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N: Dimension of the space

Reminder: Cover’'s Theorem

A complex pattern-classification problem, cast in a high-dimensional space nonlinearly, is more likely to
be linearly separable than in a low-dimensional space, provided that the space is not densely populated.

Geometrical and Statistical properties of systems of linear inequalities with applications,1965
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e ML shouldn’t work. P,

PEL e Yet it does. " A




Example: MNIST Again

e The MNIST images are 28x28 arrays.
e They are not uniformly distributed in R784,
e In fact they exist on a low dimensional manifold.
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Example: Golf Swings

The skeleton used
to describe the body
pose has 51 degrees
of freedom.

Urtasun et al. , CVPR’05
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Example: Golf Latent Space
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e The golf swings exist on a 2D manifold in R>1.
e There is a mapping from a 2D space to this manifold.
e This can be said of MNIST images, golf swings, and
many other things.

—> This is what makes many ML techniques viable. 5

=PrL Urtasun et al. , CVPR’05




Dimensionality Reduction

It involves:
e discovering the data manifold,
e finding a low-dimensional representation of the data,

e some loss of information and hopefully noise reduction.
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Formalization
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Our goal is to find a mapping y; = f(x))

e x. € R”: High-dimensional data sample
e y. € R%: Low-dimensional representation

How about a linear one y, = W'x?

D Xxd

p=; We will talk about Non-Linear ones next week. A
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Principal Component Analysis (PCA)

Given N samples {X;}, PCA yields a projection of the form

y=Wix,—%) st WWwW=I,

I
X=Ni=21Xi

What do we want this projection to achieve?

L Bishop, Chap. 12.1 A




PCA Objective
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 We want to keep most of the “important” signal while removing

the noise.

 This can be achieved by finding directions in which there 1s a

large variance, that is, for the j™ output dimension, we want to
maximize

. I o o0
var({y}) = = Z YD = O,
=1

where /) is the mean of the dimension of the j™ data point after
“P~L projection. A




Variance Maximization

Let us begin with the projection into a 1D space:

« We use a D-dimensional vector w, s.t., WlTwl = 1, instead of

a matrix W € RP*4.

* In this case, the mean of the data after projection i1s




Variance Maximization

Therefore, the variance of the data after projection 1s

N

1
var({yh) =+ 2, 0y =) = Z(w1 — WIX)?
i=1 i=1
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where C is the input data covariance matrix

1 N
C =N§(xi—X)(xi—X)T




Variance Maximization

« Ultimately, we seek to solve

max w; Cw, subject to ww, = 1.
Wi
=w, should be the eigenvector associated to

the larger eigenvalue of C.




Backtod > 1

To obtain an output representation that is more than 1D, i.e., d > 1, we can
iterate:

=The second projection vector w, corresponds to the eigenvector of C
with the second largest eigenvalue

= The third vector w; to the eigenvector with the third largest eigenvalue
- ..

The matrix W is obtained by concatenating the resulting vectors
W — [Wl |W2| °ee |Wd] E RDXCZ

This is guaranteed to satisfy the constraint W/W =1, because the
eigenvectors of a matrix are orthogonal and of norm 1.

The amount of explained variance is W/ CW = Z A
i
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PCA without Dimensionality Reduction

* In the limit, one can use all dimensions, 1.e., setd = D
—There 1s therefore no reduction of dimensionality
—In 3D, you can think of this as a rotation of the data
—This 1ncurs no loss of information
—The d = D dimensions in the new space are uncorrelated
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PCA without Loss of Information

Another option 1s to keep all the eigenvectors corresponding
to non-zero eigenvalues:

» This works best the data 1s truly low-dimensional.

« The resulting {y;} are lower dimensional (d < D)
without loss of information.

e This happens trivially when there are fewer samples
than dimensions (N < D).




PCA with Loss of Information

* In practice, one typically truncates the eigenvalues so as to discard
some that are non-zero.

