Linear Classification

Pascal Fua
|C-CVLab

=PrL

Reminder: Linear 2D Model

Some algorithm bT’) 8] htne SS
g length

A y(X; w) = sign(w,b + Wyl + W)
length o
X = [b,]]
o ONG) 80 W:[Wxawyaw()]

@)

o> +I

® @ - |

brightness >

' 2
— How do we find w- é

Reminder: Training vs Testing

Supervised training:

Given a training set {(x,,t,)1<n<nN} minimize: A o .
- length o 0 o0
N 0° *® %o,
(0] 0) 0o
E(W) :ZL(y(XnQW)atn) o ¢ e . OOO
n=1) O 0
N o ° 0°
= 3 [y(kns W) # £ o %o o
n=1 brightness
Testing: A
length 0
O
Given a test set {(xy,%n)1<n<n} compute the error rate:
N o °
1/N Z[y(xm W) # ty] >
n=1

Ml
1
"N
r

brightness 5

Desired Problem Formulation

~ ~ @)

0.8 -

0.6 -

Oxz

0.4

0.2

-0.2 -

-0.4 |-

-0.6 -

-0.8 -

i 05 k 05 " Decision boundary

Find w such that:
 For all or most positive samples y(X; w) =w - X > 0.
0

» For all or most negative samples y(X; W) = W - % <

cpry — > Let’s talk about hyperplanes. A

Parameterizing Lines

Equation of a line Normal vector

>
> u

. n= [a, b]
Va2 + b2

(u,v) € R>, au+bv+c=0

1
la, b, c] and [a, b, c] define the same line.
Va2 + b2

Ml
v
"N
r

Normalized Parameterization

Equation of a line Normal vector

>u u

(u,v) ER*,au+bv+c=0 n=[a,b]
with ¢ + b?> =1

Signed Distance to Line

A Q [Ml, V1]

Signed distance: 7 =n - [u; — ug, v; — v,
= a(ul - uo) + b(Vl - Vo)
= au, + bv; — (auy — bvy)
= au; + bv, +c — (auy— bvy—c)

=au;+bv, +c

h=0: Point i1s on the line.
h>0: Point on one side.
h<0: Point on the other side.

_

Sighed Distance Reformulated

h=0: Point 1s on the line.
A ‘. X = [1,x;, x,] h>0: Point in the normal’s direction.
h<O0: Point in the other direction.

n=[w;,w,]

W = [wy, wy, w,] With w12 + w22 =1

>

Notation: X =[x, X,]

i — [19x19x2]

Signed distance: h = wy + wix; + Wy,

=W-X ﬁ

Ml
v
"N
r

Reminder: Binary Classification

= [®)

0.8 -

0.6 -

0.4

0.2

-0.2 -

-0.4 |-

-0.6 -

-0.8 -

. 05 o 05 " Decision boundary

Two classes shown as different colors:

e Thelabelye {-1,1} ory e {0,1}.

e The samples with label 1 are called positive samples.

e The samples with label -1 or 0 are called negative samples.

=PrL A

Problem Statement in 2D

O

W — [Wla W27 w()] “OO

0.8 -
06 = [xq, X5, Xp]
04

0.2

0.2
-0.4 |-
-0.6 |-

-0.8 -

; 05 ¢ 05 " Decision boundary

Find w such that:
 For all or most positive samples w - X > 0.

 For all or most negative samples w - X < 0.

=PrL

Signed Distance in 3D

A

(A
D)
3%%9.‘8 ‘..m
s
S

%

[Wg, Wi, Wo, W3]

9

Vo X

visa 4y

A

ey
\AE

A o
o)
Vgl b,‘
A

ax+by+cz+d

xEe R0

S 2 2 2

~/

Signed distance &

=PrL

Signed Distance in N Dimensions

h=0: Point is on the decision boundary.
h>0: Point on one side.
h<0: Point on the other side.

QX =1[1lx,...,xyv]
p 1 N

s Wyl

W = [Wl’ .o

N
W = [wy, wy, ..., wy] With Zwiz =1

> i=1

Notation: X =[x, ..., Xy]
X =[lx),....xy]

~ ~

Hyperplane: xeR", 0=w-X

Signed distance: h=w-X A
PrL

Ml
"N

Ml

Problem Statement in N Dimensions

Hyperplane: x € RN, W . X =0, withx =[1]x].

