X
-1.0 - X x X x X
X
X
—-1.5 4 x X X X X X »
X X X X X
—2.0 4 X X » X
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

MLPs solve the problem by using several hyperplanes at the same time.
—> They succeed in this example.

g




SVM vs MLP

hidden laver

x f(x) W(x)+b

Both methods
e create a high-dimensional feature vector,
e define a classifier on that feature vector.
cp=L But the form of f is not defined a priori in a MLP. A




Reminder: MNIST

S0 /1q]|#

* The network takes as input 28x28 images represented as 784D
vectors.

* The output is a 10D vector giving the probability of the image
representing any of the 10 digits.

 There are 50’000 training pairs of images and the
corresponding label, 10’000 validation pairs, and 5000 testing
pairs.

=PrL A




MNIST Results

nln =784
Out =10 e Deep nets have many parameters.
ot = ya e This has long been a major problem.
0<nl <120 7 —> Was eventually solved by using GPUs.
95 - //
/
/  Testing accuracy
................................................. SVM 986
97 ............................ Knn: 96.8
e Around 2005, SVMs were often felt to
be superior to neural nets.
— s s | ® ThiS is O longer the case ...

94 T T T T T
20000 40000 60000 80000 100000
'=I i L A




Optional: Converting Words to Vectors

* How similar is to ?
* How related is to ?

* Representing words as vectors allows for easy
computation of similarity.

* Makes it possible to use the Machine Learning
techniques we have discussed.

* Exploit the theory that similar words tend to
occur in similar context.

Harris’54, Firth’57 A

m
U
"1
r




Optional: Words in Context (word2vec)

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

w(t-2)

w(t-2)

w(t-1) w(t-1)
\SUM

wit+1) 7’ w(t+1)

w(t+2) w(t+2)

CBOW Skip-gram

Two basic neural network models:

o Continuous Bag of Word (CBOW). Use a window of words to
predict the middle one.

o Skip-gram (SG). Use a word to predict the surrounding ones in
a window.

cPFL Mikolov et al., ArXiv’13 A




Optional: Continuous Bag of Words

The cat sat on the floor.

INPUT PROJECTION OUTPUT

w(t-2)

cat w(t-1)

sat

on w(t+1)

floor w(t+2)

sat should be predicted from the words around it.

- o




Optional: Window of Size 3

Input layer

0

Index of cat in vocabulary [7
of dimension V. 0
0

cat 0

0

0

0

0

0

0

0

1

on 0

0

0

0

0

X

W and W’ must be learned

Hidden layer of

dimension N.
WVXN
WI
NXV

WVXN h

Vear = WXy,

v, = WX

Vcat + Von

-
|

2
y = softmax(W'h)

sigm( )

Output layer

mlO|lOjO|O|jO|O| O

o

sat




Optional: Window of Size 3

W and W’ must be learned

Input layer
0
Index of cat in vocabulary [
of dimension V. 0
0
cat |o Hidden layer of Output layer
0 dimension N.

° Wy «n 0

0 0

0

0 ) 0

w' - |0

NXV = | sat

0 0

0 1

0 oos

1 WVxN h 5
on 0

0 y t
0
0
0
X

Once the training is complete, the W matrices associate to each
word a vector of dimension N.

=Pr-L A




Optional: Larger Windows

@ .
o\ Input layer
O
o pork
-
u hour " b¢e¥e3|
o mrs s? dz roddicken
X 1k gravy
IR cake
f )
: W ;5525; Keep v while " Potatags
- p
V<N F flour soft madehese 1. he corn
C§60d drifnder his their quart
e roll water into  an bYuereq) or© pint
oven clean then  from ofthe _this thedre before pie
O t t 1 - wash dry until inand@ ; ey long v
. u pu ayel remove off ) which'™ is bake balimg
S Hidden layer g - onwithwas ~ - nthat cream boling
O O kiice day overyo Wwhen, Snake flavor cooking
5 o your J who Whiteup for © jt hershe Y do taste
/ out atthem but oqg see
O O cold ready ir
hours let .. SOMe  hard just I )
. - dist® through agalra:vtﬁglgavef:;st another  €nough  will saagarsleynutmeg teaspoon enen
- M ‘ . n ‘ pot ish each " hagedone yorate (Pe ereay qum“scanwoulgnly part t%%% D lﬂ"'u'
~ > Y ) u; "
2k o h N<V [0 )] pan CO\;ﬁr servleumbs cathiQpug well” Yy no spoonful virRysp coptp
quane! : ! lemon likelittle other cups
» ™ %%?‘md 5"b0l#"“slow placgime ithouthosbein fow togethemeited tablespoonfuls
- - strain take withou é’ver}g'eal stock Mixture tWehreeunds
stew ounce very many . )
) Po" ounces Sanﬁﬁl"elsg hot an its about paste ‘e"s'xﬁve
.\T d. O minutesgang ame ghould than . fow; .
[\ - enty
. v=dim e cook choppsf%a;onlargesmall best se '“Qi!anwmuch
. fruit i
. new  peaten half  PleCze
. V-dim addigar f';:h wine thick
sauce ) ~cu dla
8 cheese milk jelly thin piecesmun Yaper
o bread  rice Meal " cooked32 slices soulP
Y°'f15 beat cakded
-
. whites brown more peel
pudding
Y O bak
A Ck ?ng‘fed sweet coffee
tea
-
n
o .
OV CxV-dim

