

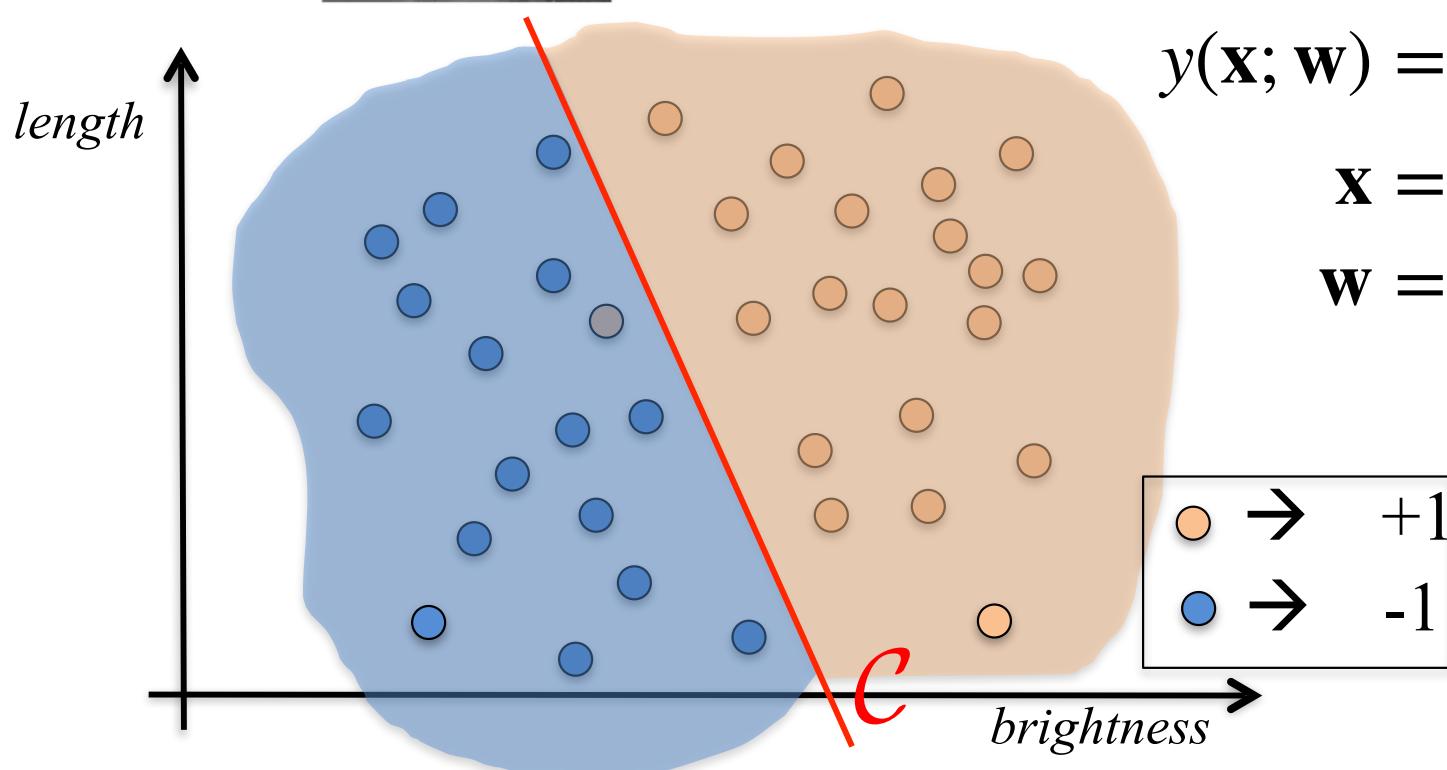
Linear Classification

Pascal Fua
IC-CVLab

Reminder: Linear 2D Model

Some algorithm

$$\xrightarrow{\hspace{1cm}} \begin{pmatrix} \text{brightness} \\ \text{length} \end{pmatrix}$$



$$y(\mathbf{x}; \mathbf{w}) = \text{sign}(\mathbf{w}_x b + \mathbf{w}_y l + \mathbf{w}_0)$$

$$\mathbf{x} = [b, l]$$

$$\mathbf{w} = [w_x, w_y, w_0]$$

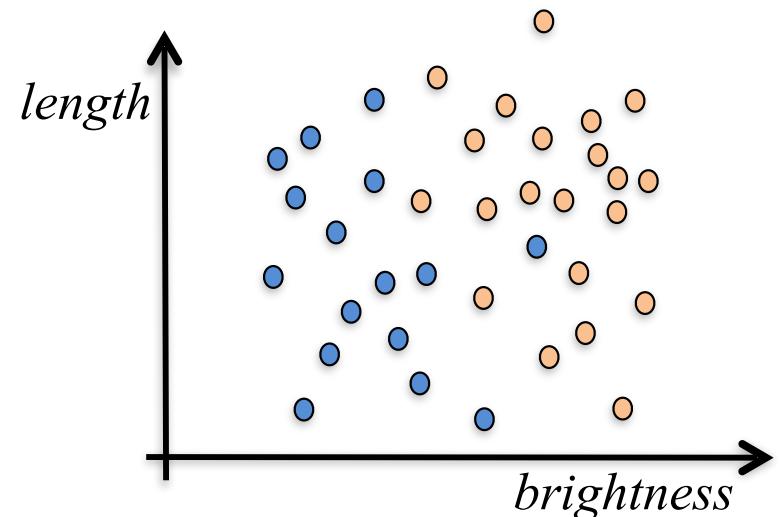
How do we find \mathbf{w} ?

Reminder: Training vs Testing

Supervised training:

Given a **training** set $\{(\mathbf{x}_n, t_n)_{1 \leq n \leq N}\}$ minimize:

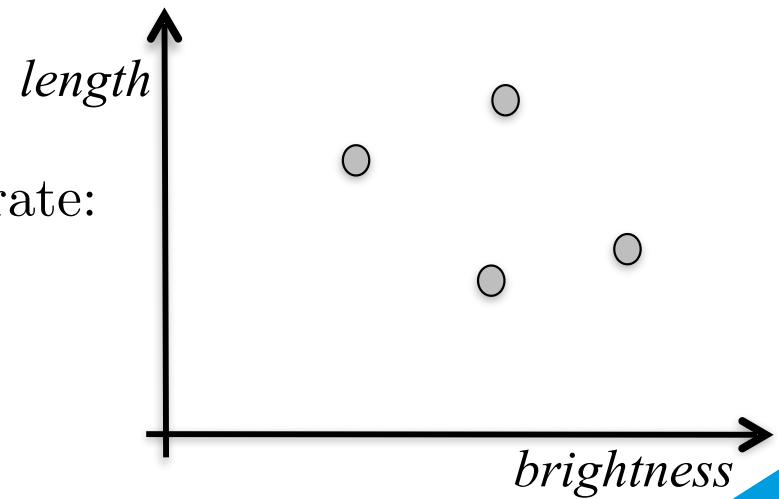
$$\begin{aligned} E(\mathbf{w}) &= \sum_{n=1}^N L(y(\mathbf{x}_n; \mathbf{w}), t_n) \\ &= \sum_{n=1}^N [y(\mathbf{x}_n; \mathbf{w}) \neq t_n] \end{aligned}$$



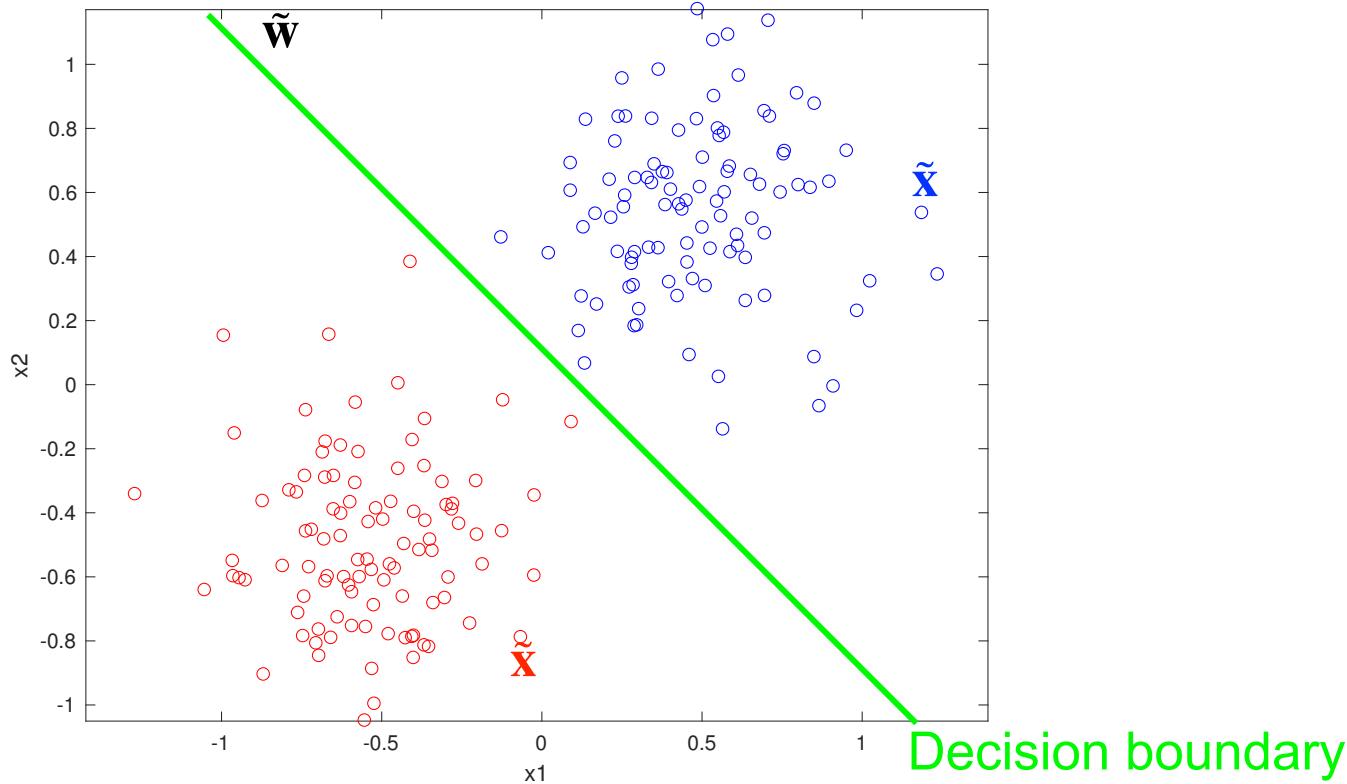
Testing:

