

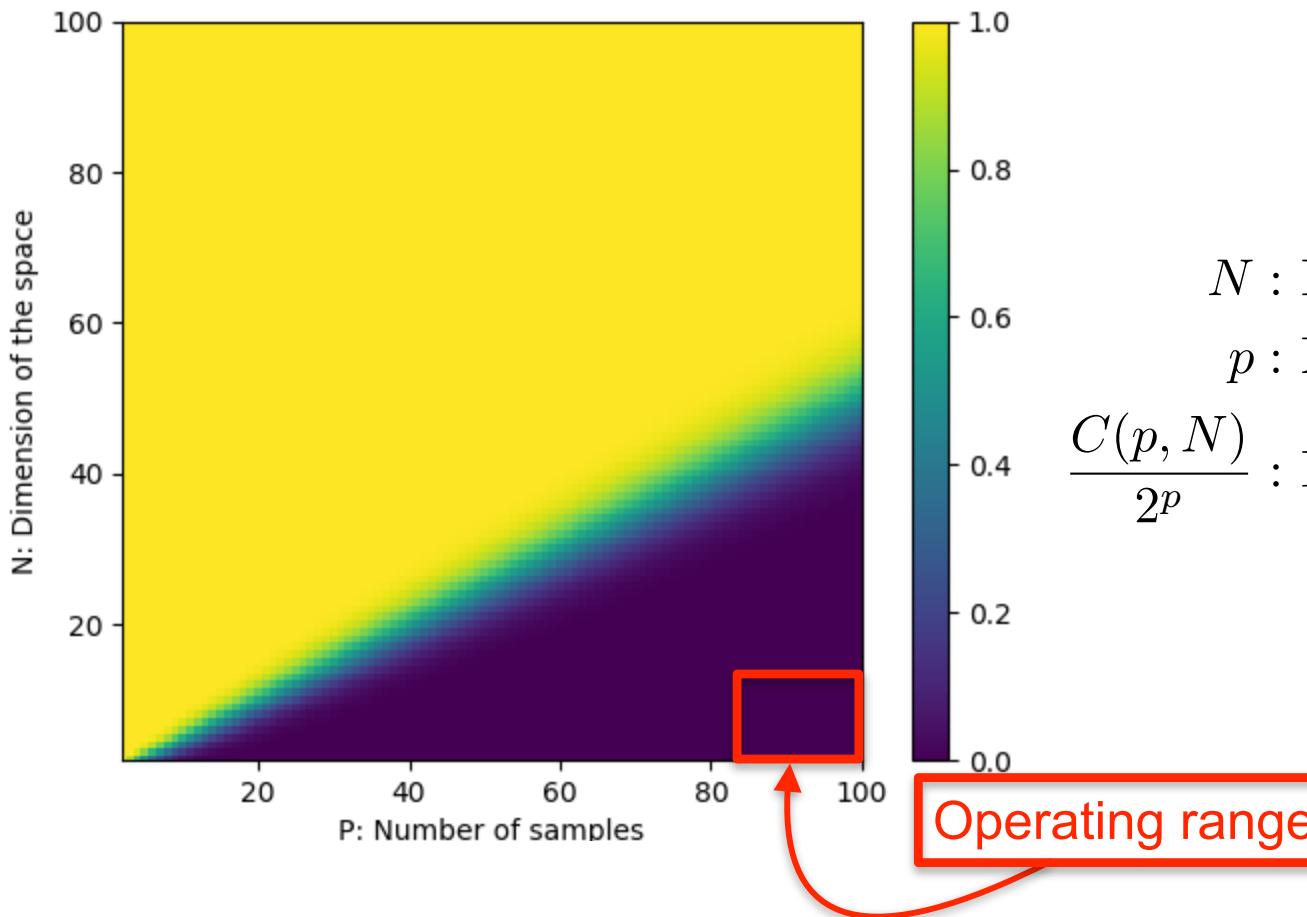
Linear Dimensionality Reduction

Pascal Fua
IC-CVLab

Reminder: Cover's Theorem

A complex pattern-classification problem, cast in a high-dimensional space nonlinearly, is more likely to be linearly separable than in a low-dimensional space, provided that the space is not densely populated.

Geometrical and Statistical properties of systems of linear inequalities with applications, 1965



N : Dimension of space

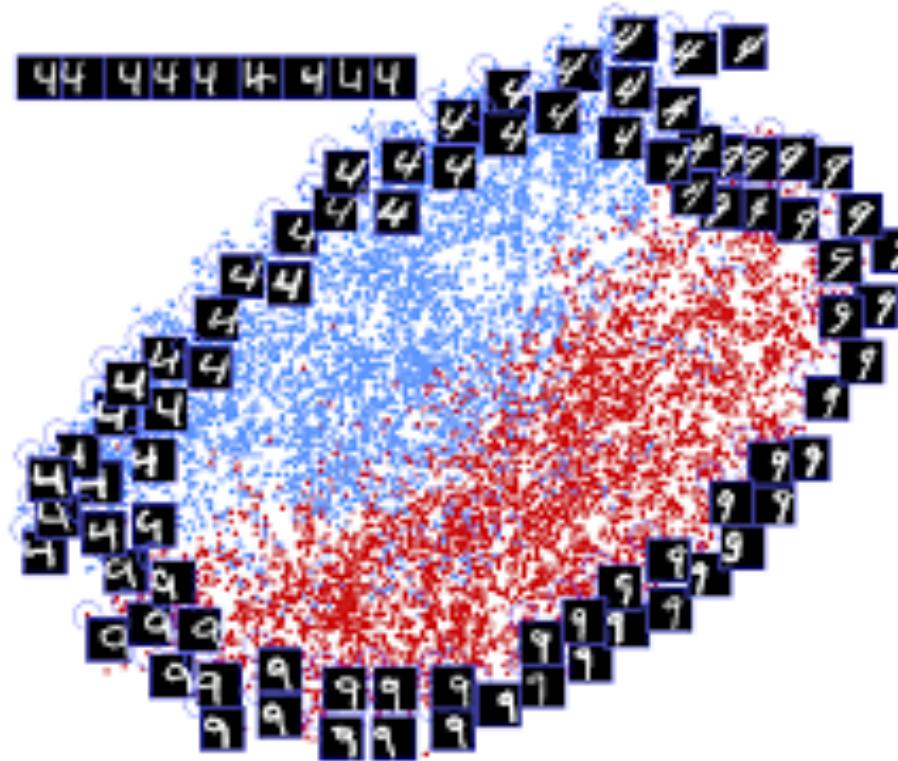
p : Number of samples

$\frac{C(p, N)}{2^p}$: Percentage of separable partitions

- ML shouldn't work.
- Yet it does.

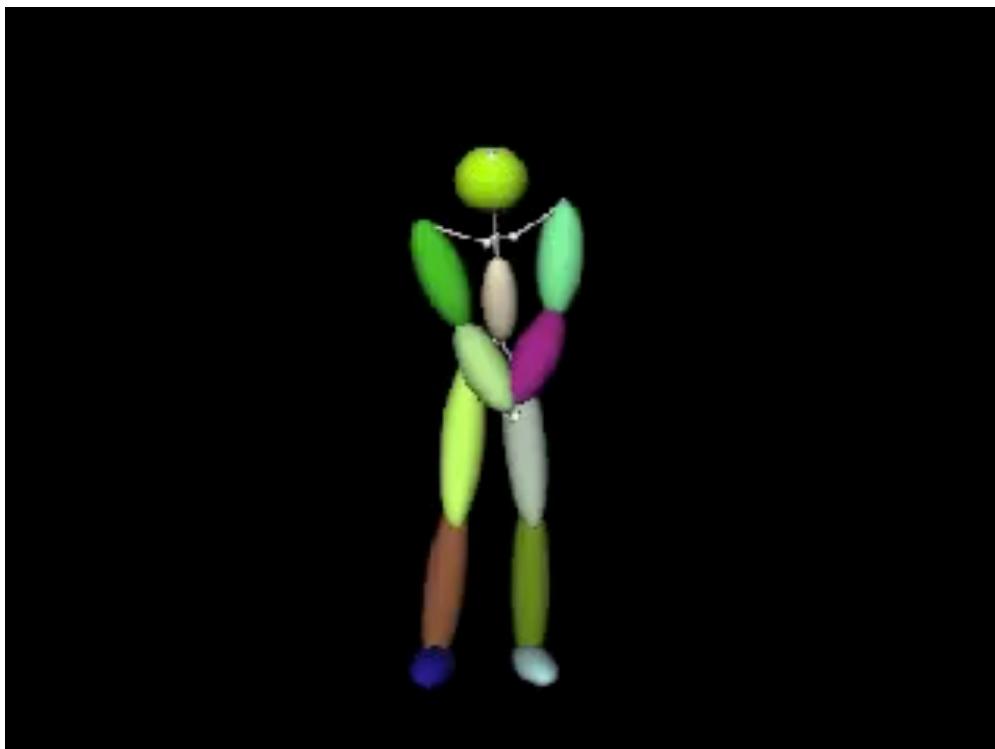
?

Example: MNIST Again



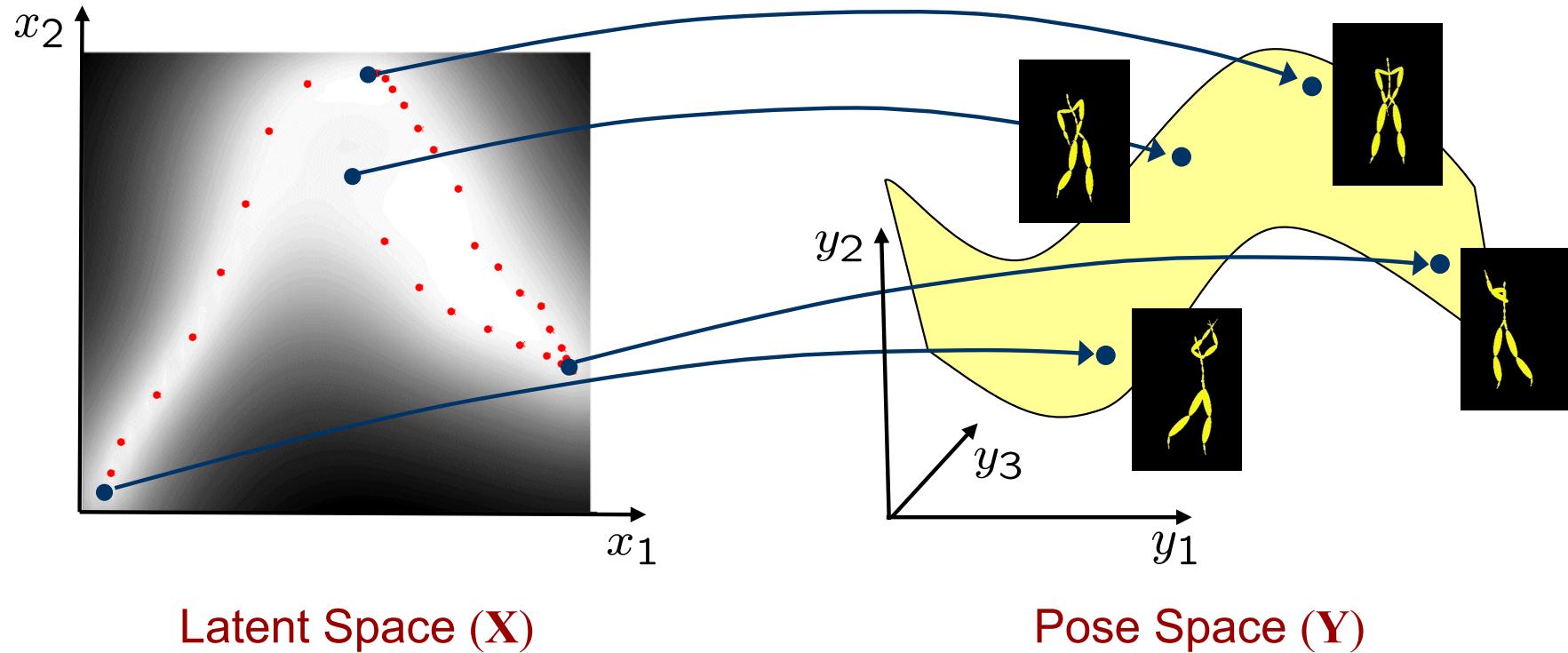
- The MNIST images are 28x28 arrays.
- They are **not** uniformly distributed in \mathbb{R}^{784} .
- In fact they exist on a low dimensional manifold.