—This can be achieved by aiming to retain a pre-defined percentage
of the data variance, measured as the sum of eigenvalues.

—For example, to retain at least 90% of the variance, one can
search for d such that

d D
N 4>09-) A,
j=1 k=1

assuming the eigenvalues to be sorted in decreasing order.

- The resulting {y;} have an even lower dimension.




Classifying Irises

« UCI Ir1s dataset:
— 3 different types of 1rises
— 4 attributes
v’ petal length
v petal width
v sepal length
v’ sepal width

4 attributes means D = 4, so d 1s at most 4.

E P F L http://archive.ics.uci.edu/ml/datasets/iris



http://archive.ics.uci.edu/ml/datasets/iris

Cumulative Variance

PCA Analysis
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Medical Application

« The Cancer Genome Atlas breast cancer RNA-Seq
dataset:

—Normal tissue vs primary tumor:

—20532 features, that 1s genes for which an expression 1is
measured.

—204 samples.
e 20532 features means D = 20532, so d is at most 20532.

 However, because we only have N = 204 samples, d is at
most 204.

https://medium.com/cascade-bio-blog/creating-visualizations-to-better-understand-your-data-and-models-part-1-a51e7e5af9c0 !

=PrL



https://medium.com/cascade-bio-blog/creating-visualizations-to-better-understand-your-data-and-models-part-1-a51e7e5af9c0
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Cumulative Variance

PCA Analysis
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Medical Application

TCGA-BRCA RNA-Seq PCA
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Samples of the Cancer Genome Atlas breast cancer RNA-
Seq dataset projected in 2D.

—> Relatively easy to classify. l



https://medium.com/cascade-bio-blog/creating-visualizations-to-better-understand-your-data-and-models-part-1-a51e7e5af9c0
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PCA: Mapping

- PCA not only reduces the dimensionality of the original

data. It provides a continuous mapping from the low-
dimensional space to the high-dimensional one

- That is, for any y € R%, we can compute a point in the

high-dimensional space as
X =X+ Wy
=X+ 2 aw; withy = [y, ..., aq]"

- This mapping constrains X to lie in a subspace, and thus

provides a form of regularization.
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Toy Example

e Original data
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Toy Example
e Original data
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Optimal Linear Mapping
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- This mapping incurs some loss of information.

- However, the corresponding rectangular matrix W is the
orthogonal matrix that minimizes the reconstruction error

e = |I% —x||°
where
XR=Xx+Wy=x+WW/(x -X)
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» The x are vectors representing the
images. The w are the eigenvectors
of the covariance matrix.

« Exact reconstruction:
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* Approximate reconstruction:

M
X+ Z a;w,; with M < N

n=1

Turk and Pentland, CVPR’91 A
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Reconstruction Using Eigenfaces

Project and reconstruct left image to produce the right one.

=PrL



3D Face Modeling

Blanz & Vetter, SIGGRAPH’99 A




3D Face Modeling

Blanz & Vetter, SIGGRAPH’99



Non Linear Face Models

Model fitting

B
o

Rendering Layer

e PCA has been replaced by an encoder / decoder architecture.
e To be discussed next week.

=P-L Tran & Liu, CVPR’18 A




Linear vs Non Linear

Q Jr.)




20 Years Later: Deep Fakes

i Even better results
using deep networks.

e But, much more
complicated non-
linear technique.

o We will talk return to
this in the next
lecture.

Landmarks Generator
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E P :: L https://neurohive.io/en/news/deepfake-videos-gan-sythesizes-a-video-from-a-single-photo/ A



https://neurohive.io/en/news/deepfake-videos-gan-sythesizes-a-video-from-a-single-photo/

A Problem for EigenFaces

o Two different faces seen under
very different illumination
condition.

e The first eigenvector is very
likely to capture differences in
illumination.

—> C(Classes are not well
separated.