Given a **test** set $\{(\mathbf{x}_n, t_n)_{1 \leq n \leq N}\}$ compute the error rate:

$$\frac{1}{N} \sum_{n=1}^N [y(\mathbf{x}_n; \mathbf{w}) \neq t_n]$$



Desired Problem Formulation



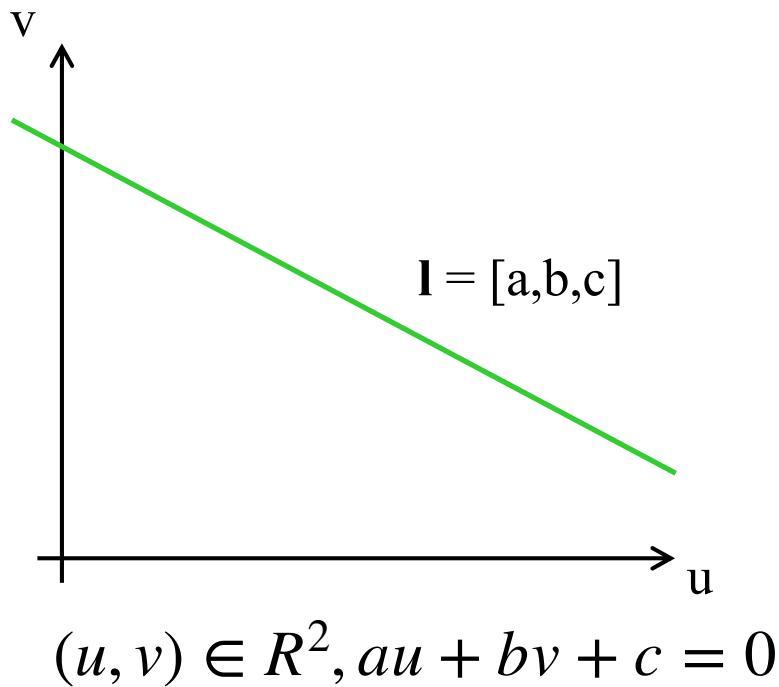
Find $\tilde{\mathbf{w}}$ such that:

- For all or most positive samples $y(\tilde{\mathbf{x}}; \tilde{\mathbf{w}}) = \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} > 0$.
- For all or most negative samples $y(\mathbf{x}; \tilde{\mathbf{w}}) = \tilde{\mathbf{w}} \cdot \mathbf{x} < 0$

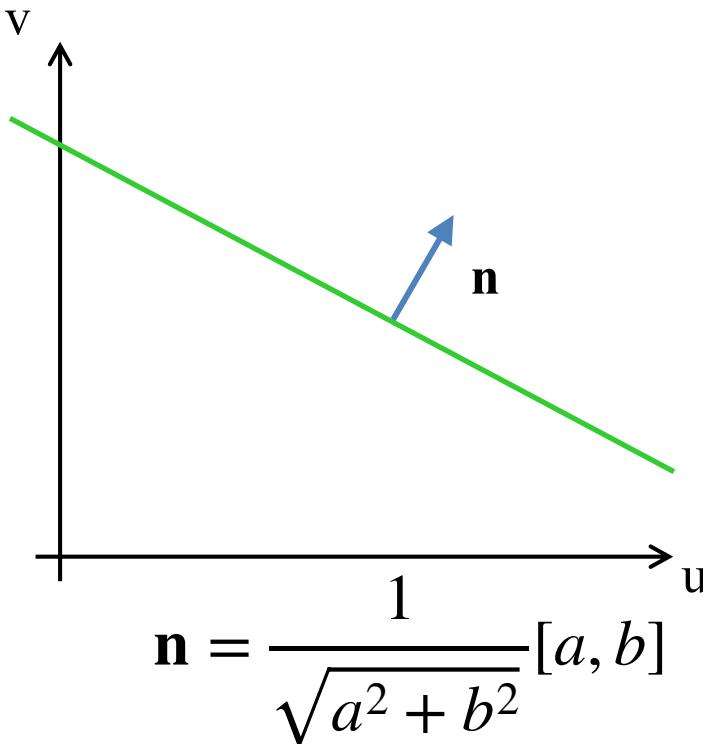
—> Let's talk about hyperplanes.

Parameterizing Lines

Equation of a line



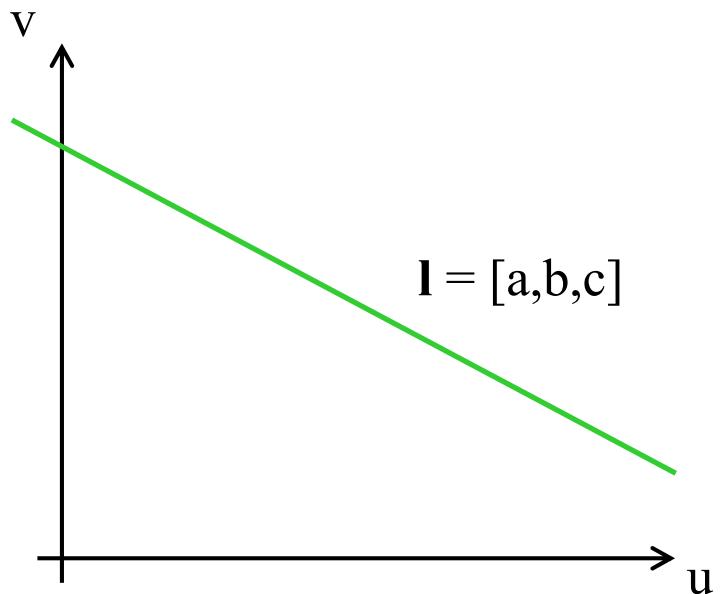
Normal vector



$[a, b, c]$ and $\frac{1}{\sqrt{a^2 + b^2}} [a, b, c]$ define the same line.

