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Logistic Regression is Better
than the Perceptron
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Outliers Can Cause Problems

e Logistic regression tries to minimize
the error-rate at training time.

e (Can result in poor classification rates

at test time.
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margin

The orthogonal distance between the decision boundary
and the nearest sample is called the margin.

P-L Bishop, Chapter 7.1 A




Maximizing the Margin

Bad Best

e The larger the margin, the better!
e The logistic regression does not guarantee the largest.

How do we maximize the margin? ﬁ
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Reminder: Signed Distance

@x=1[1x,...,x] h=0: Point is on the decision boundary.
A « h>0: Point on one side.
~ h<0: Point on the other side.

w=I[w,...w]

N
W = [wy, wy, ..., w,] wWith Z wl.2 =1
i=1

\4

Hyperplane: x € RN, W . % =0, withx =[1]x].

Signed distance: w - X, with w = [wy|w] and | |w]|]| = 1.

e
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Binary Classification in N Dimensions

Hyperplane: x € RN, W . X =0, withx =[1]x].

Signed distance: W - X, with w = [w,|w] and | |w]|]| = 1.

Problem statement: Find w such that
o for all or most positive samples w - X > 0,

« for all or most negative samples w - X < 0.
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Reformulating the Signed Distance Again

@x=1[1x,...,x] h=0: Point is on the decision boundary.
A « h>0: Point on one side.
~ h<0: Point on the other side.

W = [Wl’ ,WN]

W = [wy, Wy, ..., wy] With 2=

\4

Hyperplane: x € RN, W . % =0, withx =[1]x].

Signed distance: w - X, withw =[1|w]and | |w|| = 1.
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Reformulated Signed Distance

@x=1[1,x,...,x] h=0: Point is on the decision boundary.
A « h>0: Point on one side.
~ h<0: Point on the other side.

w=I[w,...w]

W = [w,|w] € RN*!
~, w W W
| [w]] LIwl]  [lw]]

\4

Signed distance: W’ - X , VW € RVt
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Maximum Margin Classifier

« Given a training set {(X,,,%,);<,<y} With ¢, € {—1,1} and solution
such that all the points are correctly classified, we have
Vn, t(w, -X)>=0.
* We can write the unsigned distance to the decision boundary as
(W-X,)

o I wl

—> A maximum margin classifier aims to maximize this distance for
the point closest to the boundary, that is, to maximize the minimum
such distance.

n

tn-(v“'v-in)

w* = argmax min (
Iwl

-
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Maximum Margin Classifier

o (1, (WX,
W* = argmaxg, min

n

» Unfortunately, this 1s a difficult optimization problem to solve.

« We will convert 1t into an equivalent, but easier to solve, problem.

8
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Maximum Margin Classifier

* The signed distance is invariant to a scaling of w:

W—o Aw:d =1 =1, .
[1Aw]] [Tw]]

» We can choose A so that for the point m closest to the boundary, we
have

L (w-X )=1.
 For all points we therefore have
r(w-X)>1,

and the equality holds for at least one point.




Linear Support Vector Machine

Vn, t(w-X)2>1
dn t(W-X,) =1

* To maximize the margin, we only need to maximize 1/||w||.
1 2

 This is equivalent to minimizing 5 | |w] |

* We can find a max margin classifier as

wk = argminw5| | w | |2subject toVn, t,-(W-X)2>1

 This 1s a quadratic program, which 1s a convex problem.

—> It can be solved to optimality. A
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LR vs Linear SVM

Logistic regression Linear SVM

e The LR decision boundary can come close to some
of the training examples.

e The linear SVM tries to prevent that.
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From Perceptron and LR
to Linear SVM
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Logistic Regression
No!
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Maximum Margin Classifier

Rarely achievable in practice.

« Given a training set {(X,,,%,);<,<y} With ¢, € .1} and solution
such that all the points are correctly classified, we have

Vn, t(W-X,)>=1.

* We can write the unsigned distance to the decision boundary as
(W-X,)

o I wl

—> A maximum margin classifier aims to maximize this distance for
the point closest to the boundary, that, 1s maximize the minimum
such distance.

n

tn-(v“’v-in>

w* = argmax min (
Iwl
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Overlapping Classes
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The data rarely looks like this. It generally looks like that.

—> Must account for the fact that not all training samples can be correctly classified!
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Relaxing the Constraints

* The original problem

1
wk = argminwzl | w | |2subject t L-(w-X)>1,

cannot be satisfied.

 We must allow some of the constraints to be violated, but as few as
possible.

A
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Slack Variables

- We introduce an additional slack variable &, for each sample.
- We rewrite the constraints as ¢, - (W -X, ) > 1 —¢&,.

- £ > 0 weakens the original constraints.

- If0 < ¢, <1, sample n lies inside the
margin, but 1s still correctly classified

- If £, > 1, then sample i 1s misclassified
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Naive Formulation

wW* = argminwal |w ||

subjectto Vn, ¢ -(W-X)>1—-¢& andé, >0

* This would simply allow the model to violate all the original
constraints at no cost.

e This would result in a useless classifier.

.

"N
r




Improved Formulation

. I PR |
W = argmingy g W+ C

n=1

subjectto Vn, ¢ -(W-X)>1—-¢& and&, > 0.

n

- C 1s constant that controls how costly constraint violations are.

» The problem 1s still convex.

X, | 9
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Large margin but potential Smaller margin but fewer
L misclassifications. misclassifications.
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Choosing the C Parameter

400 A 400 A

300 - 300 -

200 A 200 A

100 A 100 A

0 -

0 100 200 300 400 0 100 200 300 400
C=1: C=100:
e Large margin. e Small margin.
e Many training samples misclassified. e Few training samples misclassified.

Which is best?
e [t depends.

e Must use cross-validation, as we did for k-Means. g




Linear SVM Trade Off

e The points can be linearly
separated but the margin is still
very small.

e At test time the two circles will be
misclassified.

e The margin is much larger but one
training example is misclassified.

o At test time the two circles will be
classified correctly.

—> Tradeoff between the number of mistakes on the training

data and the margin.
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Support Vector Machines

0% 10% 20% 30% 40% 50% 60%

Logistic Regression
Decision Trees
Random Forests
Neural Networks
Bayesian Techniques
Ensemble Methods
s | T
Gradient Boosted Machines
CNNs
RNNs
Other

Evolutionary Approaches - 5.5%

HMMs [ 5.4%

Markov Logic Networks - 4.9%

GANs [} 2.8%
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