PFL A




Dimensionality Reduction for Classification

PCA is unsupervised and thus may not always preserve
category information.
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3D data from 2 classes (colors)

How about exploiting class labels during DR?




Fisher Linear Discriminant Analysis (LDA)

Ideally, we want:
 the samples from the same class to be clustered

« the different classes to be separated

=Pr-L Bishop, Chap. 4.1.6




Clustering Samples from the Same Class

- Mathematically, this means that we want a low variance within
cach class after projection

- For a 1D projection, encoded via a vector w,, and C classes, this
can be expressed as aiming to minimize

C
Eyw) =) ) (- v,)

c=1 iec

where v, 1s the mean of the samples in class c after projection, and
i € c indicates that sample i belongs to class c.

Note that both the y; and v. depend on w.

L A




Clustering Samples from the Same Class

- As 1n the PCA case, the variance after projection 1s equal to the
projection of the covariance matrix

- This lets us rewrite the previous objective function as
Ey(wp) = wiSyw,

where
C

Sy =2 Y % — )% — ),

c=1 iec

and pu_. 1s the mean of the data in class ¢ before projection.

- Sy 1s referred to as the within-class scatter matrix.




Separating the Different Classes

» In addition to clustering the samples according to the classes, we
want to separate the different clusters

- This can be achieved by pushing the means of the clusters away
from each other.

- Mathematically, this means maximizing

C
Eg(W)) = ) N, — )%,
c=1

where v, 1s defined as before, y 1s the mean of all samples after
projection, and NV, 1s the number of samples in class c.

PFL A




Separating the Different Classes

* Following the same reasoning as before, this can be re-written as
T
Ep(w)) = Wi Spw,,

where
C
Sp =D N.(u.— D), — %",
c=1

X is the mean of all the samples, and the {u.} are class-specific
means.

- S is referred to as the between-class scatter matrix

PFL A




Fisher LDA in Dimension 1

- We want to simultaneously
- minimize Ey(w,)
» maximize Ex(W,)
- This can be achieved by maximizing

Eg(w)  w{Spw,

~
[
|
I

Ey(w))  wiSyw;’
because minimizing a function f( - ) can be done by maximizing
1/f( ), in general.

PFL A




Fisher LDA in Dimension 1

» The previous objective function is invariant to scaling:
](awl) — J(Wl)
+ So we can fix the scale by constraining w, to be such that

T _
w Syw, = 1.

—> Fisher LDA formulation

max wiS;w, subject to wi Sy, w, = 1.
Wi

—> W, 1s the solution of a generalized eigenvalue problem.

EPFL H



PCA vs LDA

® PCA : Maximize projected variance.

® LDA : Maximise between class variance and minimize within
class variance.

Poor
discrimination

.

Good
discrimination




Fisher LDA on MNIST

2D 3D

—> It only takes relatively low-dimensional spaces to yield decent
clusters!

=Pr-L A




Reminder: Face Images

e The same can be said about face images.
e And of many other things.
—> Non linear classification is a practical proposition.

CPEL Fan et al. AVBPA’05 A




EigenFaces vs FisherFaces

« Consider a dataset of face images:
o 2 different expressions.
e several illumination conditions.

. ~ '
pl.,exl1,ill pl.ex1,il2 pl.ex1,il3 pl.ex2,ill pl.ex2.il2 pl.ex2,il3

* One can apply either PCA or LDA to these images
* The resulting eigenvectors can also be thought of as images.
* They are called eigenfaces for PCA and fisherfaces for LDA.

EPFL N,




EigenFaces vs FisherFaces

FisherFaces

« The EigenFaces contain information about the illumination and
yield the best reconstructions.

e The FisherFaces discard the illumination information and are thus

more useful for classification.
EPFL Swets & Weng, PAMI’96 A




Linear vs NonLinear

e We could get better classification results
with non-linear classifier.

o Is it also true of dimensionality reduction?

—> We will talk about this next.