« Once the training is complete, the W matrices associate to
each word a vector of dimension N.

* The distances of between these vectors is highly correlated
to the similarity of the corresponding words.




Optional: Code for Windows of Arbitrary Sizes

class WordNet(nn.Module):
def __init_ (self,nh,nw):

super(WordNet, self).__init_ () nw: Number of words.
self.l1 = nn.Linear(nw,nh,bias=False) nh: Size of the codes.
self.I2 = nn.Linear(nh,nw,bias=False)

def forward (self,x):
nb,nc,nw=x.size() nc: Context size.

h = self.11(x[:,0])

for i in range(1,nc):
h = h+self.I1(x[:,i])

h = sigm(h / nc)

return self.12(h)




Optional: Geometry of Words

i . “’r  Ocuatro (four)
Otour
o} Ouno (one)
o ofive — ocinco (five)
06 oz} Oftres (th'ee)
Othree "y
Obuo OdOS ([WO)
"% b 0 0 ‘ 0s 0 ; o 0 04 '
02 05
e O horse 04 o caballo (horse)
01 03 Ovaca (cow)
005 O cow 02 pergp (dog)
0 O p|q O dog 0.1
o ’ O cerdo (pig)
-0 0.1
Q.15 02
2 -03
02%F ~ cat 04t O gato (cat)
23 : . . " _ ‘ 05 bt . . .
13 025 o2 L] ot 0.15 03 04 A ] o4 03

English Spanish

=P-L https://skymind.ai/wiki/word2vec




Optional: Similarities in Latent Space

.
-~
.

Training on Google News Vocab:
e Beijing is to China what Bern is to Switzerland

Testing:

e king:queen man:[woman,attempted,abduction,girl]

e knee:leg elbow:[forearm,arm,ulna_bone]

e |ove:indifference fear:[apathy,callousmess,timidity,helplessness]

Not bad given that word2vec knows nothing about syntax, about
the world, or even about logic!!

=Pr-L https://skymind.ai/wiki/word2vec A




Optional: It’s Magic!
Word2Vec trained on the Harry Potter books:

le6

* harry 14 -
* on
2 1 * hermione 12 -
* malfoy
L % hagrid 10 1 harry/ron
X mcgonagall 0.8 - ~ harry/hermione
:‘ X dumbledore ‘ on/hermione
0 1 . -. X  Shape 0.6 - harry/dumbledore
N Ry . ot \olden:o-rt harry/voldemort
-1 N A g 14y "Av v ;-. : - " ?' LK) 0.4 1
. 0.2 1 \
_2 . -
® ‘ = 0.0 1
-2 -1 0 1 2 3 0w 15 20 5 330 33’ 4 45
Tsne Visualization of the embedding Distances between word pairs

* The reasons for successful word embedding learning in the word2vec framework
are poorly understood.

« One potential explanation is that the objective function being minimized results in
words occurring in similar contexts to have similar embeddings.

But it works! And the same can be said of more recent techniques.
cprL We’'ll get back to that when we talk about transformers and LLMs. A
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Negative: Otherwise
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From Classification to
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Regression
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0.25

0.00

—0.25

—0.50

—0.75

—1.00

40 60 80

 The deep network implements the function f, = y( - ; W).
» Ideally, we would like f(X) to be approximately equal to the
probability that x belongs to the positive class.