Signed distance: W - X, with w = [w,|w] and | |w]|]| = 1.

Find w such that
o for all or most positive samples w - X > 0,

« for all or most negative samples w - X < 0.

Perceptron

X
2 % X X
X
2 X
X X X x
X X X X X
X X X
X X X % X %
1
» x X 0% X 1
X X x X XX x X
X X
% Xx X X
% X
0 X' X x X x., X7x 0
XX XX X x XX
% x x X xX
X X X Xx
x X X X -1
-1
X X
X X
X % N
X X X
X xx
X X X =21
2 x
o™
T T T T T T _3 T T T T T
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2 3

N
Minimize: F(w) = — Z sign(w - X,)ty
n=1

o Set wi to O.

e Iteratively, pick a random index n.

— If x,, is correctly classified, do nothing.
EPFL — Otherwise, Wt‘l‘l = V~Vt + tnin A

=PrL

Test Time

sow) — |1 wex>0,
Y% - —1 otherwise.

x = |[l,xq,..., :[‘N]

Ml
"N

Centered Perceptron

The two populations can be translated so that the decision
boundary goes through the origin.

Given a training set {(X,,7,)|<,<y} minimize:

E(w) = — Z sign(w - X,)ty

e Center the x,,s so that wg = 0.
o Set wy to 0.

e Iteratively, pick a random index n.

— If x,, is correctly classified, do nothing.

— Otherwise, w11 = Wy + ,X,. @

Convergence Theorem

y is the margin

If there is a number y > 0 and a parameter vector w*, with | |w*|| = 1, such
that
Vn,t,(Ww*-x)>7,

RZ
the perceptron algorithm makes|at most —- errors, where R = max, | | X, ||.

=PrL : A

What if y is Small?

for n in range(nIt): for n in range(nIt):

for i in range(ns): inds=list(range(ns))
e If x,, is correctly classified, do nothing. ra ndOm " Sh Uffle(l ndS)
e Otherwise, Wiy 1 = Wy + t,Xp,. for i in range(inds):

o If x,, is correctly classified, do nothing.

Randomizing helps!
e Otherwise, wy11 = Wy + 1, X,,.

PFL A

Ml

What if y Does Not Exist?

3 3

20% of outliers °

30% of outliers

Still works up to a point but no guarantee!

=PrL

Optional: Python Implementation (1)

def perceptronRand(xs,ys,nlt=200,randP=True):

N, D = xs.shape # Get data shape.
w = np.zeros(D) # Init weights.
for i1t in range(nlt): # Train.

allCorrect = True # Generate indices.

inds = np.random.permutation(N) if randP else np.arange(N)

for 1 in inds:

X = xs[1] # Pick one sample. Call to numpy. Mostly
y = 2*(np.inner(x,w) > 0)-1 # Predict the label. coded in C or Fortran.
ify !=ys[i]: # Misclassified.
w +=ys[i1] * x # Update weights.
w /=np.linalg.norm(w) # Normalize length.
allCorrect = False # Something has changed.
print('It {}: {}'.format(it + 1,linearAccuracy(xs, ys, w)))
if allCorrect:
break # Finish training.
return w

def linearAccuracy(xs,ys,ws):

E PFL return(sum(ys == (2 * (xs @ ws >0)) - 1) * 100/len(ys)) A

Optional: Python Implementation (2)

def perceptronRand(xs,ys,nlt=200,randP=True):

N, D = xs.shape # Get data shape.
w = np.zeros(D) # Init weights.
bestW = None
bestA =0.0
for it in range(nlt): # Train.

allCorrect = True # Generate indices.

inds = np.random.permutation(N) if randP else np.arange(N)

for 1 in inds: Record best solution.
X = xs[1] # Pick one sample.
y = 2*(np.inner(x,w) > 0)-1 # Predict the label.
ify !=ys[i]: # Misclassified.
w +=ys[i] * x # Update weights.
w /=np.linalg.norm(w) # Normalize length.
allCorrect = False # Something has changed.
acc = linearAccuracy(xs, ys, W)
if(acc>bestA):
bestW = w
bestA = acc
print('lt {}: {}'.format(it + 1,bestA))
if allCorrect:

break # Finish training.
E P :: L return bestW

Optional: JAVA Implementation

import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4;j;
import java.lang.Float;