Normalized Parameterization

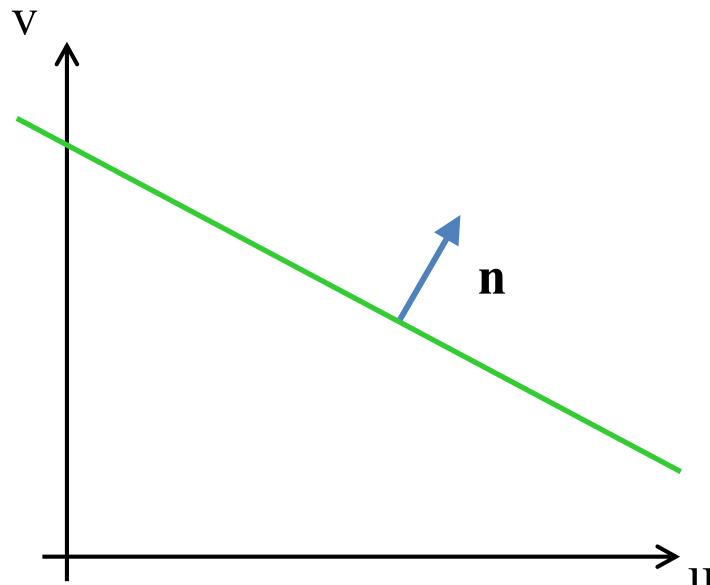
Equation of a line



$$(u, v) \in \mathbb{R}^2, au + bv + c = 0$$

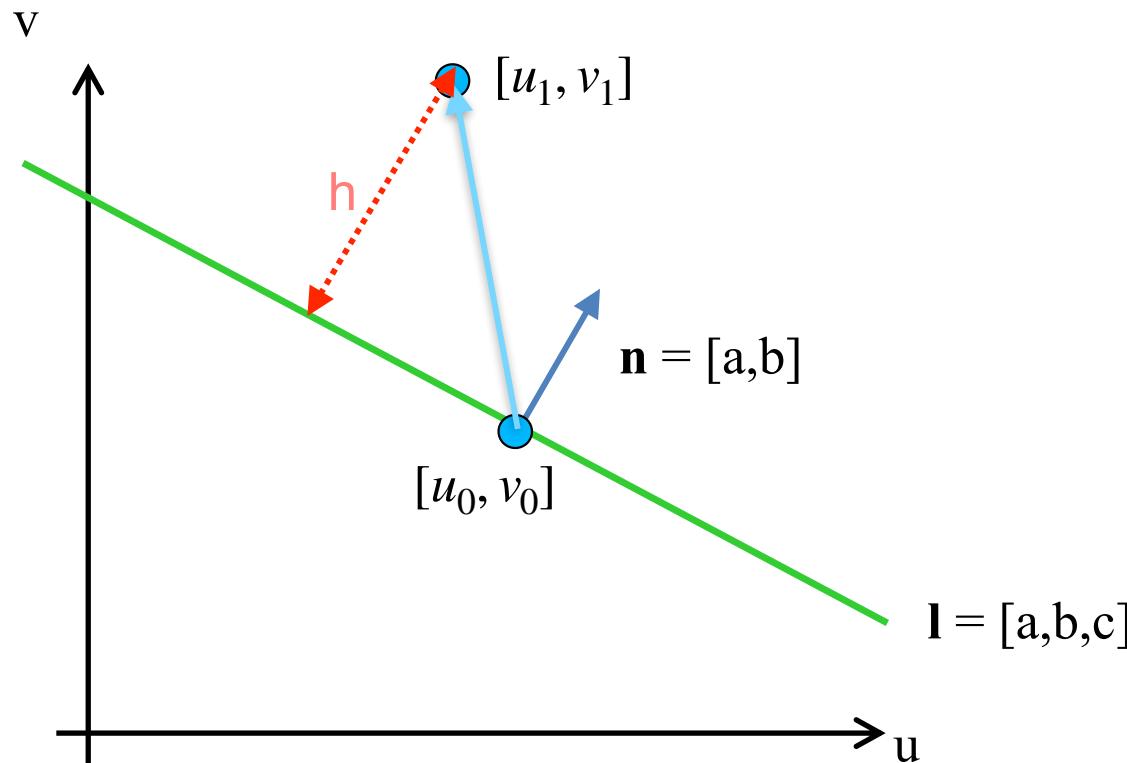
$$\text{with } a^2 + b^2 = 1$$

Normal vector



$$\mathbf{n} = [a, b]$$

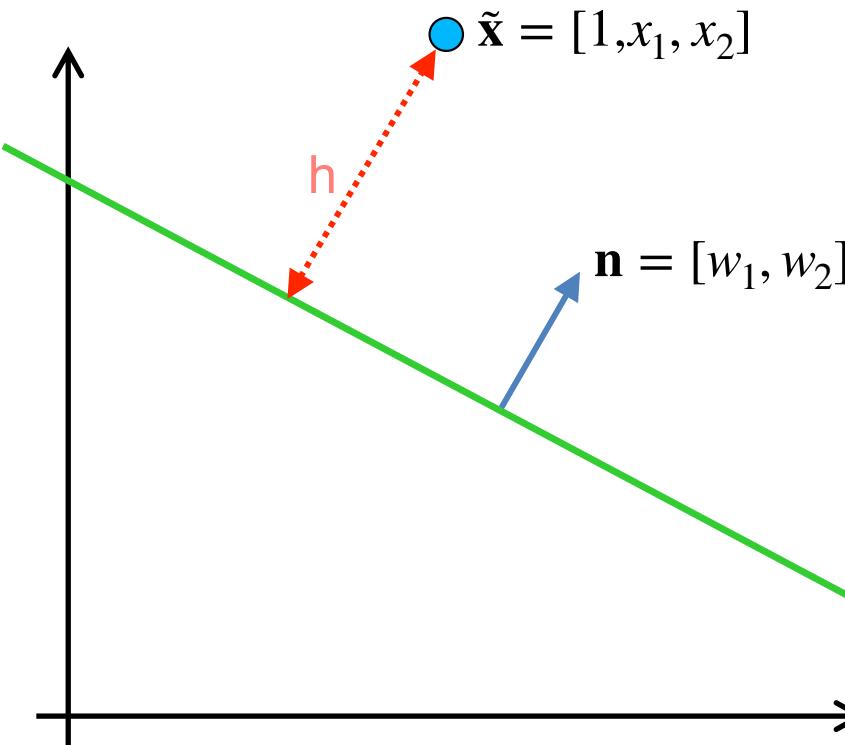
Signed Distance to Line



$$\begin{aligned}\text{Signed distance: } h &= \mathbf{n} \cdot [u_1 - u_0, v_1 - v_0] \\ &= a(u_1 - u_0) + b(v_1 - v_0) \\ &= au_1 + bv_1 - (au_0 - bv_0) \\ &= au_1 + bv_1 + c - (au_0 - bv_0 - c) \\ &= au_1 + bv_1 + c\end{aligned}$$

$h=0$: Point is on the line.
 $h>0$: Point on one side.
 $h<0$: Point on the other side.

Signed Distance Reformulated



$h=0$: Point is on the line.
 $h>0$: Point in the normal's direction.
 $h<0$: Point in the other direction.

Notation:

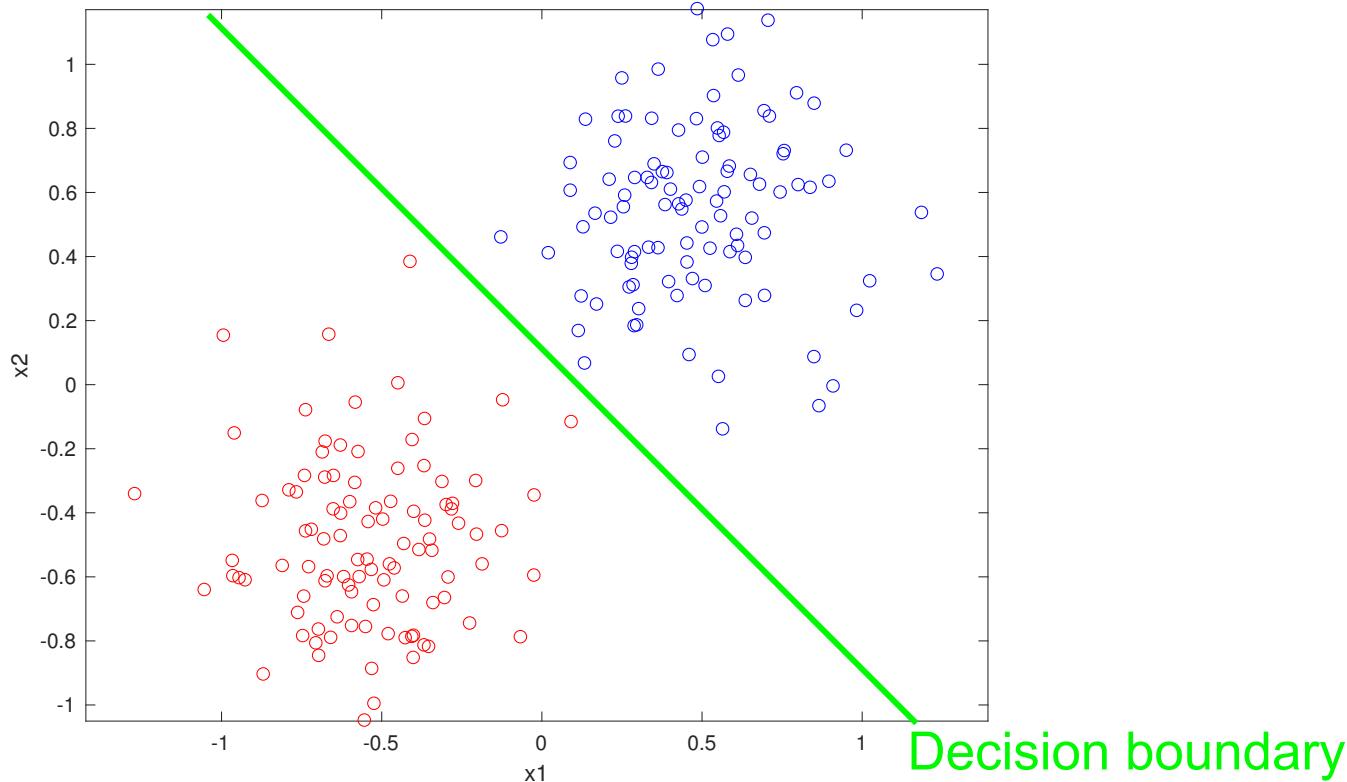
$$\mathbf{x} = [x_1, x_2]$$

$$\tilde{\mathbf{x}} = [1, x_1, x_2]$$

Signed distance:

$$\begin{aligned} h &= w_0 + w_1 x_1 + w_2 x_2 \\ &= \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} \end{aligned}$$

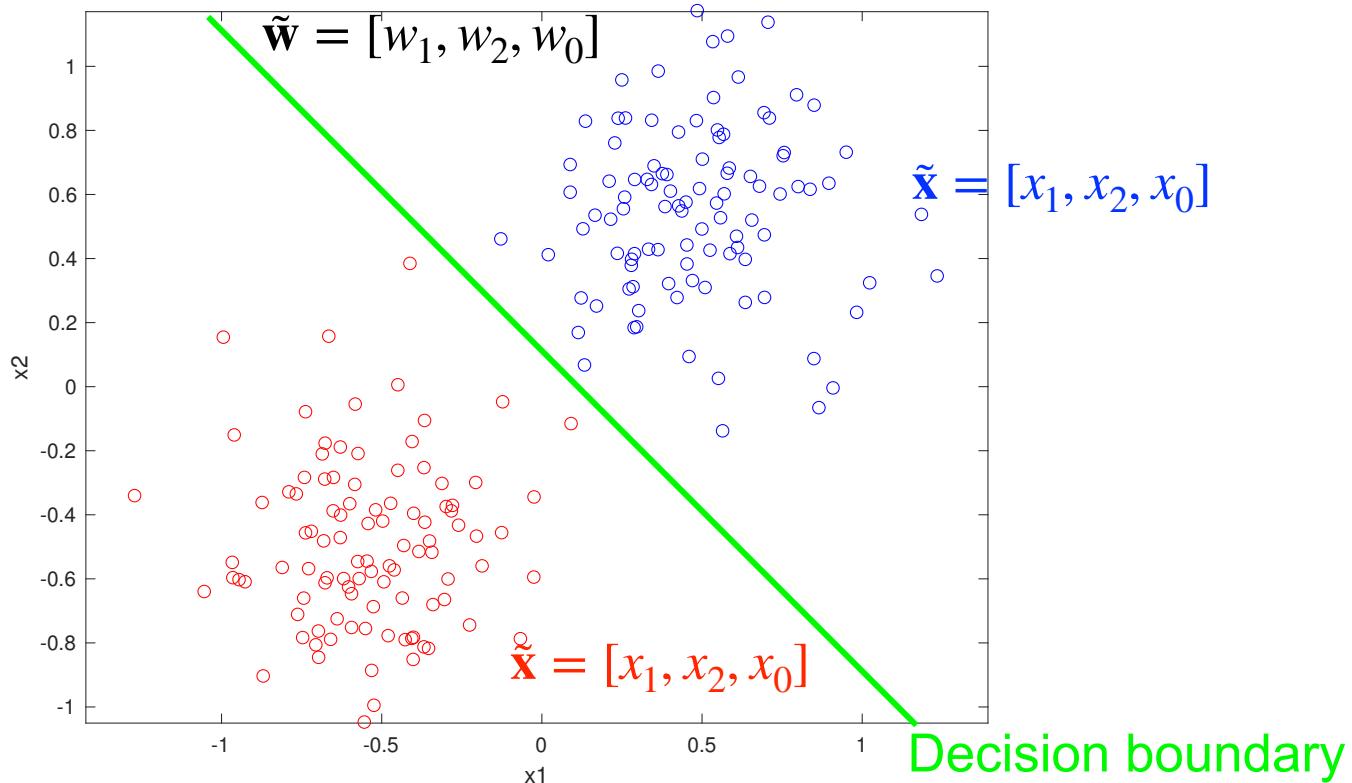
Reminder: Binary Classification



Two classes shown as different colors:

- The label $y \in \{-1,1\}$ or $y \in \{0,1\}$.
- The samples with label 1 are called positive samples.
- The samples with label -1 or 0 are called negative samples.