—> This raises a theoretical question: When the probability

=Pr-L

function 1s known, how well can a network approximate 1t?




Approximating the Rosenbrock Function

1.01if r(x) < 0.5
0.0 otherwise

0

P(x In positive class) = {

10

r(x) = 100(x, — x7)* + (1 — x;)?

Wi
wep:

®

y(X, W) —_ W2 tanh(wlx + bl) + b2

20

30

40

50

Problem statement: Given ({x;,z; = r(Xp}, ..., {X,,z, = r(xy)}),
minimize

D @— y(x; W))?

EPFL WLt W. A




10

20 +

30

40

50

Regressing the Rosenbrock Function

0 10 20 30 40 50

z = 100(x, — x2)* + (1 — x,)?

—> 3 nodes is not quite enough.

3-node hidden layer

-




10

20 +

30

40

50

Regressing the Rosenbrock Function

loss: 1.089789e+00

0 10 20 30 40 50

z=100(x, — x7)* + (1 — x;)*

—> 4 nodes is better.

=Pr-L

4-node hidden layer
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Accuracy as a Function of the Number of Nodes

2 nodes -> loss 3.02e-01 3 nodes -> loss 2.08e-02

10
_ 100 . 2 2 1 . 2 0 10 20 30 40 50
z = 1000y — x)*+ (1 — x;) 4 nodes -> loss 8.27e-03

—> The more nodes the more accurate the approximation.
=EPEL -
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Accuracy as a Function of the Number of Nodes

0
0 .

10

20 b
10

30 F

40
20 |

500 10 20 30 40 50 0 10 20 30 40 50

2 nodes -> loss 2.61e-01 3 nodes -> loss 2.51e-04
30 |
S’LTL

z—sm

4 nodes -> loss 3.07e-07

—> The more nodes the more accurate the approximation.
EPEL -




Image as a 3D Surface

.
i
.

[ = f(x,y)
We treat the image as a surface:
e The intensity is the z coordinate.

e [t is shown in false color on the left.
PEL e The corresponding surface is complex. A




More Complex Surface

.
:
-
-
L ! !

100 nodes -> loss 2.50e-01

I T f (aj? y) 125 nodes -> loss 2.40e-01 300 nodes -> loss 1.92e-01

—> The more nodes the more accurate the approximation.
EPEL " 44




Universal Approximation Theorem

A feedforward network with a linear output layer and at least one hidden
layer with any 'squashing’ activation function (e.g. logistic sigmoid) can
approximate any Borel measurable function (from one finite-dimensional
space to another) with any desired nonzero error.

Any continuous function on a closed and bounded set of Rn is Borel-
measurable.

—> In theory, any reasonable function can be approximated by a one-
hidden layer network as long as it is continuous.

L [Hornik et al, 1989; Cybenko, 1989] A




Universal Approximation Theorem in 1D

+—>
/ \ dx

9

f(x) = o(w1 x+ b1)+ 0o + ... + o(Wn X + bn)

When dx —> 0, f —> g.
PFL




Universal Approximation Theorem in nD

e The sine function can be approximated arbitrarily well.

e According to Fourier analysis, continuous functions from RN
into R can be approximated arbitrarily well by a weighted
sum of sine functions.




More Complex Surface

.
:
-
-
L ! !

100 nodes -> loss 2.50e-01

I T f (aj? y) 125 nodes -> loss 2.40e-01 300 nodes -> loss 1.92e-01

—> The more nodes the more accurate the approximation.
EPEL " 44




In Practice

0.35 \ T T T T T T T T | 0.35 A
0.30 R 0.30
0 a
9 0.25 S 0.25
0.20 | R 0.20 |
015 1 Il 1 1 1 1 1 1 015 Il 1 Il
50 100 150 200 250 300 350 400 450 500 500 1000 1500 2000
Number of nodes Number of weights

o It may take an exponentially large number of parameters for a good approximation.
e The optimization problem becomes increasingly difficult.

—> The one hidden layer perceptron may not converge to the best solution!

=PrL A




From MLP to Deep Learning

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

= . output layer hl — O']_ (Wl X]_ _|_ b]_)
hy g2(Wahi+ bs)

<
|

MLPs can have more than one hidden layer.
Their descriptive power increases with the number of layers.