Example: Golf Swings



The skeleton used to describe the body pose has 51 degrees of freedom.

Example: Golf Latent Space



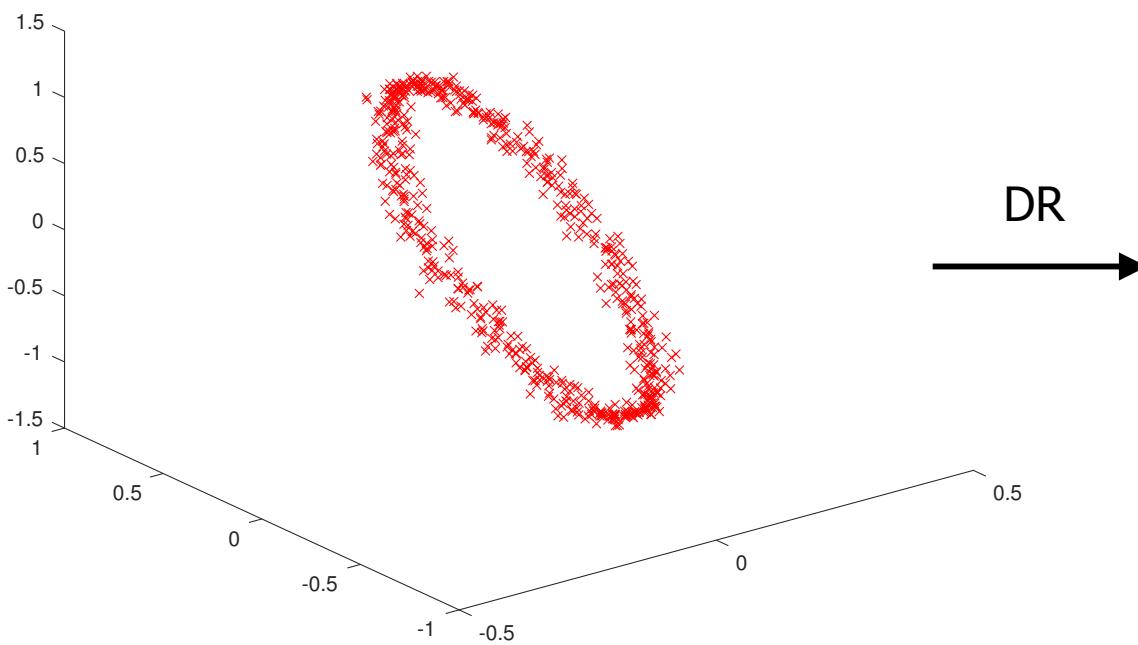
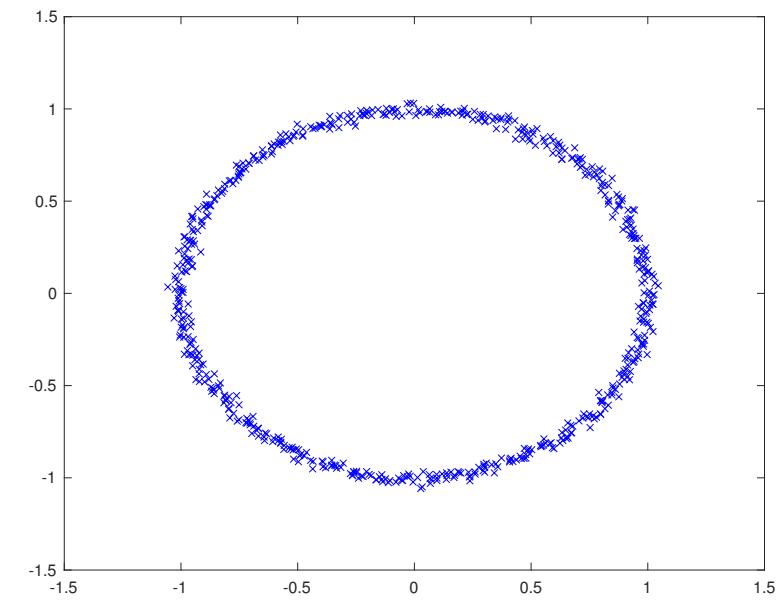
- The golf swings exist on a 2D manifold in \mathbb{R}^{51} .
- There is a mapping from a 2D space to this manifold.
- This can be said of MNIST images, golf swings, and many other things.

→ This is what makes many ML techniques viable.

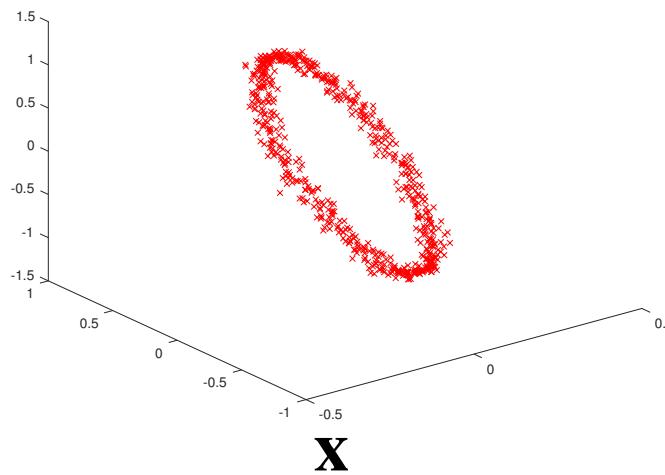
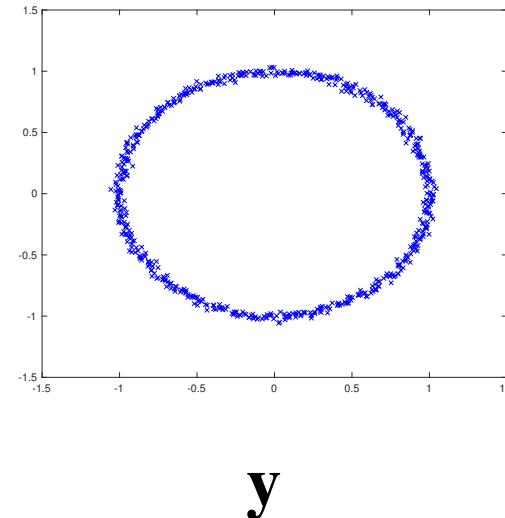
Dimensionality Reduction

It involves:

- discovering the data manifold,
- finding a low-dimensional representation of the data,
- some loss of information and hopefully noise reduction.



Formalization



Our goal is to find a mapping $y_i = f(x_i)$

- $x_i \in \mathbb{R}^D$: High-dimensional data sample
- $y_i \in \mathbb{R}^d$: Low-dimensional representation

How about a linear one $y_i = \mathbf{W}^T \mathbf{x}_i$?
 $D \times d$

Principal Component Analysis (PCA)

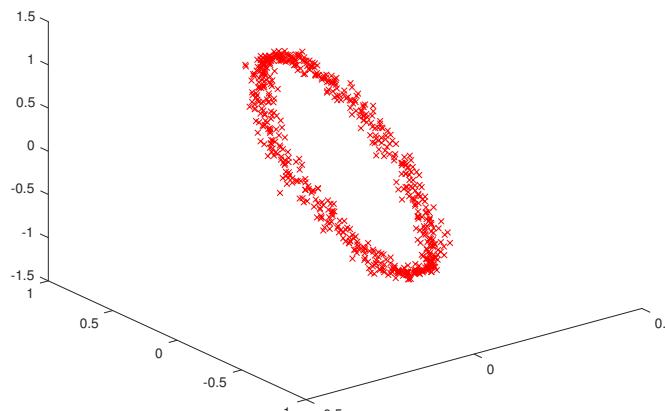
Given N samples $\{\mathbf{x}_i\}$, PCA yields a projection of the form

$$\mathbf{y}_i = \mathbf{W}^T(\mathbf{x}_i - \bar{\mathbf{x}}) \quad \text{s.t.} \quad \mathbf{W}^T \mathbf{W} = \mathbf{I}_d$$

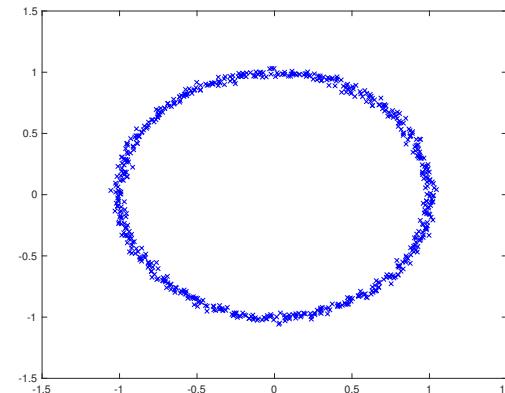
$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^N \mathbf{x}_i$$

What do we want this projection to achieve?

PCA Objective



\mathbf{x}



\mathbf{y}

- We want to keep most of the “important” signal while removing the noise.
- This can be achieved by finding directions in which there is a large variance, that is, for the j^{th} output dimension, we want to maximize

$$\text{var}(\{y_i^{(j)}\}) = \frac{1}{N} \sum_{i=1}^N (y_i^{(j)} - \bar{y}^{(j)})^2,$$

where $\bar{y}^{(j)}$ is the mean of the dimension of the j^{th} data point after projection.

Variance Maximization

Let us begin with the projection into a 1D space:

- We use a D -dimensional vector \mathbf{w}_1 , s.t., $\mathbf{w}_1^T \mathbf{w}_1 = 1$, instead of a matrix $\mathbf{W} \in \mathbb{R}^{D \times d}$.
- In this case, the mean of the data after projection is

$$\begin{aligned}\bar{y} &= \frac{1}{N} \sum_{i=1}^N y_i \\ &= \frac{1}{N} \sum_{i=1}^N \mathbf{w}_1^T \mathbf{x}_i \\ &= \mathbf{w}_1^T \left(\frac{1}{N} \sum_{i=1}^N \mathbf{x}_i \right) \\ &= \mathbf{w}_1^T \bar{\mathbf{x}}\end{aligned}$$

Variance Maximization

Therefore, the variance of the data after projection is

$$\begin{aligned}\text{var}(\{y_i\}) &= \frac{1}{N} \sum_{i=1}^N (y_i - \bar{y})^2 = \frac{1}{N} \sum_{i=1}^N (\mathbf{w}_1^T \mathbf{x}_i - \mathbf{w}_1^T \bar{\mathbf{x}})^2 \\ &= \frac{1}{N} \sum_{i=1}^N (\mathbf{w}_1^T (\mathbf{x}_i - \bar{\mathbf{x}}))^2 = \frac{1}{N} \sum_{i=1}^N \mathbf{w}_1^T (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T \mathbf{w}_1 \\ &= \mathbf{w}_1^T \left(\frac{1}{N} \sum_{i=1}^N (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T \right) \mathbf{w}_1 = \mathbf{w}_1^T \mathbf{C} \mathbf{w}_1\end{aligned}$$

where \mathbf{C} is the input data covariance matrix

$$\mathbf{C} = \frac{1}{N} \sum_{i=1}^N (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

Variance Maximization

- Ultimately, we seek to solve

$$\max_{\mathbf{w}_1} \mathbf{w}_1^T \mathbf{C} \mathbf{w}_1 \text{ subject to } \mathbf{w}_1^T \mathbf{w}_1 = 1.$$

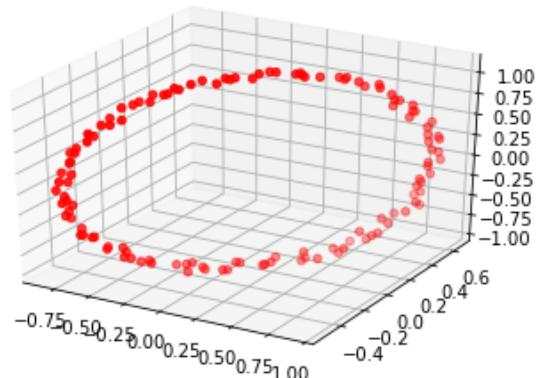
→ \mathbf{w}_1 should be the eigenvector associated to the larger eigenvalue of \mathbf{C} .