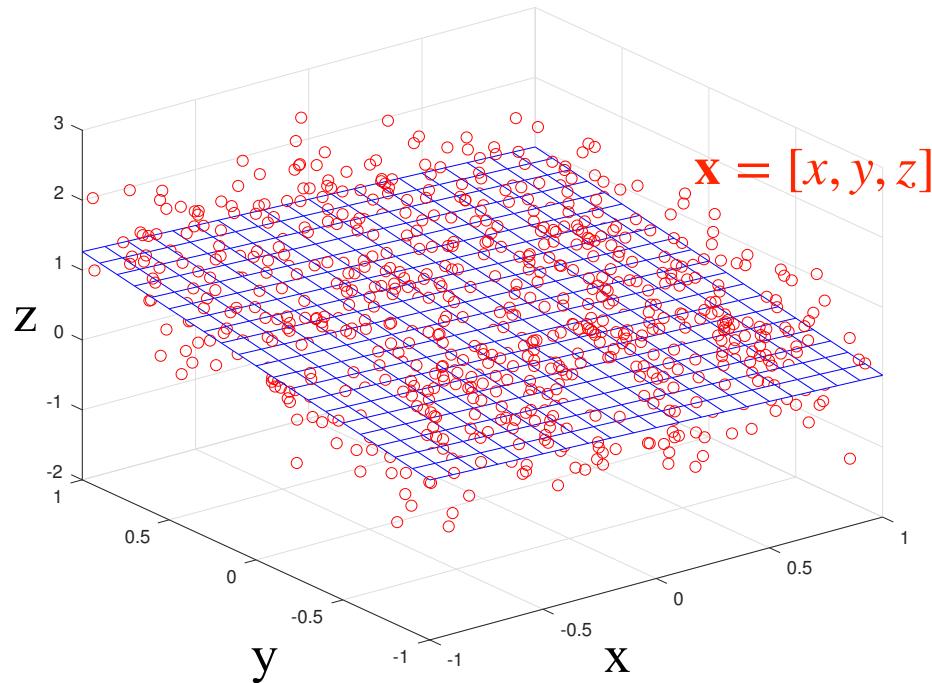
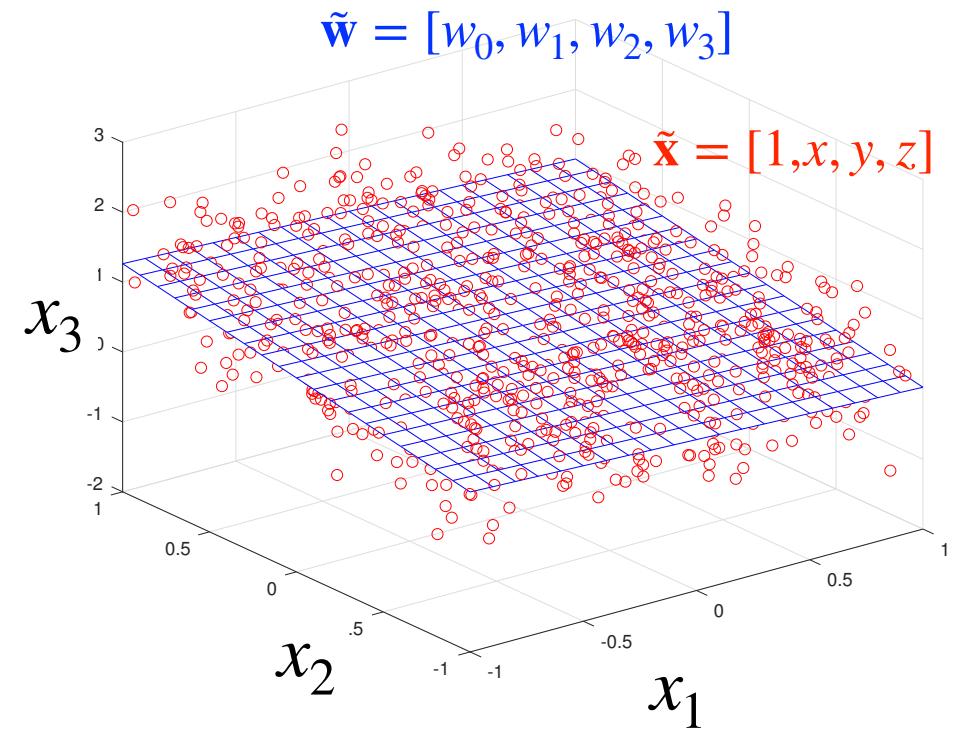
Problem Statement in 2D



Find $\tilde{\mathbf{w}}$ such that:

- For all or most positive samples $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} > 0$.
- For all or most negative samples $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} < 0$.

Signed Distance in 3D

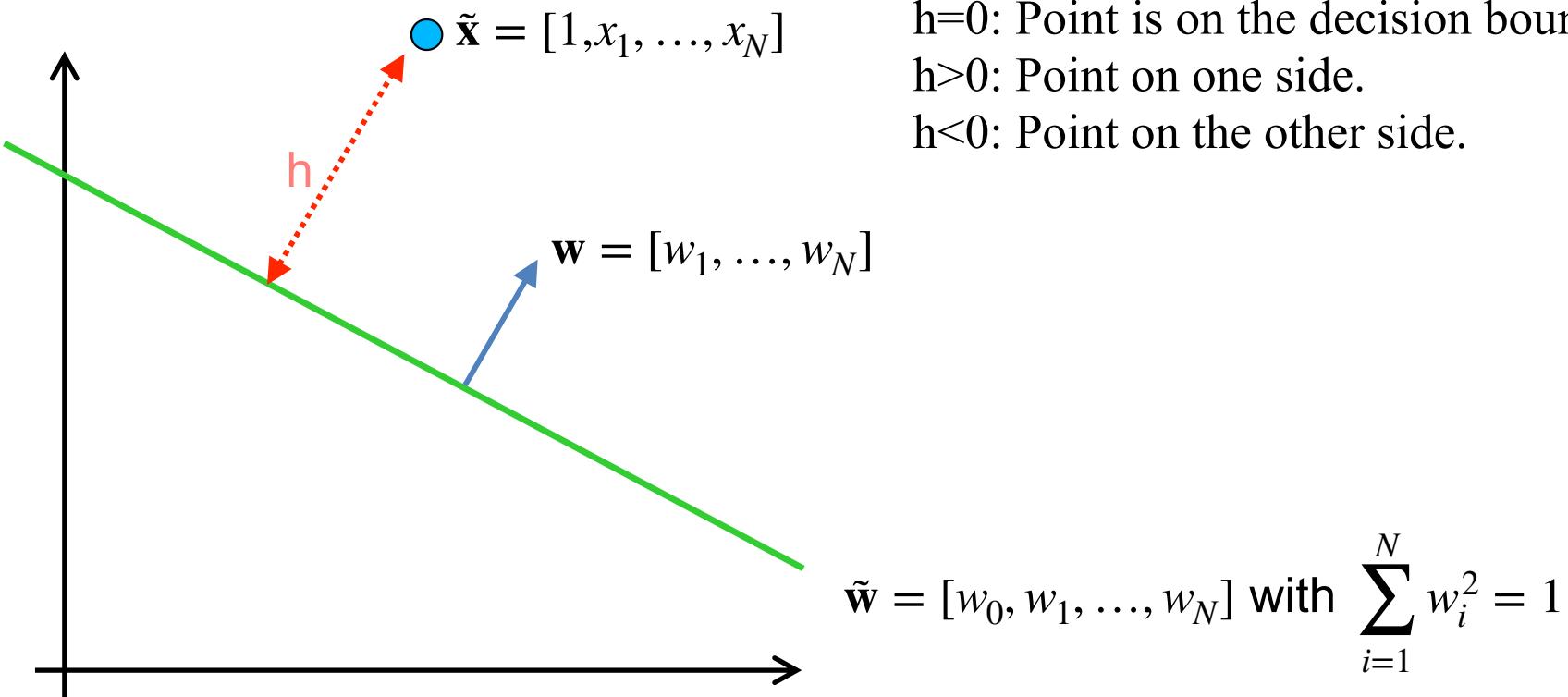


$$\mathbf{x} \in R^3, 0 = ax + by + cz + d$$

$$\tilde{\mathbf{x}} \in R^4, \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} = 0$$

Signed distance $h = \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}$ if $w_1^2 + w_2^2 + w_3^2 = 1$.

Signed Distance in N Dimensions



Notation:

$$\mathbf{x} = [x_1, \dots, x_N]$$

$$\tilde{\mathbf{x}} = [1, x_1, \dots, x_N]$$

Hyperplane:

$$\begin{aligned} \mathbf{x} \in R^n, \quad 0 &= \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} \\ &= w_0 + w_1 x_1 + \dots + w_N x_N \end{aligned}$$

Signed distance: $h = \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}$

Problem Statement in N Dimensions

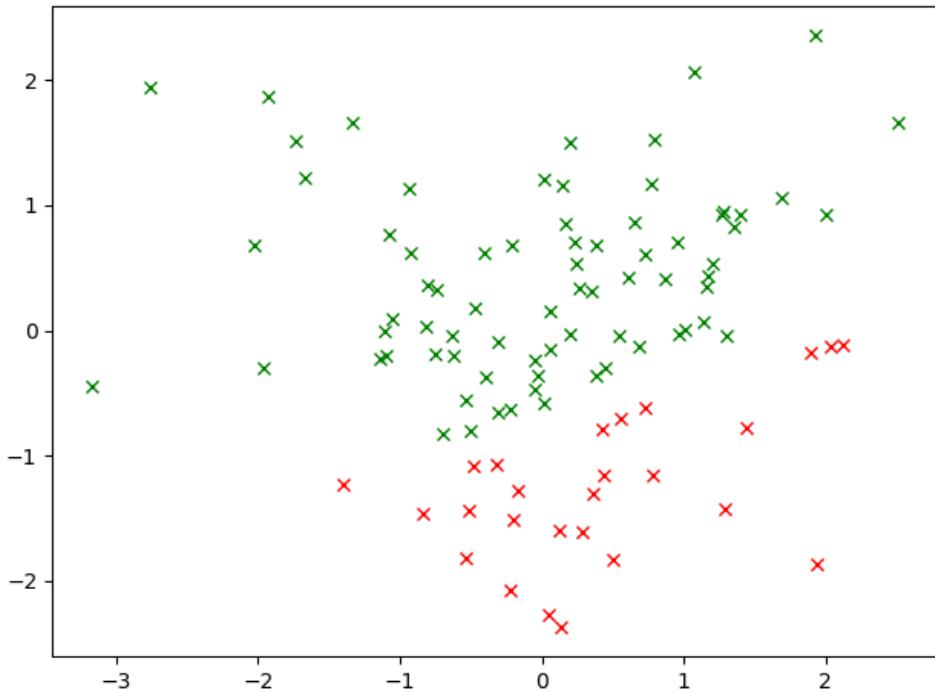
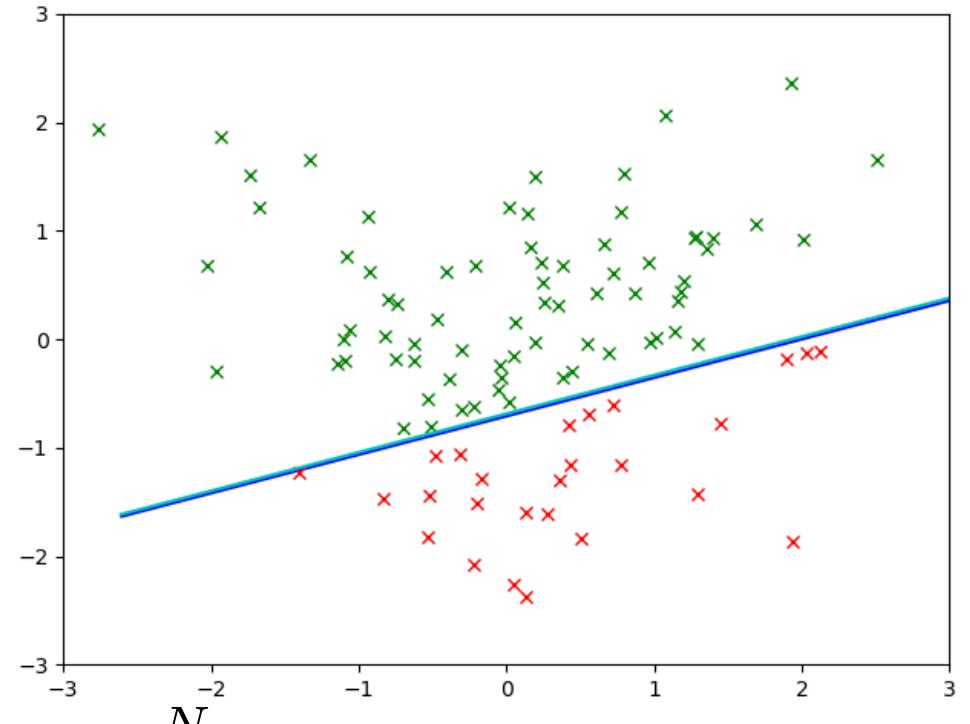
Hyperplane: $\mathbf{x} \in R^N$, $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} = 0$, with $\tilde{\mathbf{x}} = [1 \mid \mathbf{x}]$.