=Pr-L A




PyTorch Translation

class MLP(nn.Module):

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

def __init__(selfn1=10,n2=10,n3=10,nIn=2,nOut=1): AN O ——
self.l1 = nn.Linear(nIn,nl) == z S5E output layer
self.l2 = nn.Linear(n1,n2) ; X 7
self.I3 = nn.Linear(n2,n3) % : ;‘ g 5:::

self.l4 = nn.Linear(n3,n0Out)

/fb-— —
def forward(self,x): —
hl = sigm(self.11(x))
h2 = sigm(self.I2(h1)) nin N’ n2 n3 nOut

h3 = sigm(self.13(h2))
return(self.14(h3))

def loss(self,x,target):
loss_fn = torch.nn.CrossEntropyLoss()
output = self(x)
return loss_fn(output,target)




One Layer: Two Hyperplanes

. WT bl
h = max(Wx + b, 0) with W = W%p and b =

y=wTlh+V sz
X
L1
L wix+ bl
| wix 402
%%
<
J0




Two Layers: Two Hyperplanes

h = max(Wx+ b ,0)
h' = max(W'h + b’ 0)




Multi Layer Perceptrons

The function learned by a DNN using either ReLU, Sigmoid,
or Tanh operators is:

* piecewise affine or smooth;

* continuous because it is a composition of continuous
functions.

Each region created by a layer is split into smaller regions:

* Their boundaries are correlated in a complex way.
* Their descriptive power is larger than that of shallow
networks for the same number of parameters.

m
U
"1
r




Deep Learning

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

I —d_,-

\.::-:E_’i_ ' g __:_ ’ : _-___ ; output layer hl — 01 (Wl X1 _|_ b]_)
‘ ' : ‘ hy, = 02(W3hs +by)
— T - 3

MLPs can have more than one hidden layer.
Their descriptive power increases with the number of layers.

In the case of a 1D signal, it is roughly proportional to II":
where wiis the width of layer n.

cPrL Telgarsky, JIMLR16 A




The Power of Composition

fl f2 f2ofl

1.0 A 1.0 A

0.8 A 0.8 A H (
0.6 - 0.6

0.4 1 0.4 1

0.2 0.2 1 “ M

0.0 A 0.0 A

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

fi(.) has n:=3 peaks.
f2(.) has n.=2 peaks.
f2(f1(.)) has 2nin2=12 peaks.

=Pr-L



The Power of Composition

fl f2 f2 o0fl

—
e e——

fi(.) has ni=4 peaks.
f2(.) has n2=5 peaks.
f2(f1(.)) has 2nin2=40 peaks.

cprL —> Descriptive power is proportional to nin:



Optional: Proof Sketch

e Functions with few oscillations do not approximate
well functions that have many.

o Networks can depict functions that have as many as HW
oscillations, where w. is the width of layer n.

e Functions computed by networks with few layers
nave few oscillations.

e Functions computed by deeper networks have
many more oscillations.

PFL Telgarsky, IMLR’ 16 A
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Back to Non-Linear Classification

2.0 - "
% % X X
X
1.5 Xy X X
Xx x X X
Xxx X
1.0 X X x X
X
x X X o X X X
0.5 A »
X P
X X
X X X % e
0.0 X x
X
X X
X X x
X x X X X
=05 X X X X
x % § X X X
X X X X x x
-1.0 X X X
X X Xx X
X X
X X XK
-1.5 - x* X X »
x X X X x

2.0 A
b 4 x x X X
X X X X X X
4 X
154 % x y X X X
8 X X X 5 X
1.0 1 X X
X
x 8 X
X x X
0.5 4 x X X
X X »
X
X X x X x
0.0 - X X
X X X >
X X X X x
-0.5 1 X " X
X X x X
X X
-1.04 X X X OX
X X X X
X
x X X X x
-1.5 4 »x
X
X xx x X %
_20 .

Two hidden layers: n1=10, n2=10, 151 weights: Better defined
L boundaries with far fewer weights.



Randomly Distributed Points
and RBF Kernels

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

—1.00

Rbf, ¢ = 200

=PrL



70%

n=400, 77% 86%
n=1600,79% 96%
96%

n=80, 98%

n=100, 99%

One hidden layer Two hidden layers

—— One hidden-layer
—— Two hidden-layers

95 A
90 A

85 A

Empirical observation: The two layer
networks converge faster and better.