class Perceptron {
public Perceptron() {}

public static INDArray perceptronRand(INDArray xs, INDArray ys, int nlt, boolean randP){ public static String linearAccuracy(INDArray xs,INDArray ys,INDArray w){
long[] shape = xs.shape(); /I Get data shape INDArray y = (xs.mmul(w).gt(0)).mul(2).sub(1);
long N = shape[0]; return Nd4j.sum((y.eq(ys))).div(4).toString();
long D = shape[1]; }
INDArray w = Nd4j.zeros(D,1); // Init weights public class Main{

public static void main (String[] args){
for (int it = O; it < nlt; it++){

boolean allCorrect = true; INDArray xs = Nd4j.create(new float[][]{{1,0},{0,1},{1,1},{0,0}});
INDArray inds = Nd4j.arange(0,D); /I Generate samples indices. INDArray ys = Nd4j.create(new float[J[I{{1},{1}.{1}.{-1}});
int nlt = 200;
if (randP) boolean randP = true;
Nd4j.shuffle(inds); INDArray weights = Perceptron.perceptronRand(xs, ys, nlt, randP);
}
for (inti=0;i<N;i++){ }
INDArray x = xs.getRow(i); /I Pick one sample.
INDArray y = (x.mmul(w).gt(0)).mul(2).sub(1) ; /I Predict the label.
if (y.data().asFloat()[0] != ys.getRow(i).data().asFloat()[0]){ / Misclassified.
w = x.mul(ys.getRow(i)).add(w.transpose()); // Update weights.
w = w.div(w.norm2().add(1e-3)).transpose(); // Unit normal length.

allCorrect = false;

}

System.out.printin("It " + it + ": " + linearAccuracy(xs, ys, w));
if (allCorrect){

break;
}

}

return w;

—

More verbose!

Ml
v
"N
r

NumPy/SciPy

The time-critical loops are usually implemented in C, C++ or
Fortran. Parts of SciPy are thin layers of code on top of the
scientific routines that are freely available at http://
www.netlib.org/. Netlib is a huge repository of incredibly valuable
and robust scientific algorithms written in C and Fortran.

One of the design goals of NumPy was to make it buildable
without a Fortran compiler, and if you don’t have LAPACK available
NumPy will use its own implementation. SciPy requires a Fortran
compiler to be built, and heavily depends on wrapped Fortran
code.

“PFL https://www.scipy.org/scipylib/fag.html A

http://www.netlib.org/
http://www.netlib.org/

M

Optional: Pacman Apprenticeship

e Examples are states s.
o Correct actions a are those taken by experts.
e Feature vectors defined over pairs ¢(a,s).

* Score of a pair taken to be w - ¢(a,s).
e Adjust w so that

VYa,w - ¢(a™,s) > w- ¢(a,s)

when a* is the correct action for state s.
http://ai.berkeley.edu/project overview.html

"N
r

The Problem with the Perceptron

e Two different solutions among
infinitely many.

e The perceptron has no way to
favor one over the other.

The culprit

[

N
E(W)=—) sign(W - %,)t,
n=1

=PrL A

The Problem with the Perceptron

' This is bad!

Position of x

Decision boundary

e There is no difference between close and far from the decision
boundary.

e \We want the positive and negative examples to be as far as
possible from it.

=PrL A

From Perceptron to Logistic Regression

c(X-wW)
Replace the step function (black)
>
. by a smoother one (red).
Position of x

Decision boundary

e Replace the step function by a smooth function o.
e The prediction becomes y(x; W) = o(W - X).

e Given the training set {(x,,tn)1<n<n} Where ¢, € {0,1}, minimize the
cross-entropy

~y

E(w) == {talny, + (1 —t,)In(1 — y,,)}

n = Y(Xn W — _
Y 4) This is a convex function of w!
“PEL with respect to w. g

Ml

P

=
0

Sigmoid Function

o(a)

— o(a) ' 1.0
. 1
0.8 O_(a) _
0.6 1 + exp(—a)
Jo

0. — — (1 —
5, — o1 —0)

0.2

e It is infinitely differentiable.
e Its derivatives are easy to compute.
o It is asymptotically equal to zero or one.