Signed distance: $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}$, with $\tilde{\mathbf{w}} = [w_0 \mid \mathbf{w}]$ and $\|\mathbf{w}\| = 1$.

Find $\tilde{\mathbf{w}}$ such that

- for all or most positive samples $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} > 0$,
- for all or most negative samples $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} < 0$.

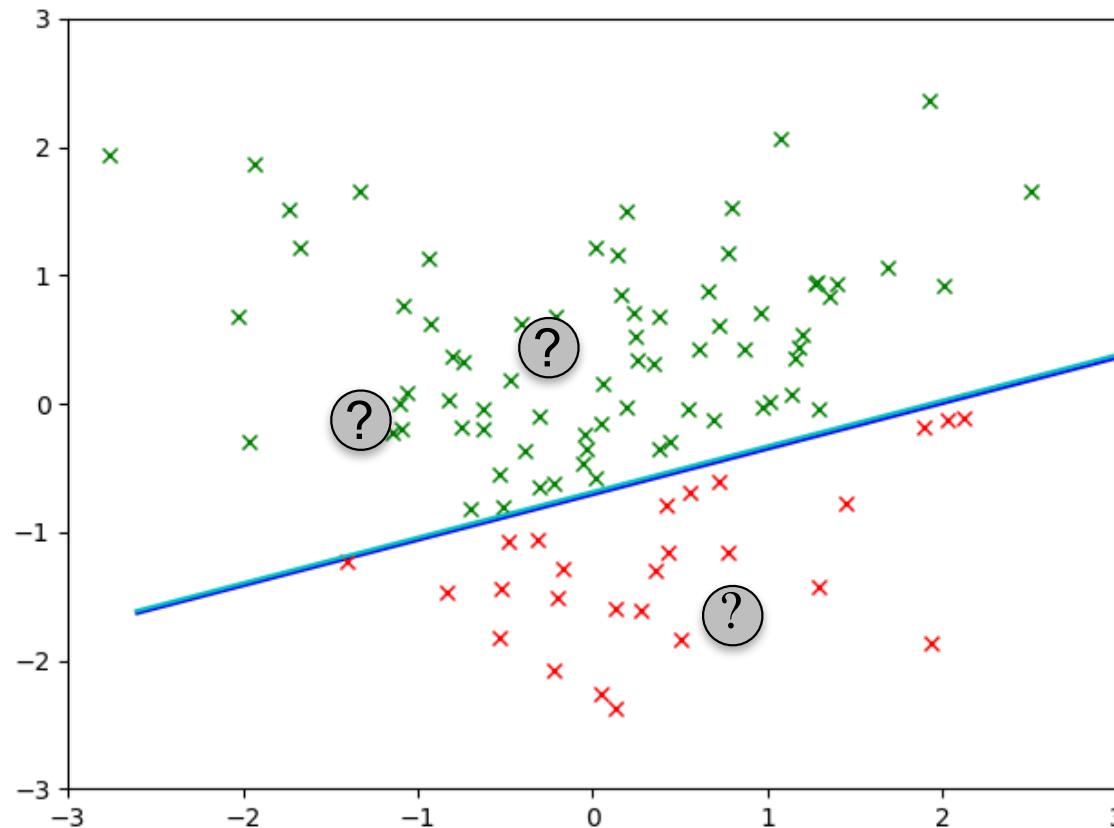
Perceptron



$$\text{Minimize: } E(\tilde{\mathbf{w}}) = - \sum_{n=1}^N \text{sign}(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_n) t_n$$

- Set $\tilde{\mathbf{w}}_1$ to $\mathbf{0}$.
- Iteratively, pick a random index n .
 - If $\tilde{\mathbf{x}}_n$ is correctly classified, do nothing.
 - Otherwise, $\tilde{\mathbf{w}}_{t+1} = \tilde{\mathbf{w}}_t + t_n \tilde{\mathbf{x}}_n$.

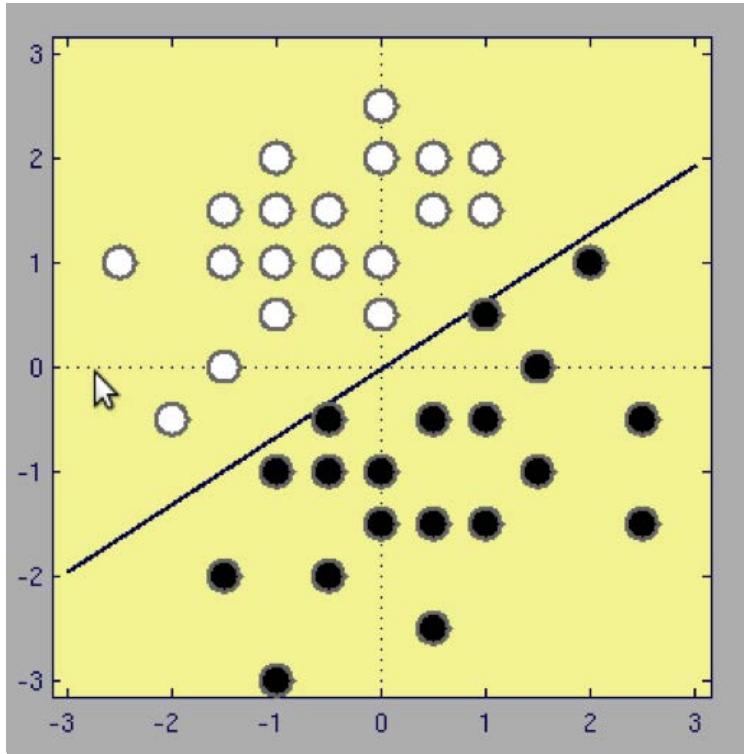
Test Time



$$y(\mathbf{x}; \tilde{\mathbf{w}}) = \begin{cases} 1 & \text{if } \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} \geq 0, \\ -1 & \text{otherwise.} \end{cases}$$

$$\tilde{\mathbf{x}} = [1, x_1, \dots, x_N]$$

Centered Perceptron



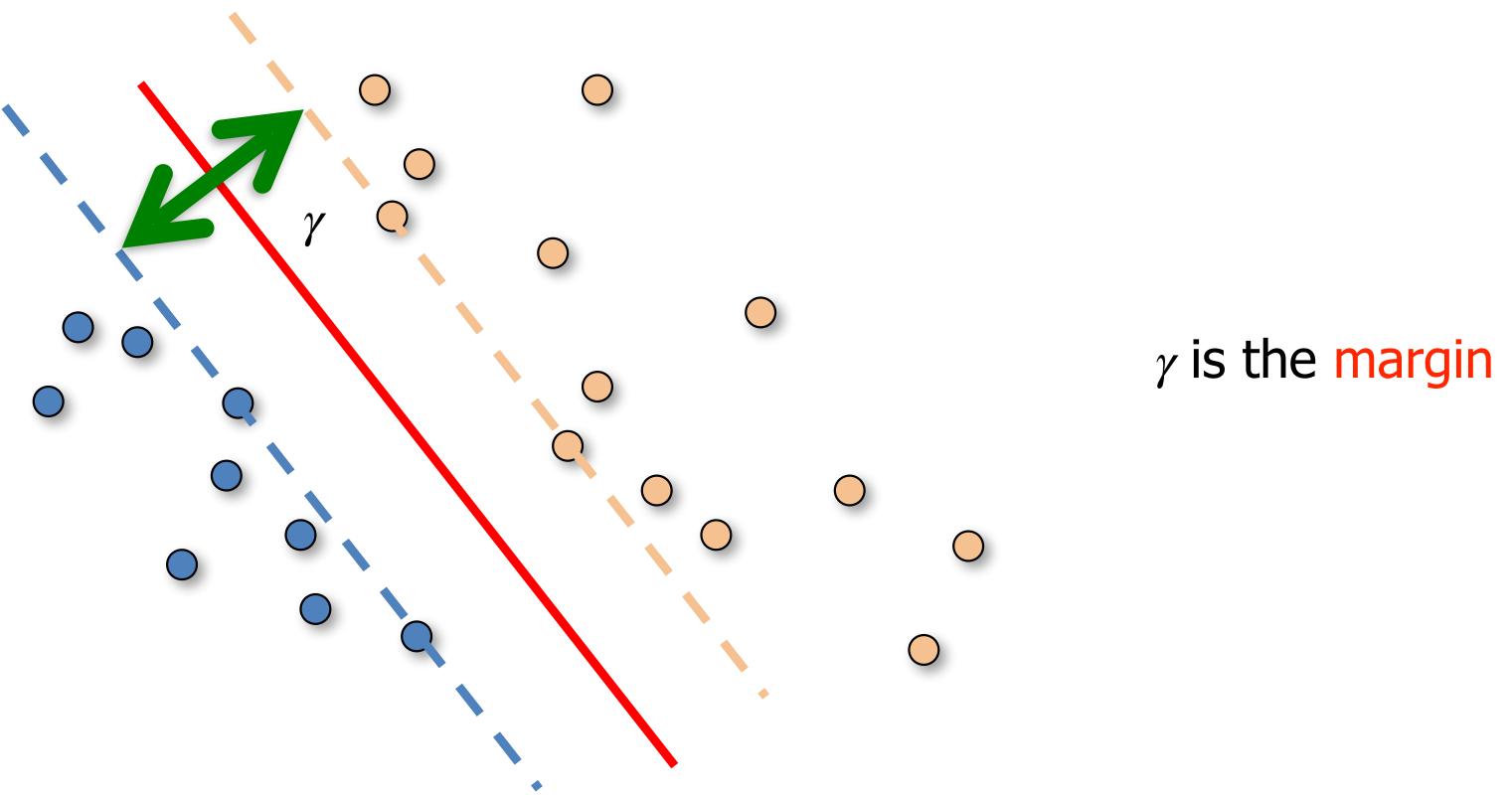
The two populations can be translated so that the decision boundary goes through the origin.