Training accuracy

80 1
75 A

70

:I P I-I I 0 2000 4000 6000 8000 10000
Number of weights




MNIST Results

100 4—no 100
99 A 99 1
98 98 1

97 A 97 A
96 96
nln =784 = nln =784
— Trair_1ing accuracy —_— Traihing accuracy
nout — 10 o ' ' ,_ Testlng' accuracy o ’ ' ' Testing accuracy nOut — 10

0 40 60 80 100 120 20 40 60 80 100 12

20 < Nl < 120 wo. " 20 < n1=n2 < 120

99 A 99 +

98

97 A
96
95
—— Training accuracy —— Training accuracy
—— Testing accuracy —— Testing accuracy
T T T T T 94 1— T T T T
20000 40000 60000 80000 100000 20000 40000 60000 80000 100000

One Layer MLP Two-Layer MLP
PFL 8




Testing Accuracy on MNIST

100 .
Accuracy —— Testing accuracy (1 hidden layers)
——— Testing accuracy (2 hidden layers)
99 -
98 -
97
96 -
95 -
94 1 1 1 | | .
20000 40000 60000 80000 100000 # Weights

e Two-layer MLP vyield better accuracy with fewer weights initially.
e One-layer MLP eventually catches up in this simple case.
EPEL -




Second Layer for Approximation

B
i :

I — f (CC ] ) 1 Layer: 125 nodes -> loss 2.40e-01 2 Layers: 20 nodes -> loss 8.31e-02
501 weights in both cases

—> The two-layer MLP yields a better approximation with
the same number of weights. ﬂ




Adding a Third Layer

] — f (CC ] y ) 2 Layers: 20 nodes -> loss 8.31e-02 3 Layers: 14 nodes -> loss 7.55e-02
501 weights 477 weights

—> The three-layer MLP does even better but the difference
is less striking. Diminishing returns? !

=PrL




Adding a Third Layer

.
L

] — f (CC ] ) 3 Layers: 15 nodes -> loss 5.93e-02 3 Layers: 19 nodes -> loss 4.38e-02
541 weights 837 weights

—> The three-layer MLP does even better but the difference
is less striking. Diminishing returns? !




Multi Layer Perceptrons

] Linear 2 -> n
Linear 2 -> n

Cnear2 >
Linearn -> n E{>

-
Linearn -> 1
Linear n -> 1 )
Linear n -> 1

0.40

030\ ° Adding Iayers often yields
| better convergence properties.

| o In current practice, deeper is
| \/\/ usually better.

0.05

250 300 350 400 450 500 550 600
Number of weights

m
U
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Other Ways to Interpolate

50
O 10 20 30 40 50 O 5 10 15 20 0 10 20 30 40 50

Original 51x51 image: Scaled 24x24 image: MLP 10/20/10 Interpolation:
2601 gray level values. 576 gray level values. 471 weights.

cprL Simpler but not necessarily better! d




m
"1

MLP

Linear 2 -> n

Linear n -> n
Linear n -> 1

properties have
pypass, which al
compute residua

to ResNet

Linear 2 -> n
Block n -> n Linear n -> n

Blockn ->n Linearn -> n

Linear n -> 1

x+12(o(11(x))

-urther improvements in the convergence

peen obtained by adding a
ows the final layers to only

S.

II x

..




50 50
O 10 20 30 40 50 O 10 20 30 40 50 O 10 20 30 40 50

Original 51x51 image: MLP 10/20/10 Interpolation: Resnet 10/20/10/10 Interpolation:
2601 gray level values. 471 weights, loss 6.43e-02. 581 weights, loss 5.30e-2.

0.35
0.30 R
0.25 1 R
"
a
S
0.20 - R
0.15

Linear 10 -> 1

o
-
A
1
N
—
©
Q
=
-

Linear 10 -> 20
Linear 20 -> 10
Linear 10 -> 10
Linear 10 -> 10

Number of weights

—> Adding a ResNet layer yields a further small improvement.
EPEL pr




Adding a ResNet Layer
0 T ’ 0

10

5
20

30

10
15

20 40

|

| 50 £
O 10 20 30 40 50 O 5 10 15 20 0 10 20 30 40 50

Original 51x51 image: MLP 10/20/10 Interpolation: Resnet 10/20/10/10 Interpolation:
2601 gray level values. 471 weights, loss 1.95e-02. 581 weights, loss 1.36e-2.

e Relatively small improvement in this case.
o We will see a different behavior for large networks.
e The problem is probably too small.