Back to $d > 1$

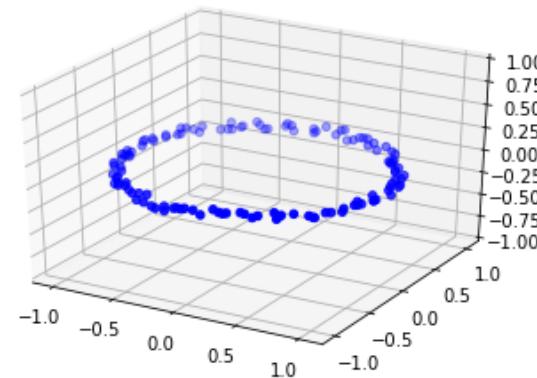
- To obtain an output representation that is more than 1D, i.e., $d > 1$, we can iterate:
 - The second projection vector \mathbf{w}_2 corresponds to the eigenvector of \mathbf{C} with the second largest eigenvalue
 - The third vector \mathbf{w}_3 to the eigenvector with the third largest eigenvalue
 - ...
- The matrix \mathbf{W} is obtained by concatenating the resulting vectors
$$\mathbf{W} = [\mathbf{w}_1 | \mathbf{w}_2 | \cdots | \mathbf{w}_d] \in \mathbb{R}^{D \times d}$$
- This is guaranteed to satisfy the constraint $\mathbf{W}^T \mathbf{W} = \mathbf{I}_d$ because the eigenvectors of a matrix are orthogonal and of norm 1.
- The amount of explained variance is $\mathbf{W}^T \mathbf{C} \mathbf{W} = \sum_i \lambda_i$.

PCA without Dimensionality Reduction

- In the limit, one can use all dimensions, i.e., set $d = D$
 - There is therefore no reduction of dimensionality
 - In 3D, you can think of this as a rotation of the data
 - This incurs no loss of information
 - The $d = D$ dimensions in the new space are uncorrelated



x

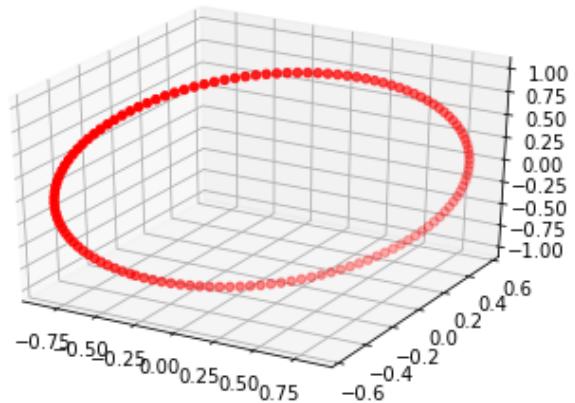
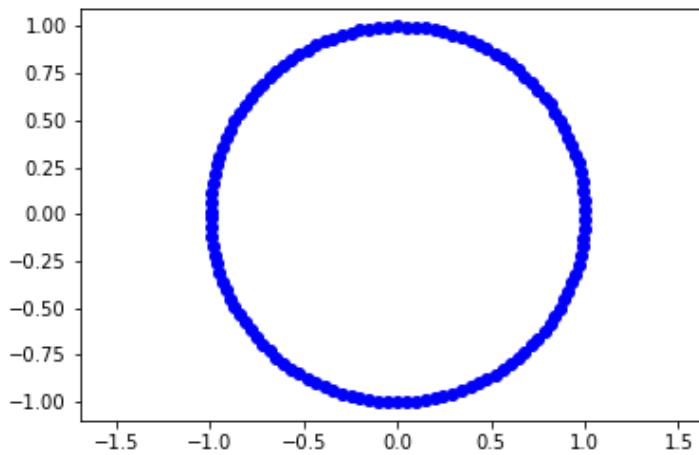


y

PCA without Loss of Information

Another option is to keep all the eigenvectors corresponding to non-zero eigenvalues:

- This works best the data is truly low-dimensional.
- The resulting $\{\mathbf{y}_i\}$ are lower dimensional ($d < D$) without loss of information.
- This happens trivially when there are fewer samples than dimensions ($N < D$).



PCA with Loss of Information

- In practice, one typically truncates the eigenvalues so as to discard some that are non-zero.
 - This can be achieved by aiming to retain a pre-defined percentage of the data variance, measured as the sum of eigenvalues.
 - For example, to retain at least 90% of the variance, one can search for d such that

$$\sum_{j=1}^d \lambda_j \geq 0.9 \cdot \sum_{k=1}^D \lambda_k ,$$

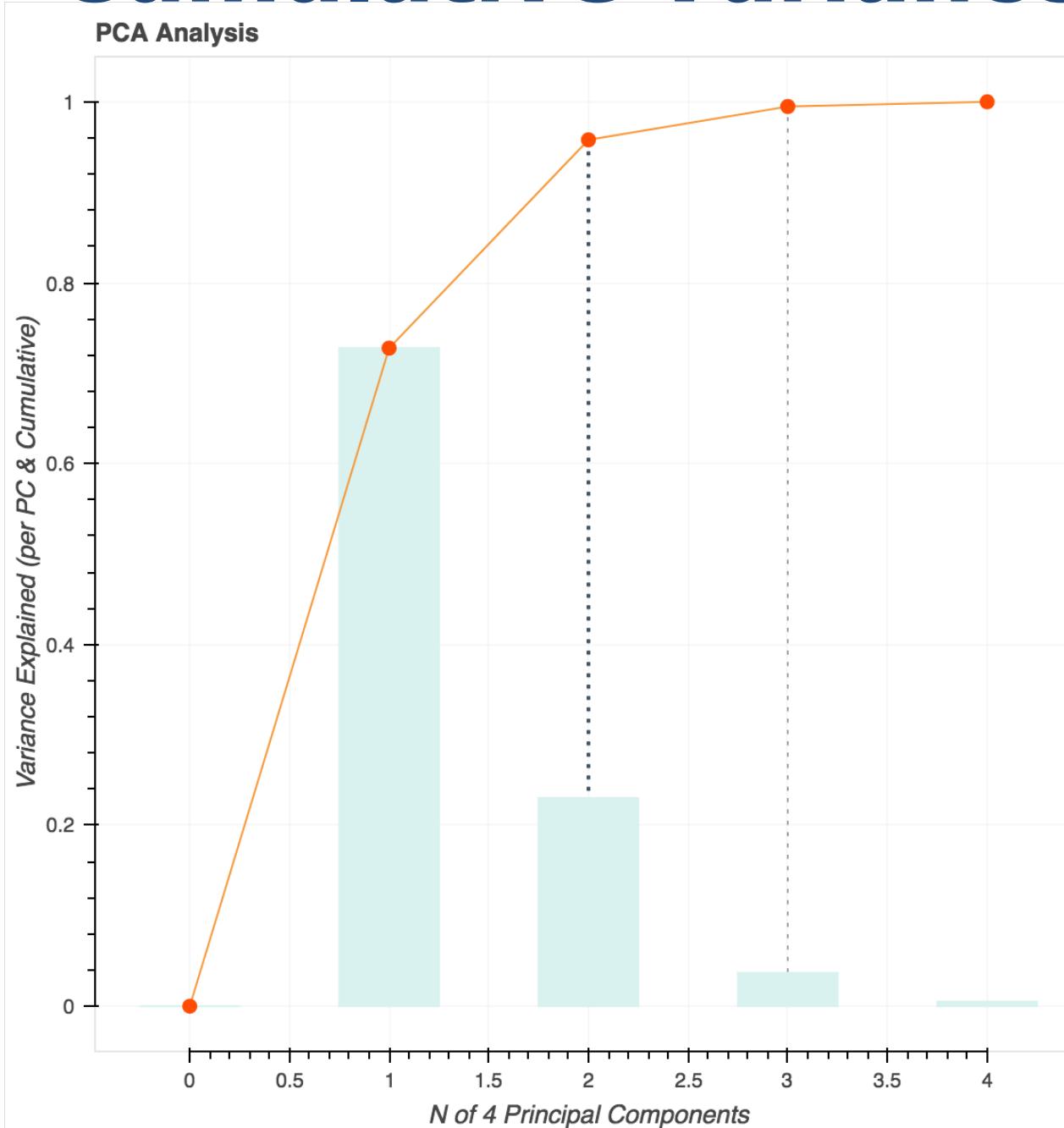
assuming the eigenvalues to be sorted in decreasing order.

- The resulting $\{\mathbf{y}_i\}$ have an even lower dimension.

Classifying Irises

- UCI Iris dataset:
 - 3 different types of irises
 - 4 attributes
 - ✓ petal length
 - ✓ petal width
 - ✓ sepal length
 - ✓ sepal width
- 4 attributes means $D = 4$, so d is at most 4.