Given a **training** set $\{(\mathbf{x}_n, t_n)_{1 \leq n \leq N}\}$ minimize:

$$E(\mathbf{w}) = - \sum_{n=1}^N \text{sign}(\mathbf{w} \cdot \mathbf{x}_n) t_n$$

- Center the \mathbf{x}_n s so that $w_0 = 0$.
- Set \mathbf{w}_1 to $\mathbf{0}$.
- Iteratively, pick a random index n .
 - If \mathbf{x}_n is correctly classified, do nothing.
 - Otherwise, $\mathbf{w}_{t+1} = \mathbf{w}_t + t_n \mathbf{x}_n$.

Convergence Theorem

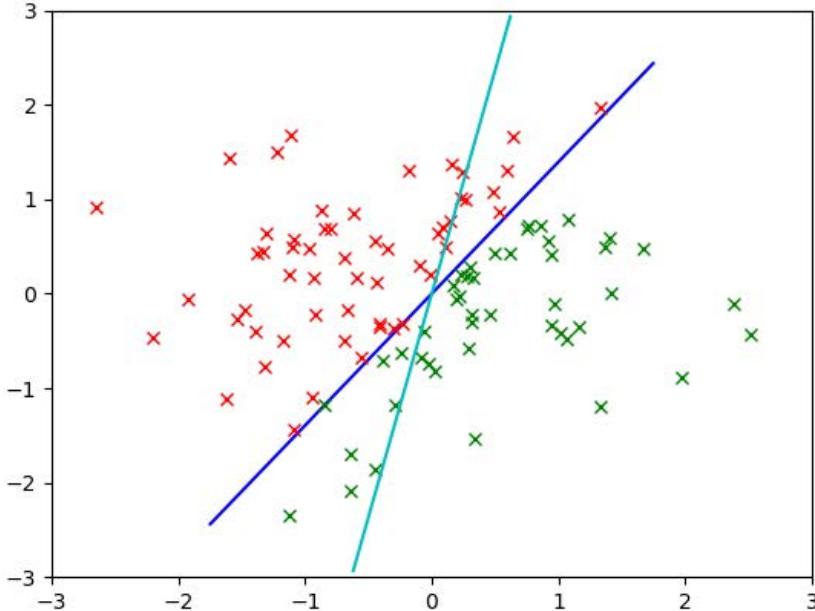


If there is a number $\gamma > 0$ and a parameter vector \mathbf{w}^* , with $||\mathbf{w}^*|| = 1$, such that

$$\forall n, t_n(\mathbf{w}^* \cdot \mathbf{x}_n) > \gamma ,$$

the perceptron algorithm makes at most $\frac{R^2}{\gamma^2}$ errors, where $R = \max_n ||\mathbf{x}_n||$.

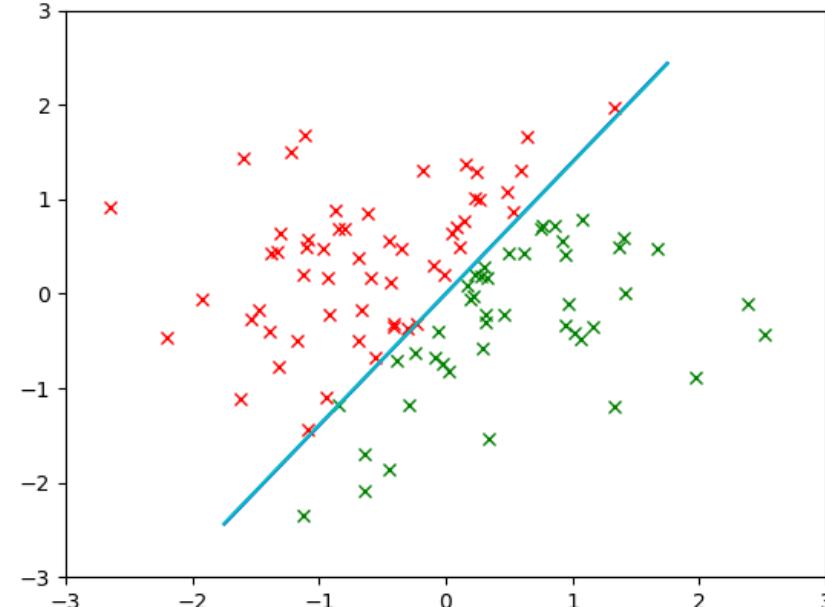
What if γ is Small?



```
for n in range(nIt):  
    for i in range(ns):
```

- If \mathbf{x}_n is correctly classified, do nothing.
- Otherwise, $\mathbf{w}_{t+1} = \mathbf{w}_t + t_n \mathbf{x}_n$.

Randomizing helps!

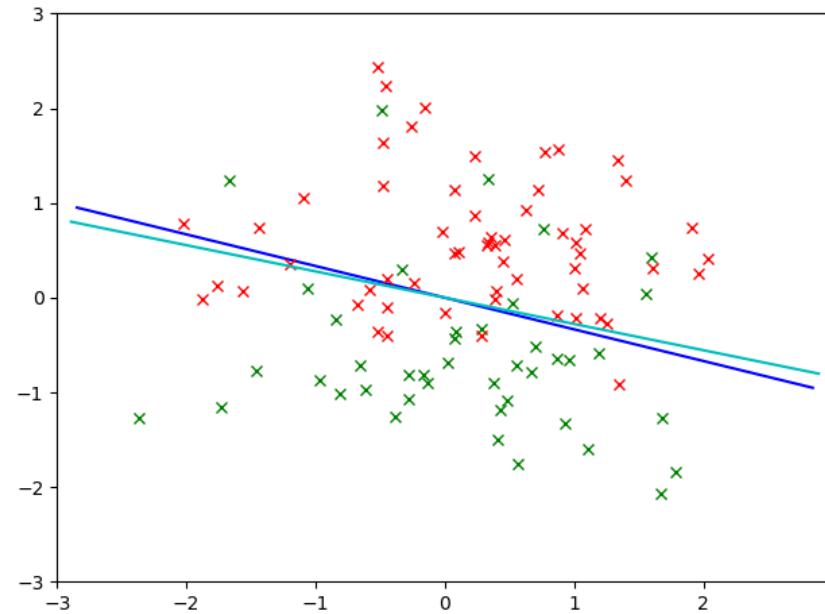
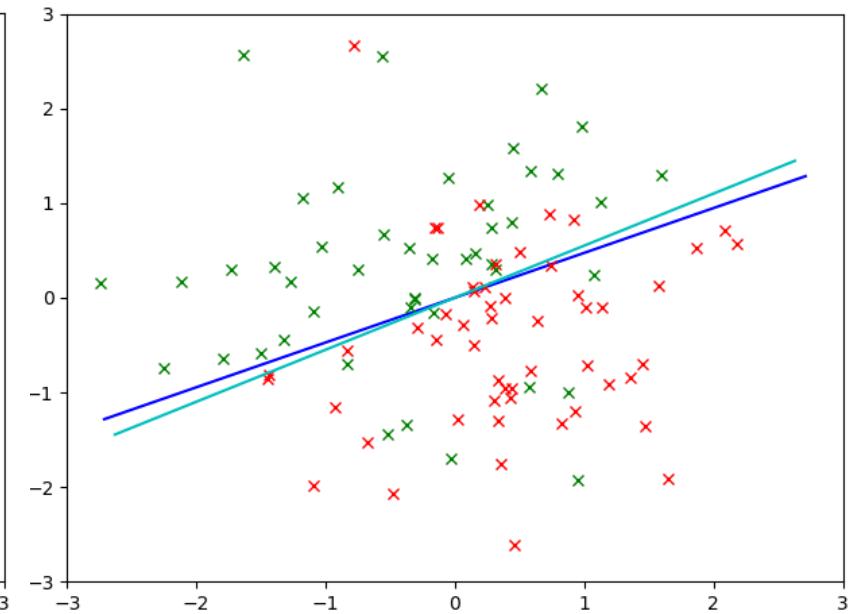


```
for n in range(nIt):  
    inds=list(range(ns))  
    random.shuffle(inds)  
    for i in range(inds):
```

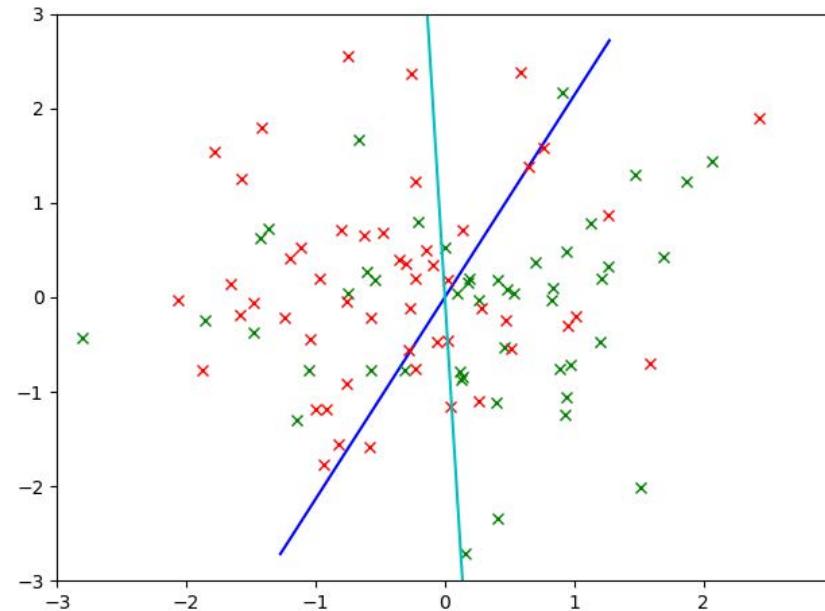
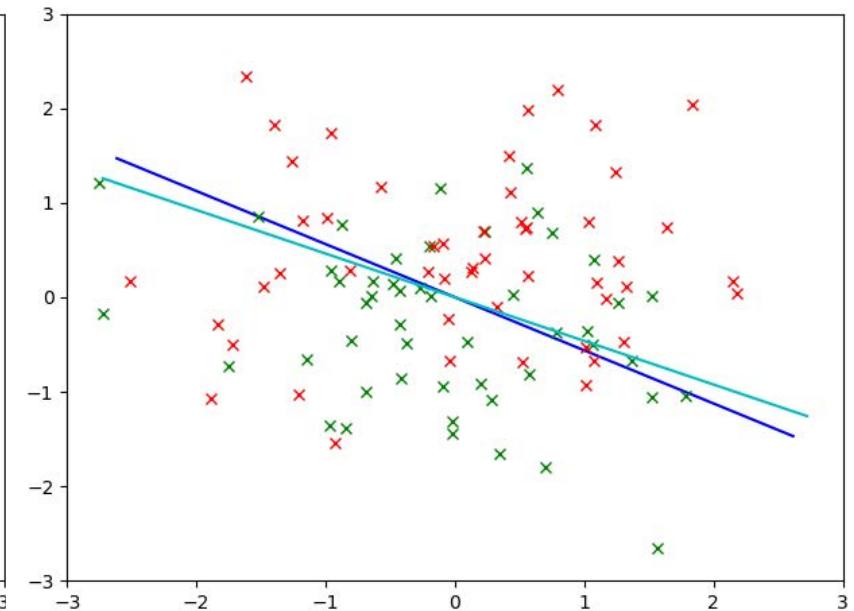
- If \mathbf{x}_n is correctly classified, do nothing.
- Otherwise, $\mathbf{w}_{t+1} = \mathbf{w}_t + t_n \mathbf{x}_n$.