—> Networks can behave very differently for small and

cpe| large problems! A




Tanh vs Relu

2 =

20
30

40

50

Original 51x51 image: MLP 10/20/10 Interpolation:
2601 gray level values. Tanh, loss 6.43e-02.

0.25
0
go020f
0.15
0.10 |
x
0.05 -
500 1000 1500
Number of weights

<111

50 50
O 10 20 30 40 50 O 10 20 30 40 50 O 10 20 30 40 50

MLP 10/20/10 Interpolation:
RelLU, loss 3.07e-1.

Tanh, 1 layers
Tanh, 2 layers
Tanh, 3 layers
ReLU, 3 layers
Tanh, 4 layers

—> Tanh works better than ReLU in this case.

=Pr-L
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Tanh vs Relu

\ ¥

] | 0 . .
O 10 20 30 40 50 O 5 10 15 20 O 10 20 30 40 50

Original 51x51 image: MLP 10/20/10 Interpolation: MLP 10/20/10 Interpolation:
2601 gray level values. tanh, loss 1.95e-02. relu, loss 7.21e-2.

e Tanh works better than ReLU in this case.

e RelLU is widely credited with eliminating the vanishing gradient problem
in large networks.

—> There is no substitute for experimentation!

=PrL A




Overfitting vs Underfitting

OVERFITTING

error

OPTIMUM

error

UNDERFITTING




1.00 A

0.75 4

0.50 +

0.25 4

0.00 A

1.00 A

0.75 A

0.50 +

0.25 A

0.00 A

1.00 A

0.75 4

0.50 +

0.25 4

0.00 +

Overfitting

One hidden layer, n=10, no noise.

O.IO 0.'2 0:4 0.I6 0.I8 1j0
One hidden layer, n=10, noisy data.

0.0 o.'2 0.4 0.6 0.8 1fo
Two hidden layers, n1=10, n2 = 10, noisy data.

0.0 0.2 0.4 0.6 0.8 1.0

Multi-layer perceptrons have
great descriptive power and
can approximate almost any
reasonable function.

But they can also overfit.

There is no truly automated
way to set the number and
width of the layers.




Reminder: Stochastic Gradient Descent

E(w) =) En(w)

- ‘ ‘J -
n=1 Gradient Descent "~ —

N
Gradient descent: w™ ™ = w”™ — 7 Z VE,(w") .
n=1 o
Stochastic descent: w” T =w" — 17 Z VE,(w"),
neBT

where B” represents a different randomly chosen set of indices at each iteration,

also known as a mini-batch.

Randomly choosing batches
* helps reduce the chances of falling into local minima,

» makes the computation possible on GPUs even when dealing
with LARGE databases.

=PrL A




Using Mini-Batches

One hidden layer, n=10, no noise.

e The element of randomness

One hidden layer, n=10, noisy data, batches.

prevents overfitting.

e No principled way to set the
size of the mini-batches to

0.2 0.4 0.6 0.8 10 = =
Two hidden layers, n1=10, n2 = 10, noisy data, batches. aCh Ieve t ’] IS resu It.

L A




One hidden layer, n=10, no noise.

1.0 1

0.8 |

0.6

0.4

0.2 1

0.0 1

Two hidden layers, n1=10, n2 = 10, noisy data.

1.0 A

0.8 1

0.6 1

0.4 |

0.2 1

0.0 1

Weight Decay

One hidden layer, n=10, noisy data.

1.0
0.8
0.6
0.4
0.2
0.0

-0.2 1

E(w) =) Eu(w)+\|w|?

0.0 0.2 0.4 0.6 0.8 1.0

Two hidden layers, n1=10, n2 = 10, noisy data, weight decay.

How large should A be?

0.8 1

0.6 1

0.4 1

0.2 1

0.0 A

—-0.2 1

0.0 0.2 0.4 0.6 0.8 1.0

—>Use validation data as usual.




Interpolation vs Extrapolation

1 === y=x"2
— y=net(x)

-1.0 -0.5

Extrapolation

—> Perceptrons do not extrapolate well

0.5

Interpolation

1.0

1.5

2.0

Extrapolation

P




Interpolation vs Extrapolation

P




Reminder: Learning the Weights

» Given a training set be {(X,, [}, ..., £X]); <<y} Where t* € {0,1} is
the probability that sample x, belongs to class k, we write:

Y, =fw(X,) € R®
Dk = exp(y,[k])
T2 exp(y,LiD)

* We want to minimize the cross entropy

E(w)=— ) In(pf),

with respect to the coefficients of w. !