Cumulative Variance

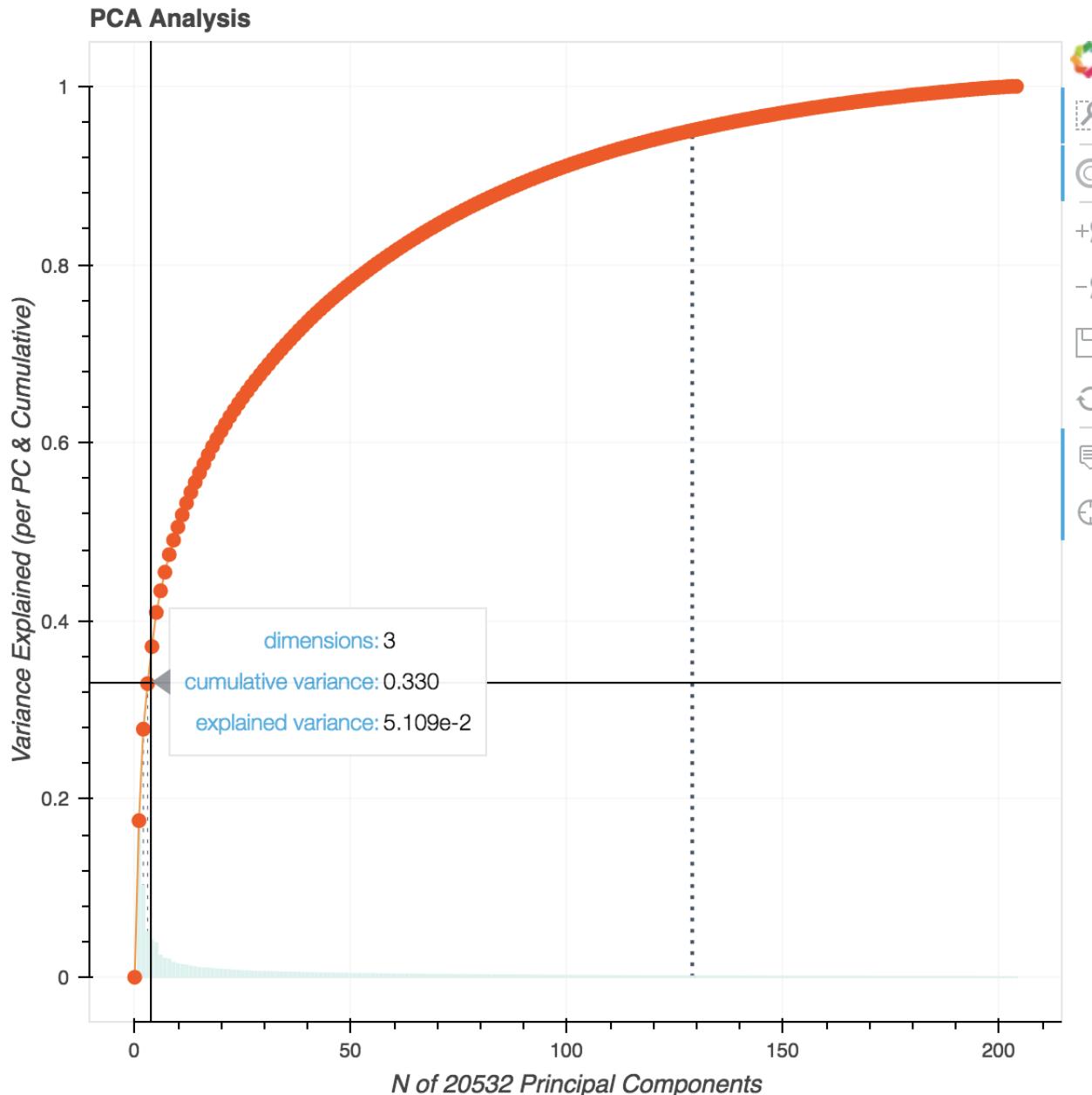


Medical Application

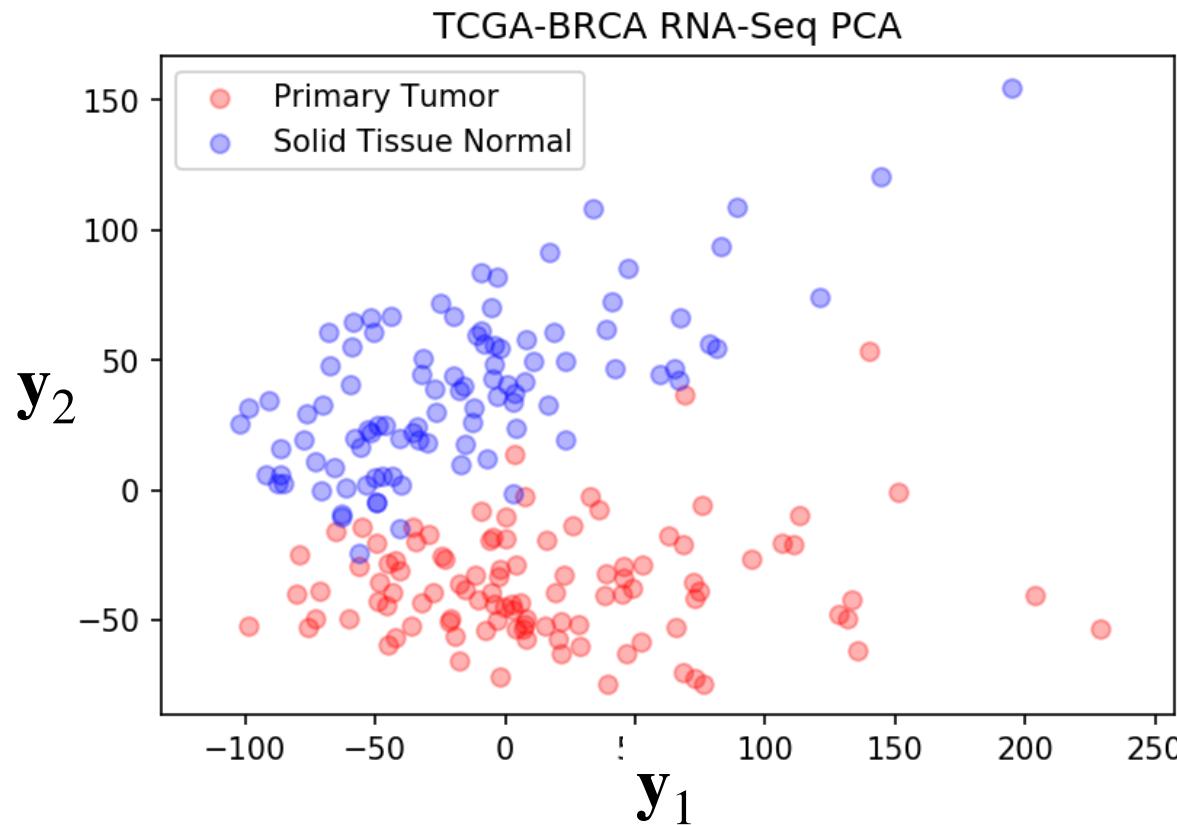
- The Cancer Genome Atlas breast cancer RNA-Seq dataset:
 - Normal tissue vs primary tumor:
 - 20532 features, that is genes for which an expression is measured.
 - 204 samples.
- 20532 features means $D = 20532$, so d is at most 20532.
- However, because we only have $N = 204$ samples, d is at most 204.

<https://medium.com/cascade-bio-blog/creating-visualizations-to-better-understand-your-data-and-models-part-1-a51e7e5af9c0>

Cumulative Variance



Medical Application



Samples of the Cancer Genome Atlas breast cancer RNA-Seq dataset projected in 2D.

→ Relatively easy to classify.

PCA: Mapping

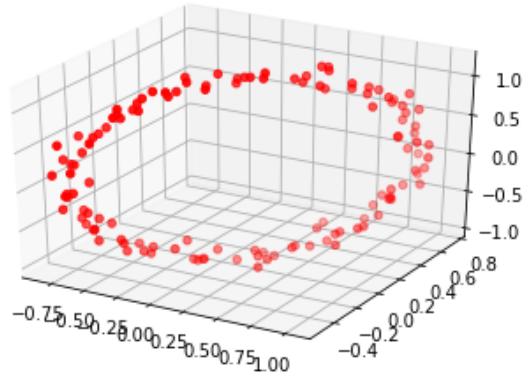
- PCA not only reduces the dimensionality of the original data. It provides a continuous mapping from the low-dimensional space to the high-dimensional one
- That is, for any $\mathbf{y} \in \mathbb{R}^d$, we can compute a point in the high-dimensional space as

$$\begin{aligned}\hat{\mathbf{x}} &= \bar{\mathbf{x}} + \mathbf{W}\mathbf{y} \\ &= \bar{\mathbf{x}} + \sum \alpha_i \mathbf{w}_i \text{ with } \mathbf{y} = [\alpha_1, \dots, \alpha_d]^T\end{aligned}$$

- This mapping constrains $\hat{\mathbf{x}}$ to lie in a subspace, and thus provides a form of regularization.

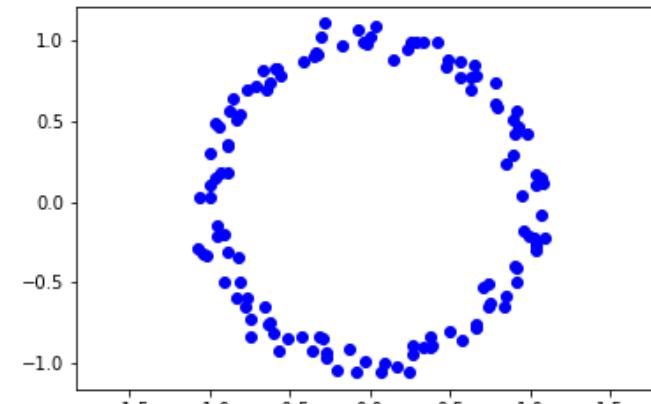
Toy Example

- Original data



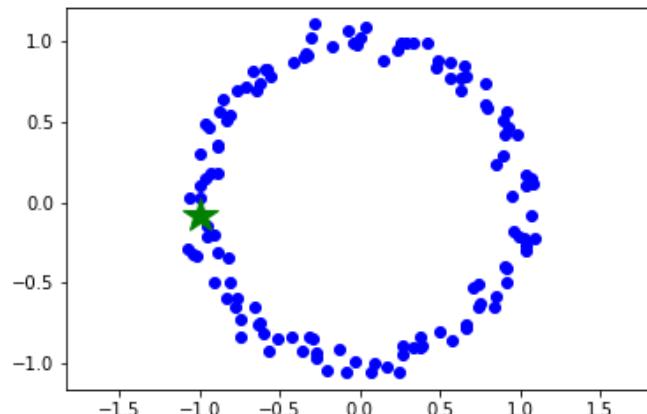
\mathbf{x}

PCA



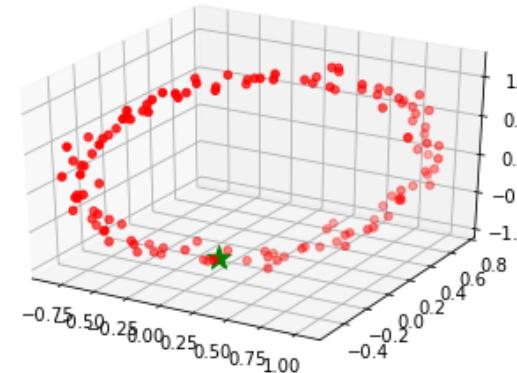
$$\mathbf{y} = \mathbf{W}^T(\mathbf{x} - \bar{\mathbf{x}})$$

- New point (green star)



\mathbf{y}

Mapping

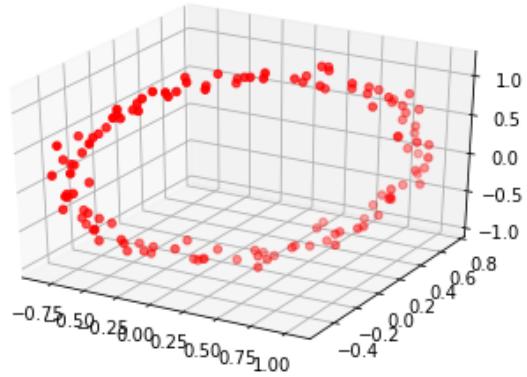


$$\hat{\mathbf{x}} = \bar{\mathbf{x}} + \mathbf{W}\mathbf{y}$$

$$= \bar{\mathbf{x}} + \sum_i \alpha_i \mathbf{w}_i$$

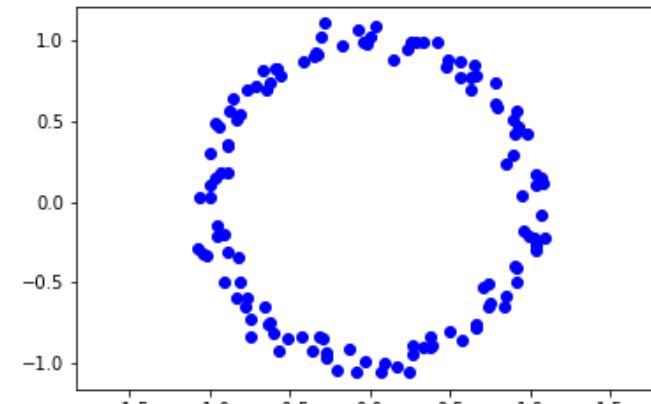
Toy Example

- Original data



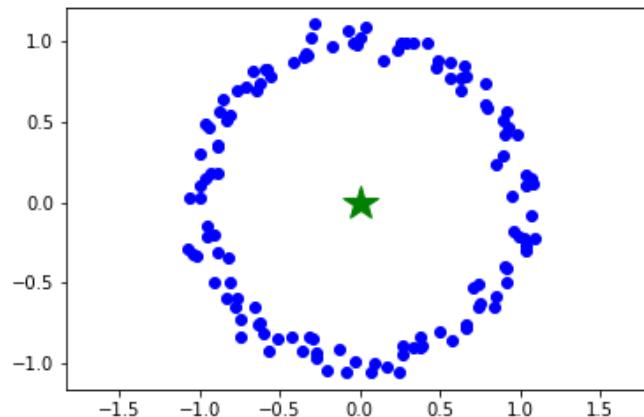
\mathbf{x}

→ PCA



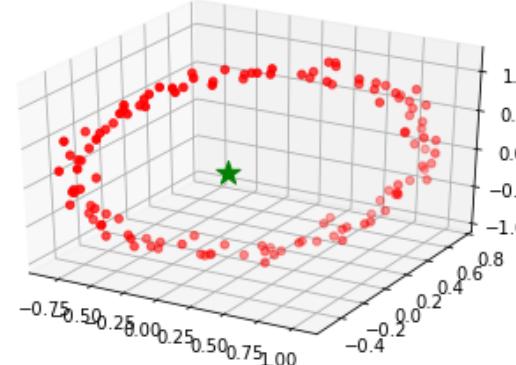
$$\mathbf{y} = \mathbf{W}^T(\mathbf{x} - \bar{\mathbf{x}})$$

- New point (green star)