L

—> Can be understood as a smoothed step functionA

Cross Entropy

E(‘X’) — = Z{tn In YUn + (1 _ tn) 11’1(1 - yn)}

VE(‘R") — Z(yn — tn)f{n

n

Yn = 0(W - Xp)

e —(t,Iny, + (1 —¢)In(1 —y))) 1s close to 0 if z, = 1andy, is
close to 1 or if #, =0 and y, i1s close to zero. Minimizing E(w)
encourages that.

e —(t,Iny, + (1 —¢)In(1 —y)) is largerif 7, =1andy, < 0.5 or
t, = 0and y, > 0.5. Minimizing E(w) discourages that.

« E(w) 1s a convex function whose gradient is easy to compute.

—> The global optimum can be found very effectively.

8

Ml
v
"N
r

Probabilistic Interpretation

y(X; W) = 6(W - X)
B 1
1+ exp(—w - X)

) <yx;w) <1
*y(x;w) =0.51f W - X =0, 1.e. x 1s on the decision boundary.
* y(x; W) = 0.0 or 1.0 if x far from the decision boundary.

= y(X; W) can be interpreted as the probability that x belongs to one
class or the other.

Logistic regression finds what 1s called the maximum likelihood
solution under the assumption that the noise 1s Gaussian.

PrL Bishop, Chapter 4.3.2. A

Ml

Perceptron vs Logistic Regression

e Two different solutions among
infinitely many.

e The perceptron has no way to
favor one over the other.

e Logistic regression does.

Ml
v
"N
r

=PrL

Weight (1bs.)

Example

200

Female
Male

150

100

50 5 &0 (55 70 Vs 80
Height (in.)

e The algorithm does the best it can.
e Some samples can be misclassified.

Kaggle Survey (2019)

90%
80%
70%
oo Logistic regression is and is likely to
remain the most used technique for the
50%
foreseeable future.
40%
30%
20%
10% I
.) .
Linear or Decision Gradient Convo- Bayeian De se Recurrent Transformer Ge ea Evolution Other
Iﬁog otss on Rra“;o?r: Sl?'mg IN;:::TI :':)aches Netwo ks Netw::k Netwarks esa :al pzal::':ms
Forests chines Networks Networks

What data science methods do you use at work?
=PrL

Outliers Can Cause Problems

e Logistic regression tries to minimize
the error-rate at training time.

e Can result in poor classification
rates at test time.

® o
. e) —> We will talk about ways to prevent
S ALRE A this in the next lecture.
e fo) AsAA
&} ® A AA
A

EPFL A

From Binary to Multi-Class

e k classes.

o Simply using k (k-1)/2 binary classifiers results in
ambiguities.

PrL Bishop, Chapter 4.1.2

Ml
"N

Linear Discriminant

Decision region

Decision boundary

Given K linear classifiers of the form y,(x) = w, - X:
« Decision boundaries y,(X) = y/(X) © (W, — W) - X = 0.
» These boundaries define decision regions.

 Decision regions are convex:
(Wk_Wl)'iA > O
(Wk—\TVl)-f(B> O
=> V1€ [0,1], if x = Ax,+(1 — A)Xp, then
In other words, if two points are on the same side of a decision boundary
so are all point between them.

g

Multi-Class Logistic Regression

. K linear classifiers of the form y*(x) = a(wk X).
» Assign x to class k if y(x) > y'(x)VI # k.

 Still a linear problem.
* Because the sigmoid
function 1S monotonic, the

=PrL

Y1

YK

formulation 1s almost
unchanged.

* Only the objective function
being minimized need to be
reformulated.

- -~ -

k = arg maxy;

J
Bishop, Chapter 4.3.4 A

Matrix with K lines and the dimension of w columns.

Multi-Class Cross Entropy

Let the training set be {(X,, [£, .., Ix]); <<y} Where t* € {0,1} is the
probability that sample x,, belongs to class k.

Activation: a“(x) = W, X
. exp(a“(x))
Probability that x belongs to class k: yk(X) = -
g : 2. exp(ai(x))
Multi-class entropy: EW,,...,Wg) = — Z Z t*In(y*(x,))
n k
Gradient of the entropy: VE = Z ix,) — t9x

 This 1s a natural extension of the binary case.
* The multi-class entropy i1s still convex and its gradient 1s easy to

compute.
=PrL Bishop, Chapter 4.3.4 A

Multi-Class Results

Multiclass logistic regression is a very natural extension of binary
logistic regression and has many of the same properties.

=PrL A

Ml

v
"N
r

Linear Regression in Short

e Logistic regression is simple and effective.
o It extends naturally from binary to multi-class.
e But outliers can cause problems ...