—we DEEP Stochastic Gradient

= J output layer
K
E,(w)=— ) t‘In(pl)
h k=1
— Ln(yl’ "'yK)
1 =L (a,...ax)
zn = ol(ap) z; = o(a;) z; = o(aj) Y = ak
o ap = thzxz a; = Zwihzh a; = Zwﬂzz ap = Zwkaj
l h i J
N
E(w) =Y E.(w) w = [wj]
n=1 op _ [9En
with=w'—n )  VE.(w) " dwy




%, KUNGL.
| VETENSKAPS-

]
AKADEMIEN
THE ROYAL SWEDISH ACADEMY OF SCIENCES

8 OCTOBER 2024

© Nobel Prize Outreach. Photo:

Clément Morin

Geoffrey Hinton

Nanaka Adachi
John J. Hopfield

Prize share: 1/2 Prize share: 1/2

The Nobel Prize in Physics 2024 was awarded
jointly to John J. Hopfield and Geofirey Hinton
"for foundational discoveries and inventions that
enable machine learning with artificial neural
networks"

=PrL

Scientific Background to the Nobel Prize in Physics 2024

“FORFOUNDATIONAL DISCOVERIES AND INVENTIONS

THAT ENABLE MACHINE LEARNING
WITH ARTIFICIAL NEURAL NETWORKS”

The Nobel Committee for Physics

A key advance was the
demonstration by David Rumelhart,
Hinton and Ronald Williams in 1986
of how architectures with one or more
hidden layers could be trained for
classification using an algorithm
known as backpropagation ...

P



input layer

o —————

|

Ly

=PrL

Partial Derivatives

output layer

h En :Ln(al, ,CLK)
1
zn = ol(ap) zi = o(a;) z; = o(ay) Yk = ak <«— Hidden vals
ap = thlfﬂ'l a; = Zwihzh a; = Zwﬂzz A — Zwkaj <+— Activations
l h 7 J
5En . 5En (SCLJ'

5’wj7; - 5Cl,j 5wj7;

= (5]22/

oK,
5CLj

—> Given the 6; we can compute all partial derivatives.

P




input layer

Ly

EPFL

Computing 6§,

J

output layer

zn = o(an) z; = o(a;) zj = o(a;) Yk = ag

ah:E WpTy  Qa; = E WihZh aj:E wiiz; Ok = E Wi 24

OE,
(5ak

Output layer: 0y, = No wij here.




input layer

Computing 4,

J output layer
S
h En:Ln(afla 7aK)
1
zp = o(ap) z; = o(ay;) z; = o(aj)
L1 ap = thll’l a; = Zwihzh a; = Z Wj;Z; Yk = Zwkaj
l h 7 J
oE oE, o _
Other layers: &, = = n 0% Ak = Z wrjo(a;)
7 ba day oa; j
VoV
= Z odo'(apwg]l o The J; can be computed given the 6.
£y * We can go back and compute all the others.
k

=PrL
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Forward pass:

Backward pass:

Back Propagation

Vh , ap = thzwz , zn, = o(ap)
z

Vi, a; =Y winzn, 7 = o(a;)

0F,
5ak

Vi, 65 =0(a;) ) wkidk
k

Vk , 0 =

\4) y 51 — 0’(ai) iji5j
J

Yh, 6, =o' (an) Zwih%

J




Back Propagation

"~

L=

N

10000000000

~VC(...) =
"

All weights
and biases

(
N N

QUOOC(

3Blue1Brown: https://www.youtube.com/watch?v=Illg3gGewQ5U



https://www.youtube.com/watch?v=Ilg3gGewQ5U

Back Propagation

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

:::_:_/_::—/ N —
< . P > & output layer hl = 01 (WlX]_ _|_ b]_)
' k hy, = 02(W3hs +by)
X : &

Both the loss and its derivatives can be computed using simple
and regular operations.

Can be implemented on GPUs and runs much faster than on
CPUs.