\mathbf{y}

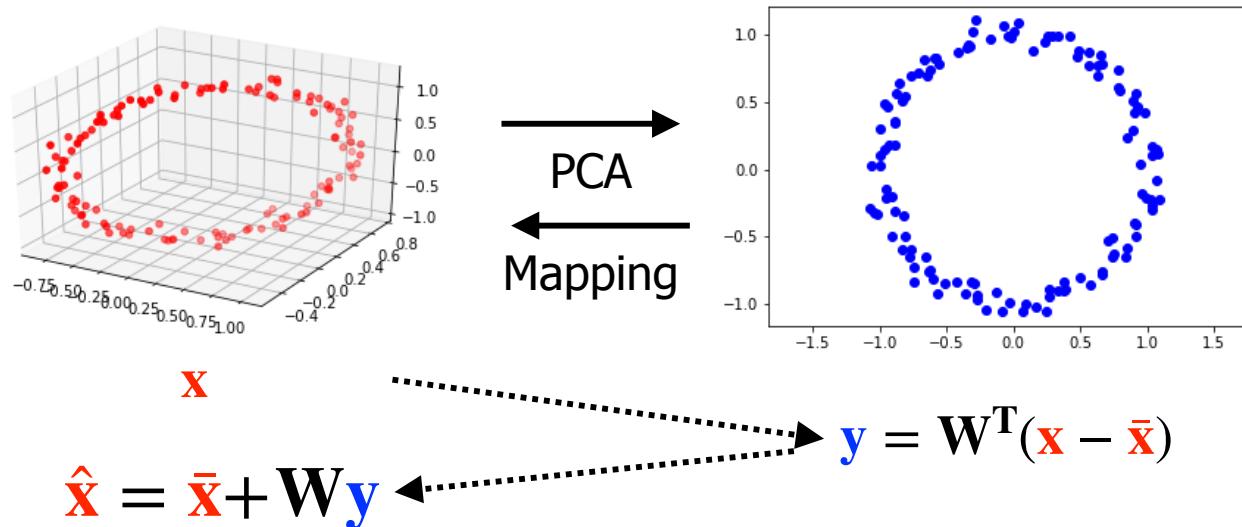
→ Mapping



$$\hat{\mathbf{x}} = \bar{\mathbf{x}} + \mathbf{W}\mathbf{y}$$

$$= \bar{\mathbf{x}} + \sum_i \alpha_i \mathbf{w}_i$$

Optimal Linear Mapping



- This mapping incurs some loss of information.
- However, the corresponding rectangular matrix W is the orthogonal matrix that minimizes the reconstruction error

$$e = \|\hat{x} - x\|^2$$

where

$$\hat{x} = \bar{x} + W*y = \bar{x} + W*W^T(x - \bar{x})$$

EigenFaces

X

W

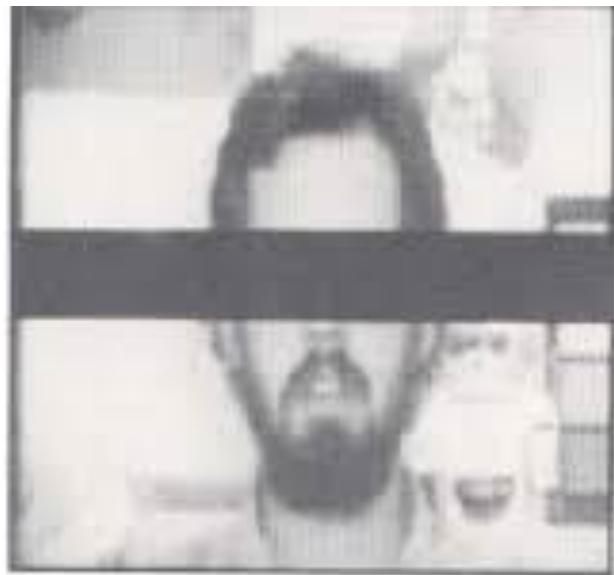
- The \mathbf{x} are vectors representing the images. The \mathbf{w} are the eigenvectors of the covariance matrix.
- Exact reconstruction:

$$\hat{\mathbf{x}} = \bar{\mathbf{x}} + \sum_{n=1}^{N^2} \alpha_i \mathbf{w}_i$$

- Approximate reconstruction:

$$\hat{\mathbf{x}} = \bar{\mathbf{x}} + \sum_{n=1}^M \alpha_i \mathbf{w}_i \text{ with } M \ll N^2$$

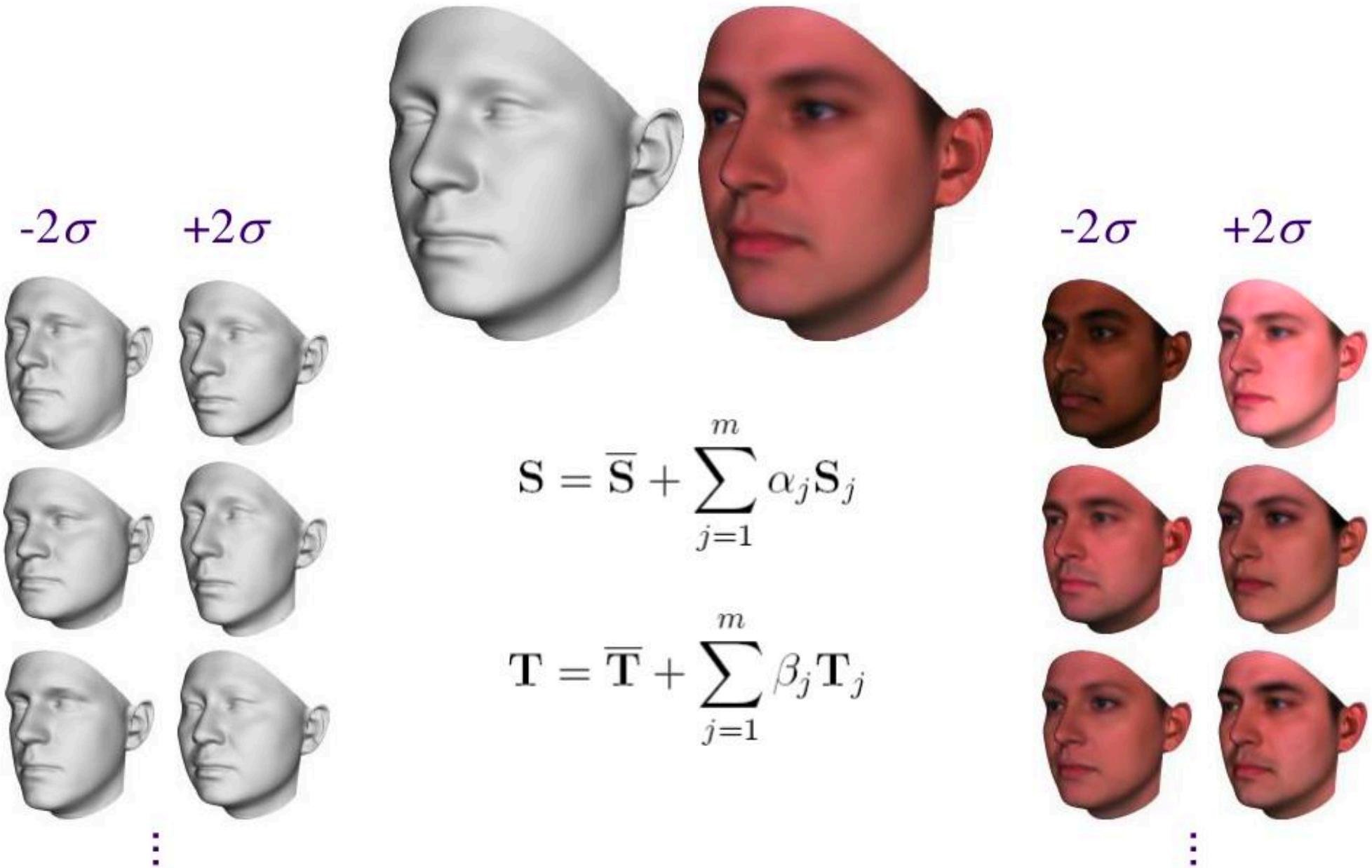
Reconstruction Using Eigenfaces



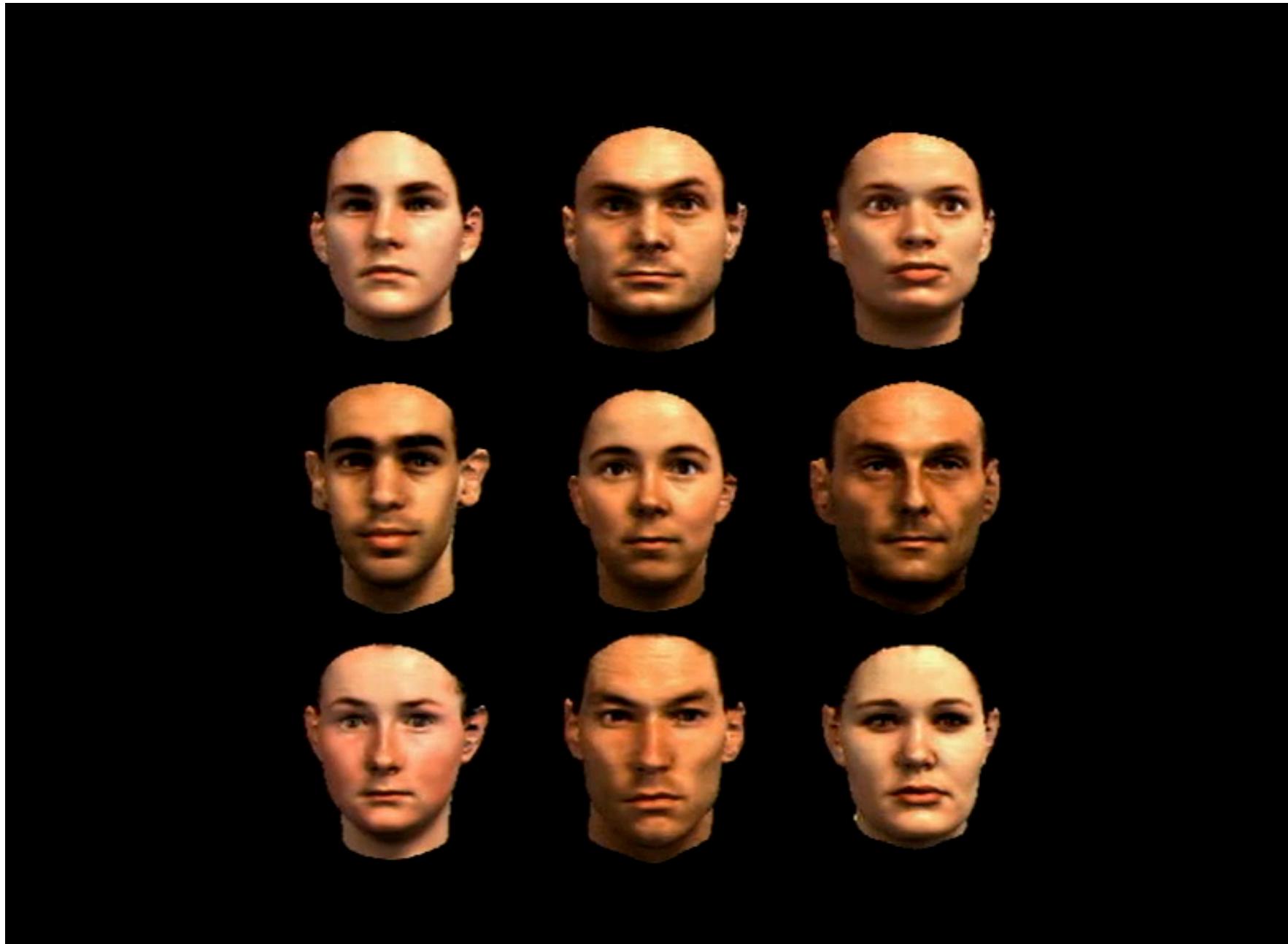
X

Project and reconstruct left image to produce the right one.