What if γ Does Not Exist?

20% of outliers



30% of outliers



Still works up to a point but no guarantee!

Optional: Python Implementation (1)

```
def perceptronRand(xs,ys,nIt=200,randP=True):  
    N, D = xs.shape          # Get data shape.  
    w = np.zeros(D)          # Init weights.  
    for it in range(nIt):    # Train.  
        allCorrect = True    # Generate indices.  
        inds = np.random.permutation(N) if randP else np.arange(N)  
        for i in inds:  
            x = xs[i]          # Pick one sample.  
            y = 2*(np.inner(x,w) > 0)-1 # Predict the label.  
            if y != ys[i]:      # Misclassified.  
                w += ys[i] * x  # Update weights.  
                w /= np.linalg.norm(w) # Normalize length.  
                allCorrect = False # Something has changed.  
            print('It {}: {}'.format(it + 1, linearAccuracy(xs, ys, w)))  
        if allCorrect:  
            break              # Finish training.  
    return w
```

Call to numpy. Mostly coded in C or Fortran.

```
def linearAccuracy(xs,ys,ws):  
    return(sum(ys == (2 * (xs @ ws > 0)) - 1) * 100/len(ys))
```

Optional: Python Implementation (2)

```
def perceptronRand(xs,ys,nIt=200,randP=True):
    N, D = xs.shape           # Get data shape.
    w = np.zeros(D)            # Init weights.
    bestW = None
    bestA = 0.0
    for it in range(nIt):      # Train.
        allCorrect = True      # Generate indices.
        inds = np.random.permutation(N) if randP else np.arange(N)
        for i in inds:
            x = xs[i]           # Pick one sample.
            y = 2*(np.inner(x,w) > 0)-1 # Predict the label.
            if y != ys[i]:        # Misclassified.
                w += ys[i] * x    # Update weights.
                w /= np.linalg.norm(w) # Normalize length.
                allCorrect = False # Something has changed.
            acc = linearAccuracy(xs, ys, w)
            if(acc>bestA):
                bestW = w
                bestA = acc
            print('It {}: {}'.format(it + 1,bestA))
        if allCorrect:
            break                # Finish training.
    return bestW
```

Record best solution.

Optional: JAVA Implementation

```
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import java.lang.Float;

class Perceptron {
    public Perceptron() {}

    public static INDArray perceptronRand(INDArray xs, INDArray ys, int nlt, boolean randP){
        long[] shape = xs.shape(); // Get data shape
        long N      = shape[0];
        long D      = shape[1];

        INDArray w  = Nd4j.zeros(D,1); // Init weights

        for (int it = 0; it < nlt; it++){
            boolean allCorrect = true;
            INDArray inds = Nd4j.arange(0,D); // Generate samples indices.

            if (randP)
                Nd4j.shuffle(inds);

            for (int i = 0; i < N; i++){
                INDArray x = xs.getRow(i); // Pick one sample.
                INDArray y = (x.mmul(w).gt(0)).mul(2).sub(1); // Predict the label.
                if (y.data().asFloat()[0] != ys.getRow(i).data().asFloat()[0]) { // Misclassified.

                    w = x.mul(ys.getRow(i)).add(w.transpose()); // Update weights.
                    w = w.div(w.norm2().add(1e-3)).transpose(); // Unit normal length.

                    allCorrect = false;
                }
            }
            System.out.println("It " + it + ": " + linearAccuracy(xs, ys, w));
            if (allCorrect){
                break;
            }
        }
        return w;
    }

    public static String linearAccuracy(INDArray xs,INDArray ys,INDArray w){
        INDArray y = (xs.mmul(w).gt(0)).mul(2).sub(1);
        return Nd4j.sum((y.eq(ys))).div(4).toString();
    }

    public class Main{
        public static void main (String[] args){

            INDArray xs    = Nd4j.create(new float[][]{{1,0},{0,1},{1,1},{0,0}});
            INDArray ys    = Nd4j.create(new float[][]{{1},{1},{1},{-1}});
            int nlt      = 200;
            boolean randP = true;
            INDArray weights = Perceptron.perceptronRand(xs, ys, nlt, randP);
        }
    }
}
```

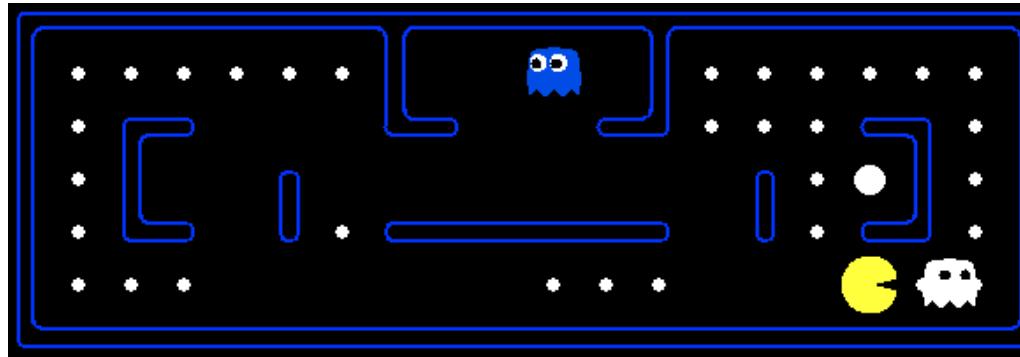
More verbose!

NumPy/SciPy

The time-critical loops are usually **implemented in C, C++ or Fortran**. Parts of SciPy are thin layers of code on top of the scientific routines that are freely available at <http://www.netlib.org/>. Netlib is a huge repository of incredibly valuable and robust scientific algorithms written in C and Fortran.

One of the design goals of NumPy was to make it buildable without a Fortran compiler, and if you don't have LAPACK available NumPy will use its own implementation. SciPy requires a Fortran compiler to be built, and **heavily depends on wrapped Fortran code**.

Optional: Pacman Apprenticeship

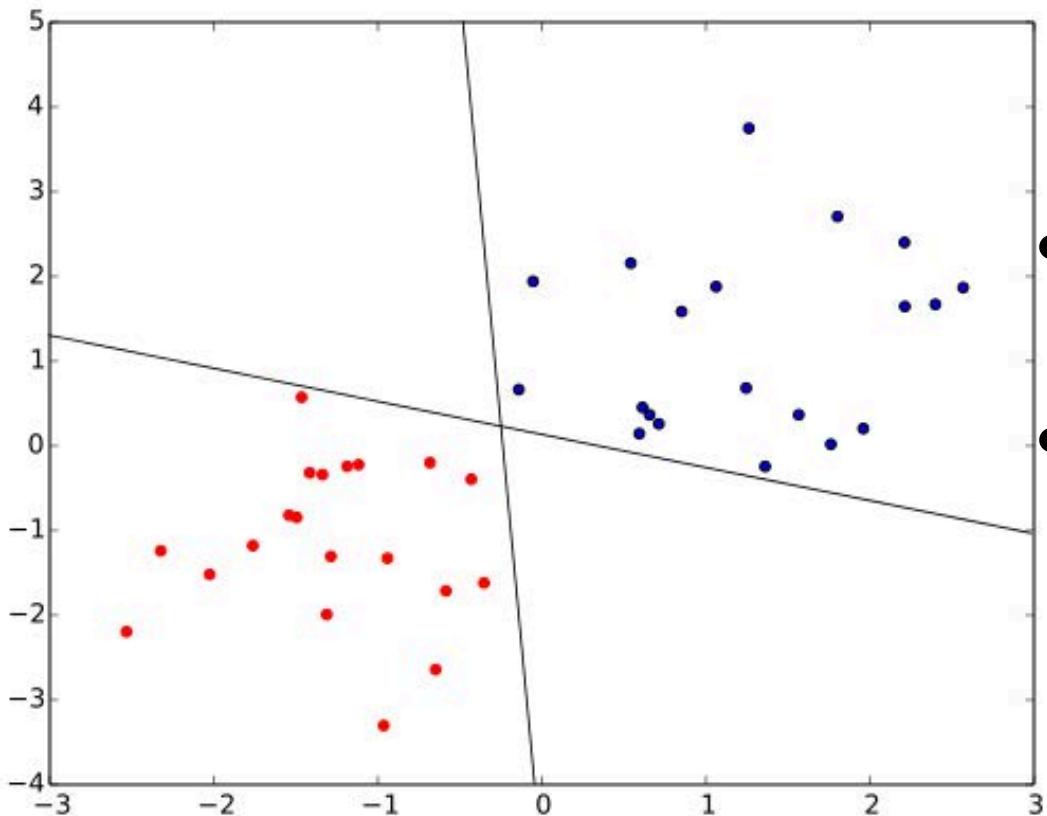


- Examples are states s .
- **Correct** actions a are those taken by experts.
- Feature vectors defined over pairs $\phi(a,s)$.
- Score of a pair taken to be $\mathbf{w} \cdot \phi(a,s)$.
- Adjust \mathbf{w} so that

$$\forall a, \mathbf{w} \cdot \phi(a^*, s) \geq \mathbf{w} \cdot \phi(a, s)$$

when a^* is the **correct** action for state s .