=Pr-L ‘@




Vanlshlng and Exploding Gradients

sigmoid ReLU

\4) ] 52 — O'I(Cbi) ijf,;éj
J

In a very deep network, the derivatives at all levels are multiplied by each
other:

e As o(a;) approaches zero, so does ¢o; and the gradients in the lower
layers are lost. —> Vanishing gradients.

o If the o, become large in several consecutive layers, their product can
become exponentially large —> Exploding gradients.

The problem can be mitigated by using RelU, clipping the gradients,
relying on gated or resnet-type architectures, ...

=PrL ‘@




Back Propagation Works'!

) hidden layer 1  hidden layver 2 hidden layer 3
input layer

e N e o —
— — - T ey - T
— ~ o~ e / \ —— -
. S - o -
-

) -\":‘_::’f; -q- NN <, '.;__ . _ -.: _,2"‘/ ] output layer h1 — 01 (W1X1 _I_ bl)
Qs ‘ hy = 02(Wshs + by)
— N‘
’EE;:::"'—:«-\_\_ L ___:::—:‘:;::;\\\ ,Z:E;;—;—i-f_
S~ - — Uf-—-' —~

Both the loss and its derivatives can be computed using simple
and regular operations.

Can be implemented on GPUs and runs much faster than on
CPUs.

Vanishing and exploding gradients can be handled through a
number of methods, the simplest of which is to use reLU to
introduce the non-linearities.

=PrL ‘ﬂ




Optional: Deforming 3D Surfaces

J”Q' '
)
Qi

‘(v'v’r',;,

EPFL Ngo, PAMI’16 ‘@




Optional: 3D Surface Representations

Voxels Explicit surface mesh Point sets Continuous implicit fields

High frequency details? - ++ + ++
Arbitrary topology? + - + ++
Regularity? + + ++

There are many applications at which explicit representations excel:
e High-quality rendering in computer graphics.

e Precise modeling of biological structures from biomedical data.

o Computational fluid dynamics in computer assisted design.

But:
e Their topology is fixed.
e They are not particularly deep learning friendly.

—> Implicit Surface Representations ﬁ




Optional: Signed Distance Fields (SDF)

lllll
boundary

e ofimplict
° surface

* e sDF>0
.I

. o
@ SDF <0
{c)

* Represent a 3D surface S by the zero crossings of a signed distance function
FR->R
Vx € R, f(x) is the signed distance to the surface.

* Such surfaces can easily change topology, which 1s harder to do with explicit
surface representations.

* SDFs have long been appealing in theory but hard to use in practice because
it it was necessary to store the 3D values of f1n a cube like structure until ....

=Pr-L ‘ﬁ




Optional: Deep SDF

C G, G
S N —
C, C; Ce C,
\
C
X =(x,Y,2) S = fo(X) s =f(x| C)

/ X

Single Shape DeepSDF Coded Shape DeepSDF

C 1s a latent vector that parameterizes the surface.

—pr-
= P 'm L [Park et al., CVPR’ 1@




Optional: From Genus 0 to Genus 1

1. Start with a Deep SDF code.

2. Use marching cube to compute
vertices and facets.

3. Use them for the forward pass
and for backpropagation.

4. Update the SDF code and iterate.

—> We can turn a genus 0 cow into a genus 1 duck by minimizing a

differentiable objection function.
P II= L [Remelli et al., NeurIPS’m

m



FCs

Optional: Introducing Priors

Simultaneously learn

* the network weights 6,

Marchin
2 e a code C for each car.

cubes

Derivative

sport car convertible  car coupe coupe car

utility

P > & S
sedan sedan car car sport sedan jeep

utility

car sedan sedan convertible car coupe car
Ii : . : sport :
sedan coupe t°‘ff'_”9 car sedan convertible

utility

[Guillard et al., PAMI’24] ‘ﬁ




m

Optional: From Pickup-Truck to Sports Car




Optional: Heat Exchanger

Predict and optimize the heat-exchange performance of 3D monolithic
Mmacro-porous structures

“PFL
= Mallyaa, Journal of Heat Transfer’23
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MLPs in Short

Other approaches

Neural Networks

Now
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Error
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MLPs get their descriptive power from their depth.

The more training data the better.

In other ML methods, excessive data complexity yields overfitting.
No so, in MLPs. Given enough training data, deeper is better.
MLPs are very good at interpolating.

Less so at extrapolating.

Much the same thing can be said of other
architectures. We'll get back to that.

L [Mikhail et al. PNAS’19], [Spigler et al. Journal of Physics’19] A