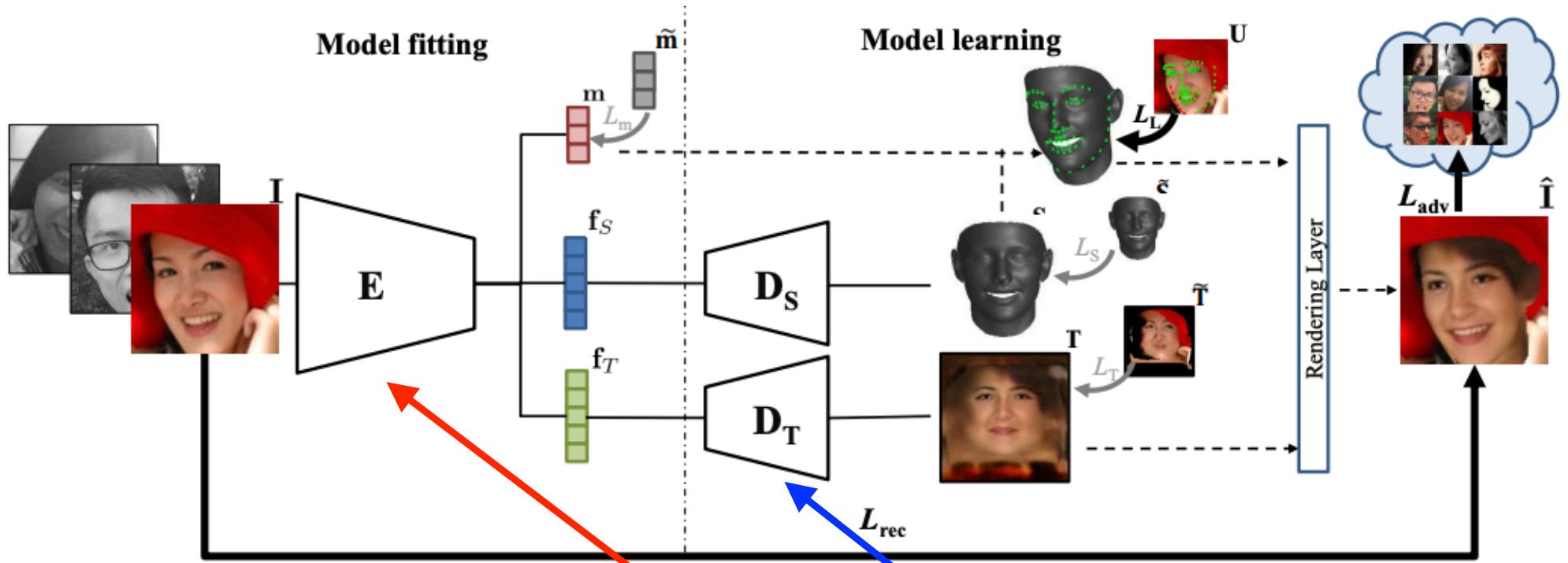
3D Face Modeling



3D Face Modeling

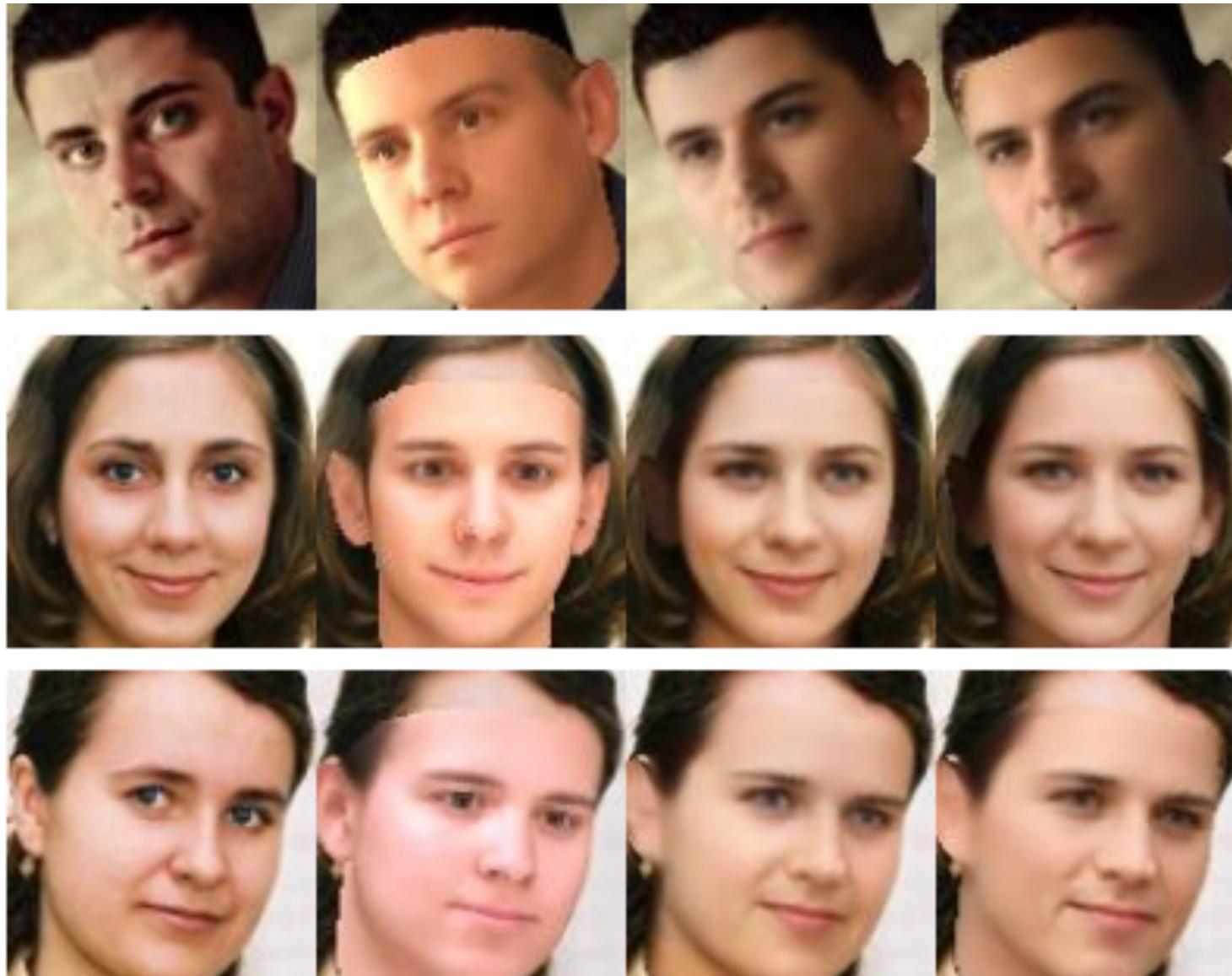


Non Linear Face Models

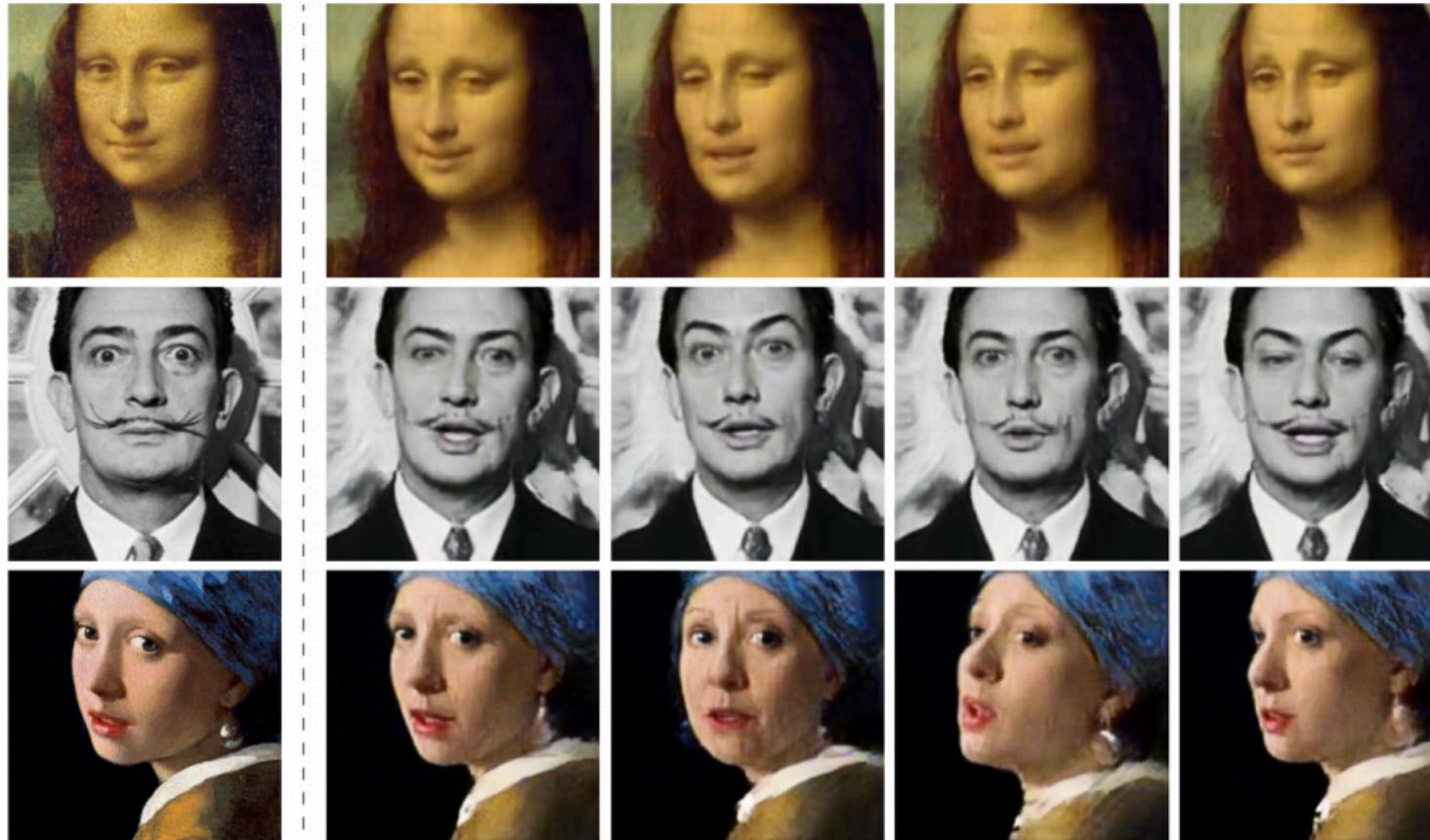


- PCA has been replaced by an **encoder** / **decoder** architecture.
- To be discussed next week.

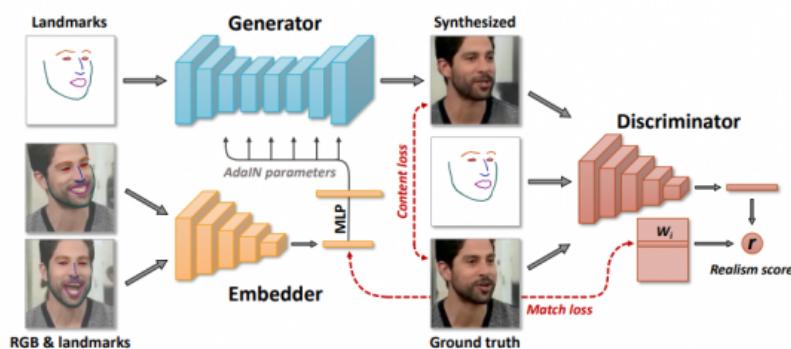
Linear vs Non Linear



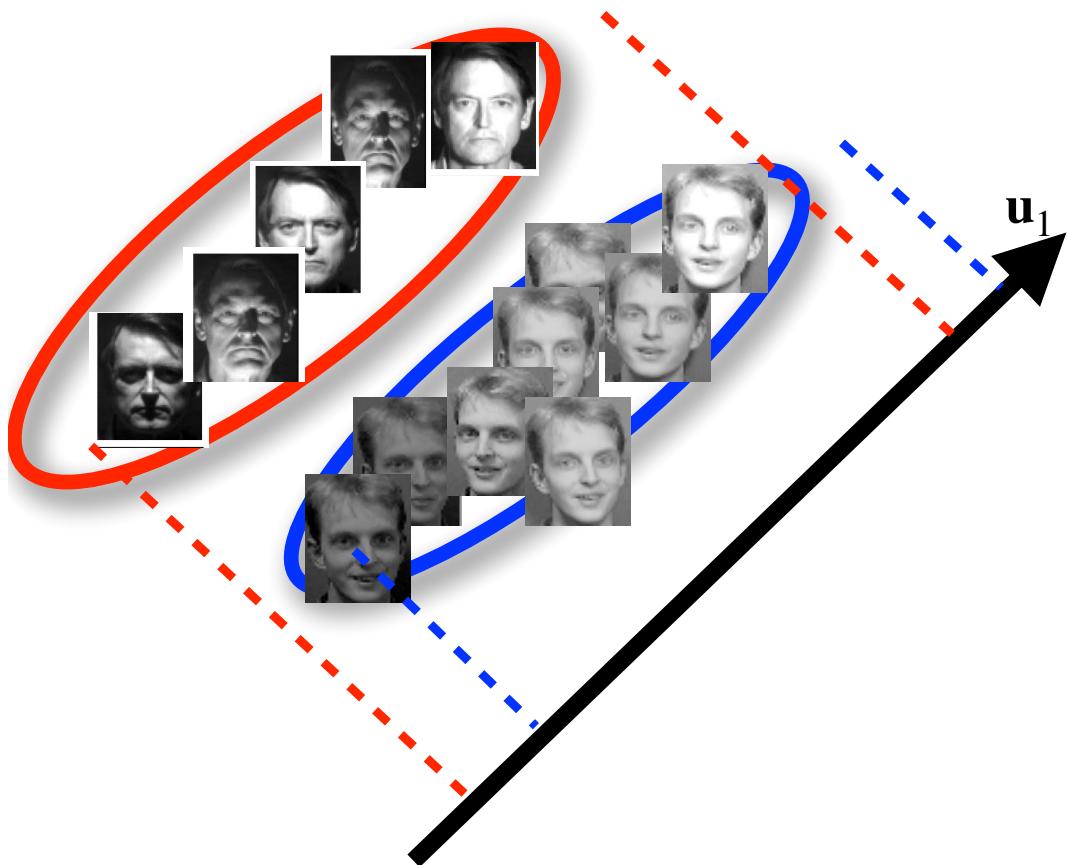
20 Years Later: Deep Fakes



- Even better results using deep networks.
- But, much more complicated non-linear technique.
- We will talk return to this in the next lecture.



A Problem for EigenFaces

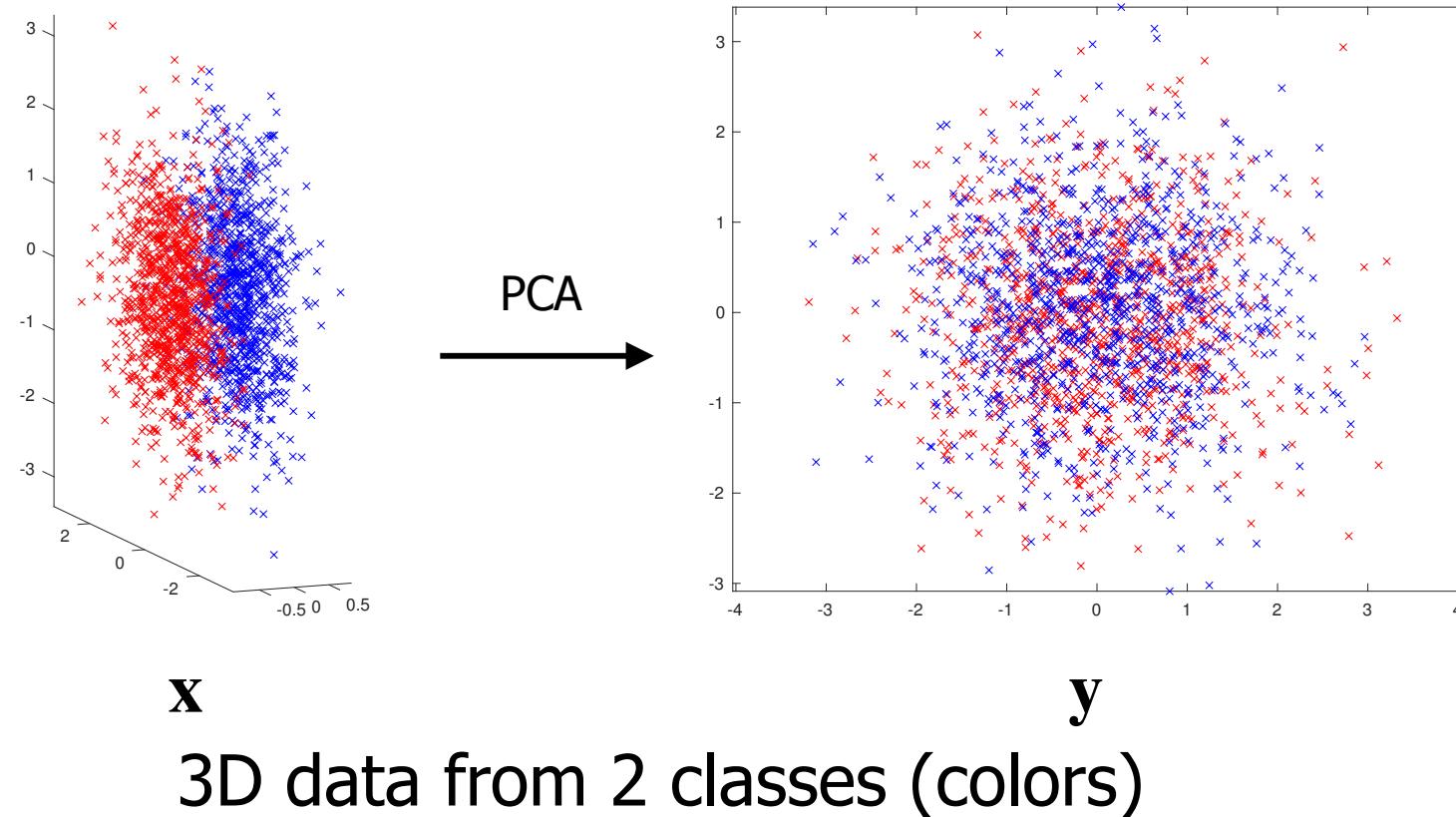


- Two different faces seen under very different illumination condition.
- The first eigenvector is very likely to capture differences in illumination.

—> Classes are not well separated.

Dimensionality Reduction for Classification

PCA is unsupervised and thus may not always preserve category information.

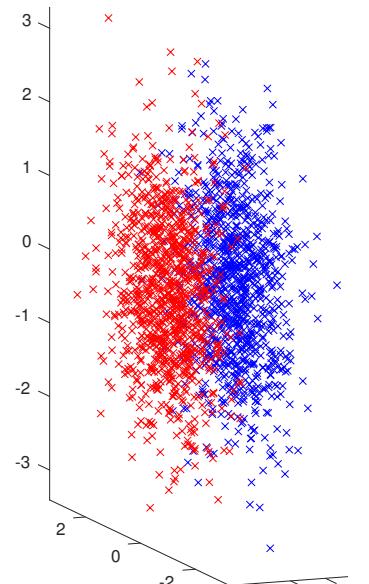


How about exploiting class labels during DR?

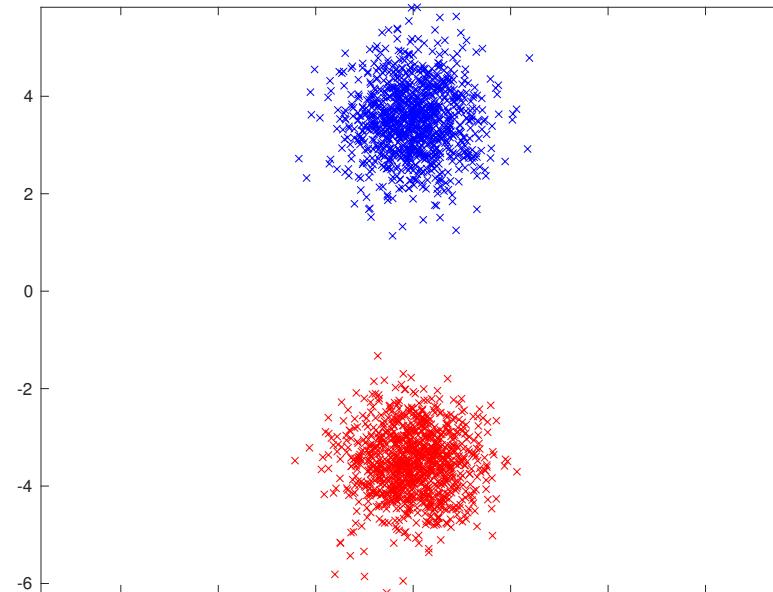
Fisher Linear Discriminant Analysis (LDA)

Ideally, we want:

- the samples from the same class to be clustered
- the different classes to be separated



X



y

Clustering Samples from the Same Class

- Mathematically, this means that we want a low variance within each class after projection
- For a 1D projection, encoded via a vector \mathbf{w}_1 , and C classes, this can be expressed as aiming to minimize

$$E_W(\mathbf{w}_1) = \sum_{c=1}^C \sum_{i \in c} (y_i - \nu_c)^2$$

where ν_c is the mean of the samples in class c after projection, and $i \in c$ indicates that sample i belongs to class c .

Note that both the y_i and ν_c depend on \mathbf{w}_1 .

Clustering Samples from the Same Class

- As in the PCA case, the variance after projection is equal to the projection of the covariance matrix
- This lets us rewrite the previous objective function as

$$E_W(\mathbf{w}_1) = \mathbf{w}_1^T \mathbf{S}_W \mathbf{w}_1,$$

where

$$\mathbf{S}_W = \sum_{c=1}^C \sum_{i \in c} (\mathbf{x}_i - \mu_c)(\mathbf{x}_i - \mu_c)^T,$$

and μ_c is the mean of the data in class c before projection.

- \mathbf{S}_W is referred to as the within-class scatter matrix.

Separating the Different Classes

- In addition to clustering the samples according to the classes, we want to separate the different clusters
- This can be achieved by pushing the means of the clusters away from each other.
- Mathematically, this means maximizing

$$E_B(\mathbf{w}_1) = \sum_{c=1}^C N_c(\nu_c - \bar{y})^2,$$

where ν_c is defined as before, \bar{y} is the mean of all samples after projection, and N_c is the number of samples in class c .

Separating the Different Classes

- Following the same reasoning as before, this can be re-written as

$$E_B(\mathbf{w}_1) = \mathbf{w}_1^T \mathbf{S}_B \mathbf{w}_1,$$

where

$$\mathbf{S}_B = \sum_{c=1}^C N_c (\mu_c - \bar{\mathbf{x}})(\mu_c - \bar{\mathbf{x}})^T,$$

$\bar{\mathbf{x}}$ is the mean of all the samples, and the $\{\mu_c\}$ are class-specific means.

- \mathbf{S}_B is referred to as the between-class scatter matrix

Fisher LDA in Dimension 1

- We want to simultaneously
 - minimize $E_W(\mathbf{w}_1)$
 - maximize $E_B(\mathbf{w}_1)$
- This can be achieved by maximizing

$$J(\mathbf{w}_1) = \frac{E_B(\mathbf{w}_1)}{E_W(\mathbf{w}_1)} = \frac{\mathbf{w}_1^T \mathbf{S}_B \mathbf{w}_1}{\mathbf{w}_1^T \mathbf{S}_W \mathbf{w}_1},$$

because minimizing a function $f(\cdot)$ can be done by maximizing $1/f(\cdot)$, in general.

Fisher LDA in Dimension 1

- The previous objective function is invariant to scaling:

$$J(\alpha \mathbf{w}_1) = J(\mathbf{w}_1)$$

- So we can fix the scale by constraining \mathbf{w}_1 to be such that

$$\mathbf{w}_1^T \mathbf{S}_W \mathbf{w}_1 = 1.$$

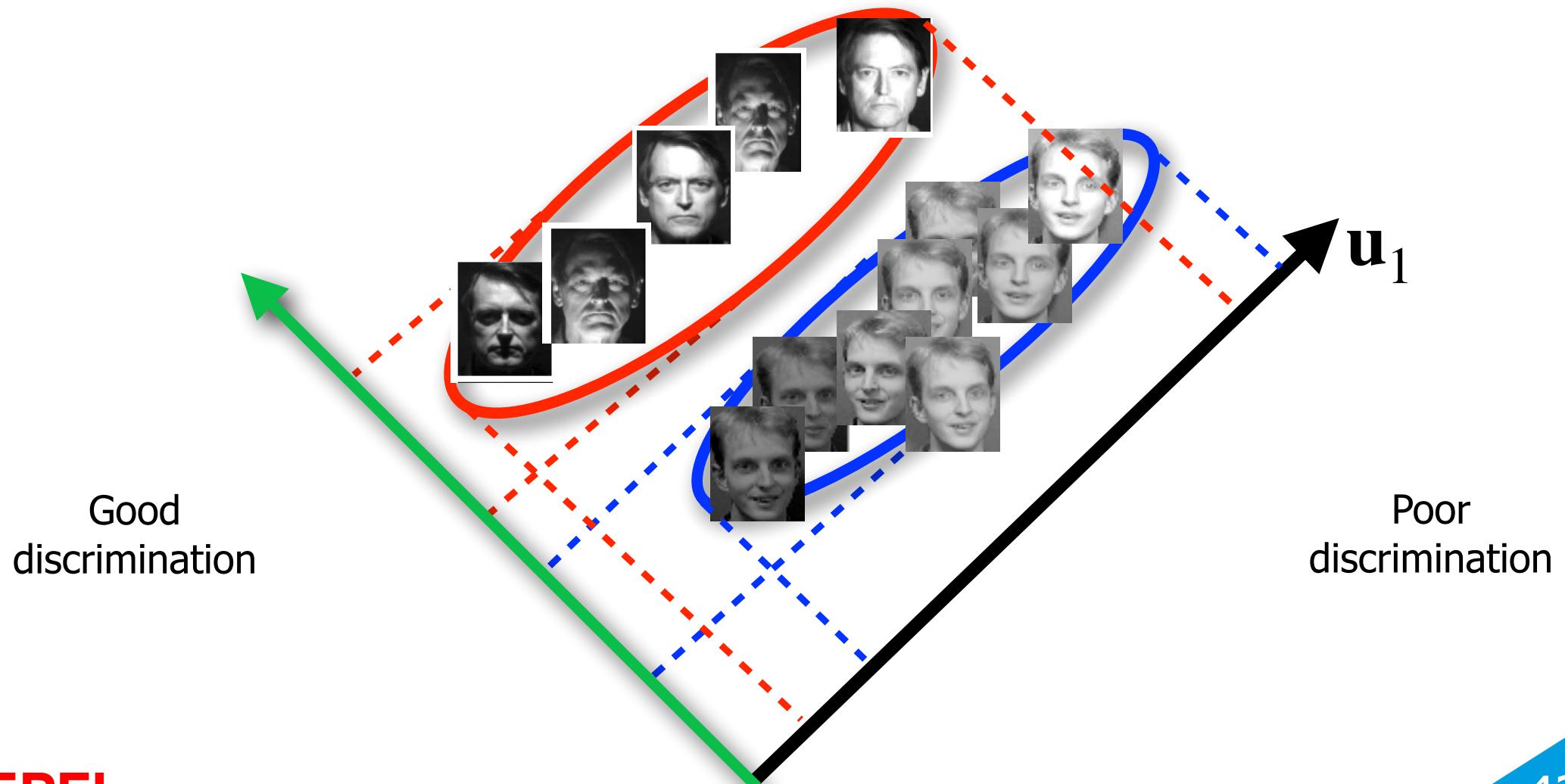
—> Fisher LDA formulation

$$\max_{\mathbf{w}_1} \mathbf{w}_1^T \mathbf{S}_B \mathbf{w}_1 \text{ subject to } \mathbf{w}_1^T \mathbf{S}_W \mathbf{w}_1 = 1.$$

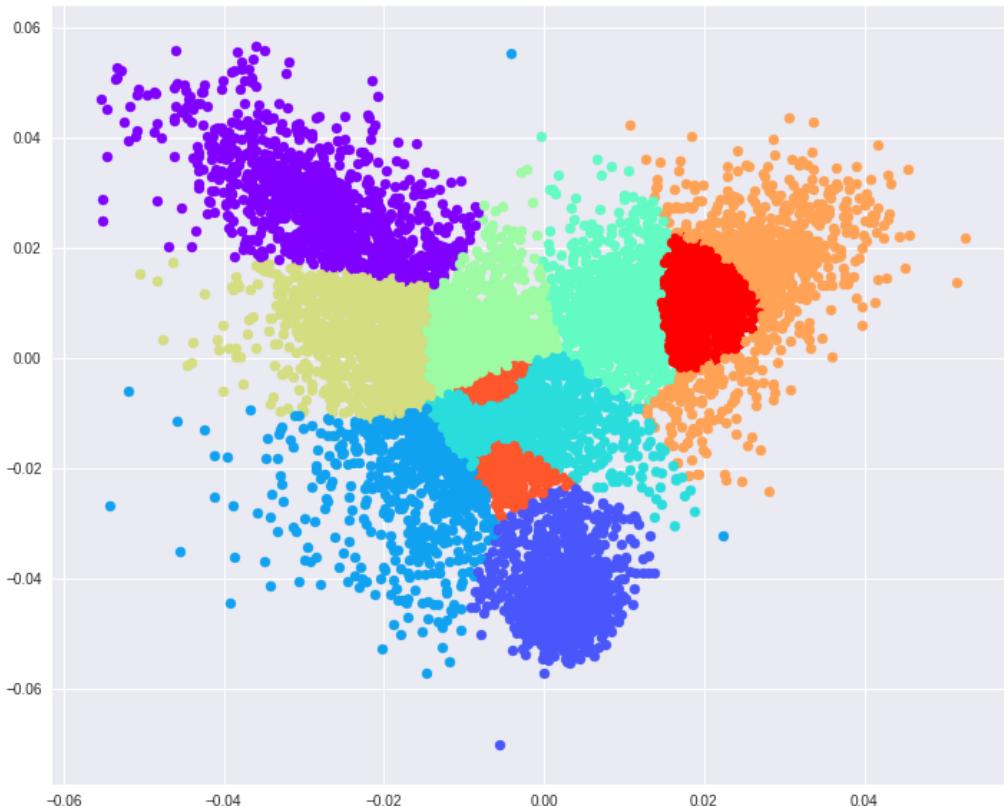
—> \mathbf{w}_1 is the solution of a *generalized* eigenvalue problem.

PCA vs LDA

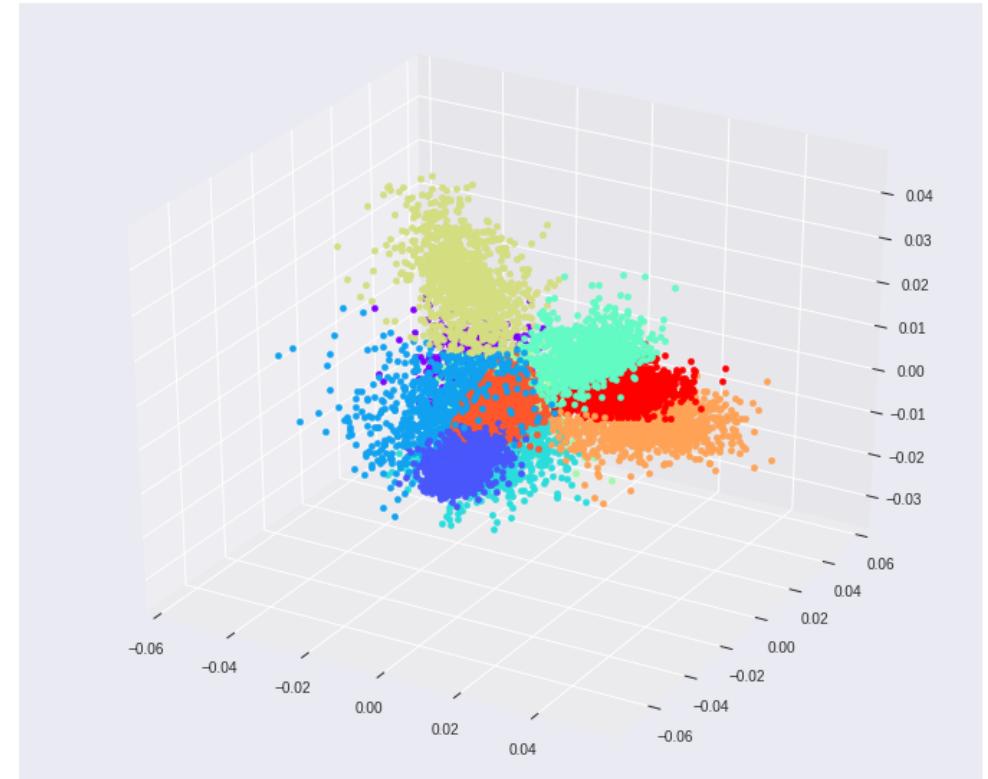
- PCA : Maximize projected variance.
- LDA : Maximise between class variance and minimize within class variance.



Fisher LDA on MNIST



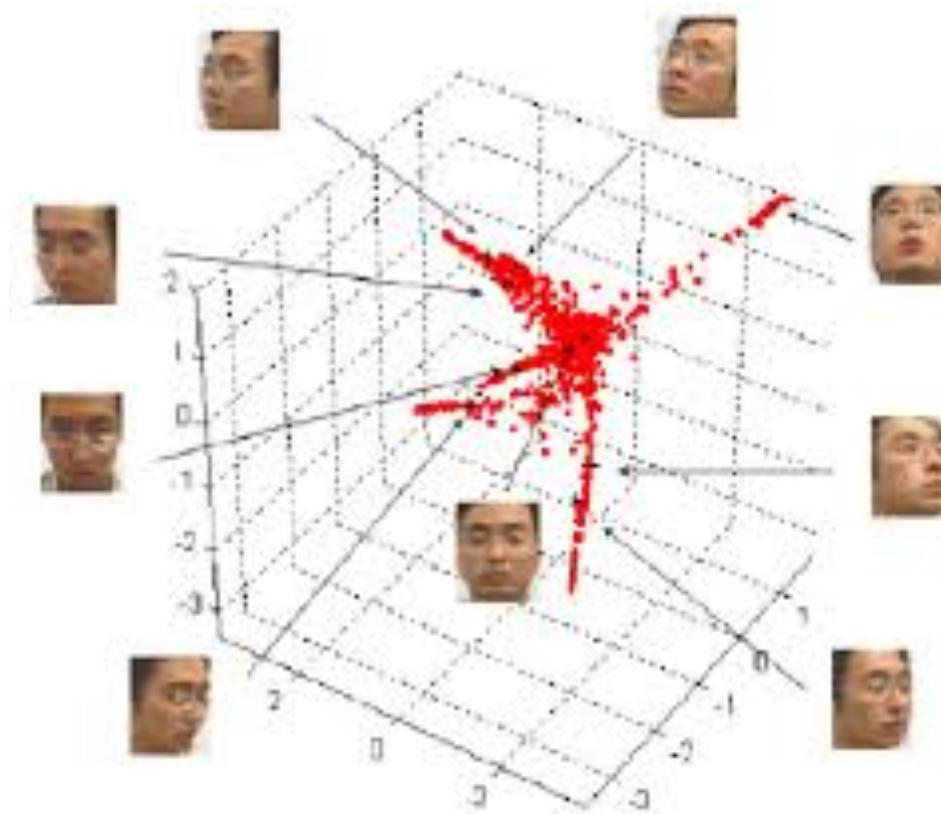
2D



3D

→ It only takes relatively low-dimensional spaces to yield decent clusters!

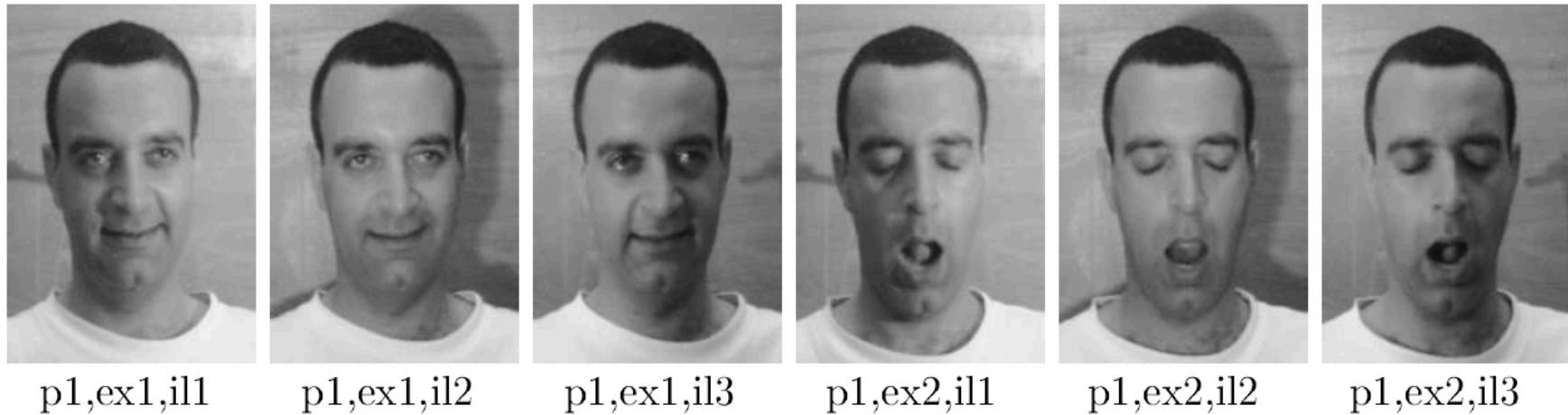
Reminder: Face Images



- The same can be said about face images.
- And of many other things.
→ Non linear classification is a practical proposition.

EigenFaces vs FisherFaces

- Consider a dataset of face images:
 - 2 different expressions.
 - several illumination conditions.



- One can apply either PCA or LDA to these images
 - The resulting eigenvectors can also be thought of as images.
 - They are called eigenfaces for PCA and fisherfaces for LDA.

EigenFaces vs FisherFaces

EigenFaces

FisherFaces

- The EigenFaces contain information about the illumination and yield the best reconstructions.
- The FisherFaces discard the illumination information and are thus more useful for classification.

Linear vs NonLinear

- We could get better classification results with non-linear classifier.
- Is it also true of dimensionality reduction?

—> We will talk about this next.