The Problem with the Perceptron

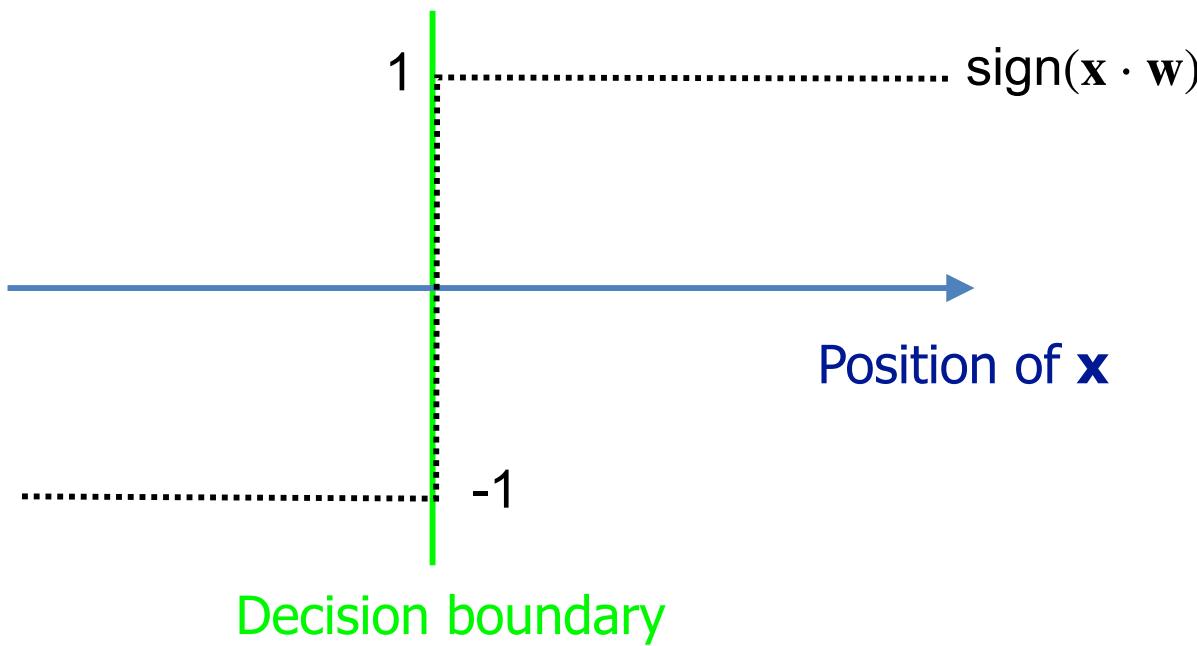
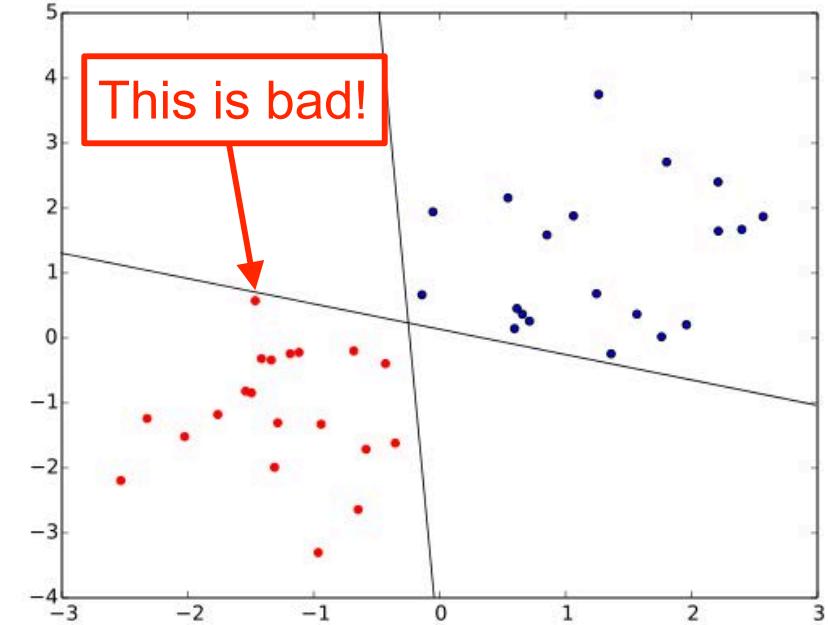


- Two different solutions among infinitely many.
- The perceptron has no way to favor one over the other.

The culprit

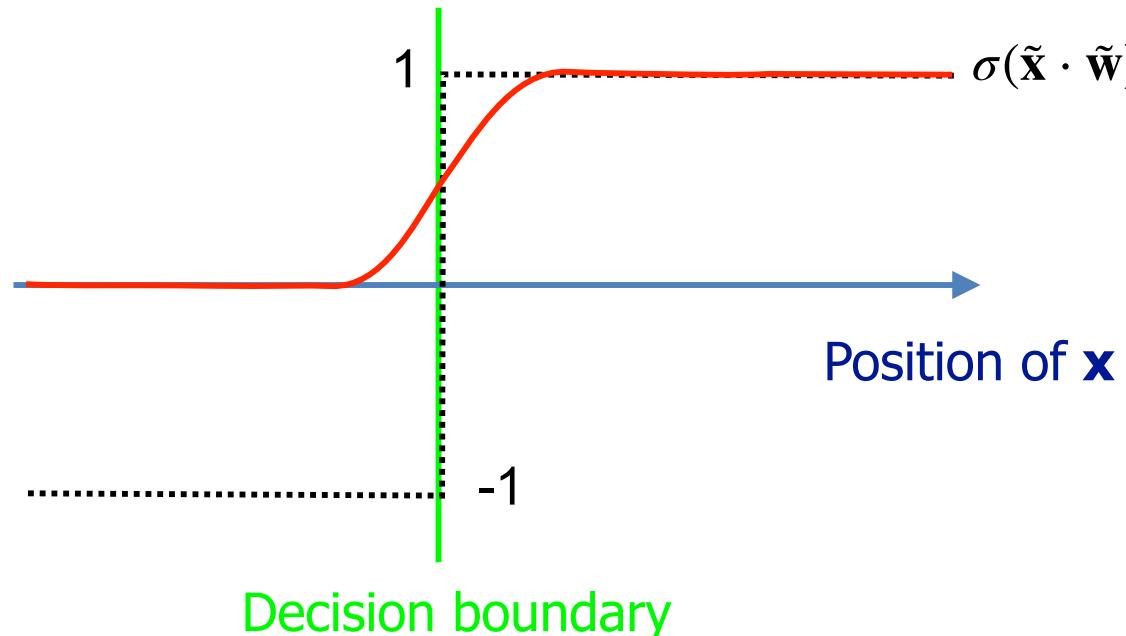
$$E(\tilde{\mathbf{w}}) = - \sum_{n=1}^N \text{sign}(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_n) t_n$$

The Problem with the Perceptron



- There is no difference between close and far from the decision boundary.
- We want the positive and negative examples to be as far as possible from it.

From Perceptron to Logistic Regression



Replace the step function (black) by a smoother one (red).

- Replace the step function by a smooth function σ .
- The prediction becomes $y(\mathbf{x}; \tilde{\mathbf{w}}) = \sigma(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}})$.
- Given the training set $\{(\mathbf{x}_n, t_n)_{1 \leq n \leq N}\}$ where $t_n \in \{0, 1\}$, minimize the cross-entropy

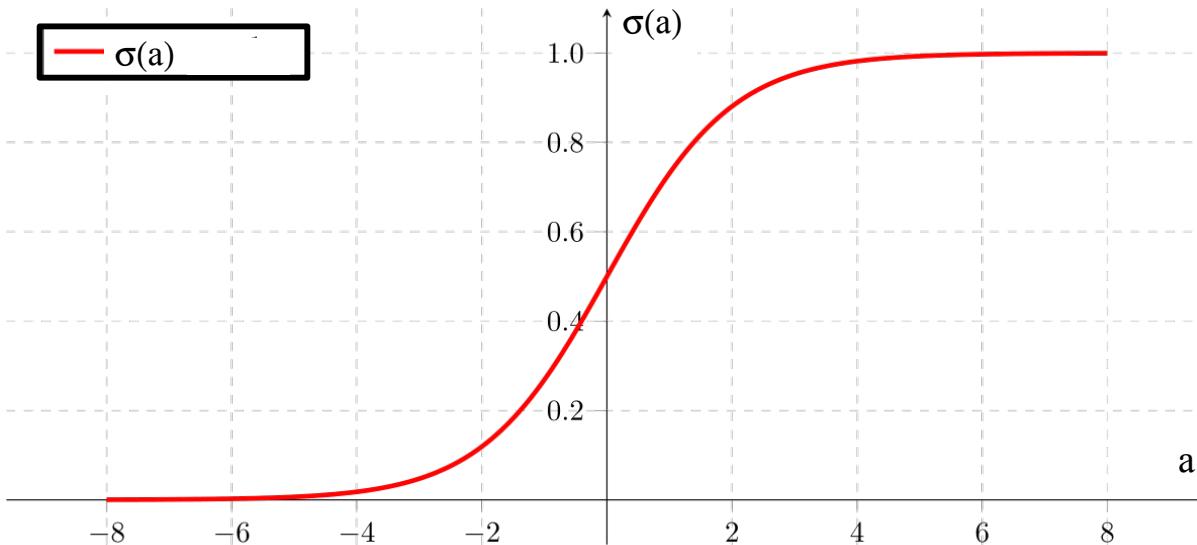
$$E(\tilde{\mathbf{w}}) = - \sum_n \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

$$y_n = y(\mathbf{x}_n; \tilde{\mathbf{w}})$$

This is a convex function of \mathbf{w} !

with respect to $\tilde{\mathbf{w}}$.

Sigmoid Function



$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

$$\frac{\partial \sigma}{\partial a} = \sigma(1 - \sigma)$$

- It is infinitely differentiable.
- Its derivatives are easy to compute.
- It is asymptotically equal to zero or one.

→ Can be understood as a smoothed step function.

Cross Entropy

$$E(\tilde{\mathbf{w}}) = - \sum_n \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

$$\nabla E(\tilde{\mathbf{w}}) = \sum_n (y_n - t_n) \tilde{\mathbf{x}}_n$$

$$y_n = \sigma(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_n)$$

- $-(t_n \ln y_n + (1 - t_n) \ln(1 - y_n))$ is close to 0 if $t_n = 1$ and y_n is close to 1 or if $t_n = 0$ and y_n is close to zero. Minimizing $E(\mathbf{w})$ encourages that.
- $-(t_n \ln y_n + (1 - t_n) \ln(1 - y_n))$ is larger if $t_n = 1$ and $y_n < 0.5$ or $t_n = 0$ and $y_n > 0.5$. Minimizing $E(\mathbf{w})$ discourages that.
- $E(\mathbf{w})$ is a convex function whose gradient is easy to compute.

—> The global optimum can be found very effectively.

Probabilistic Interpretation

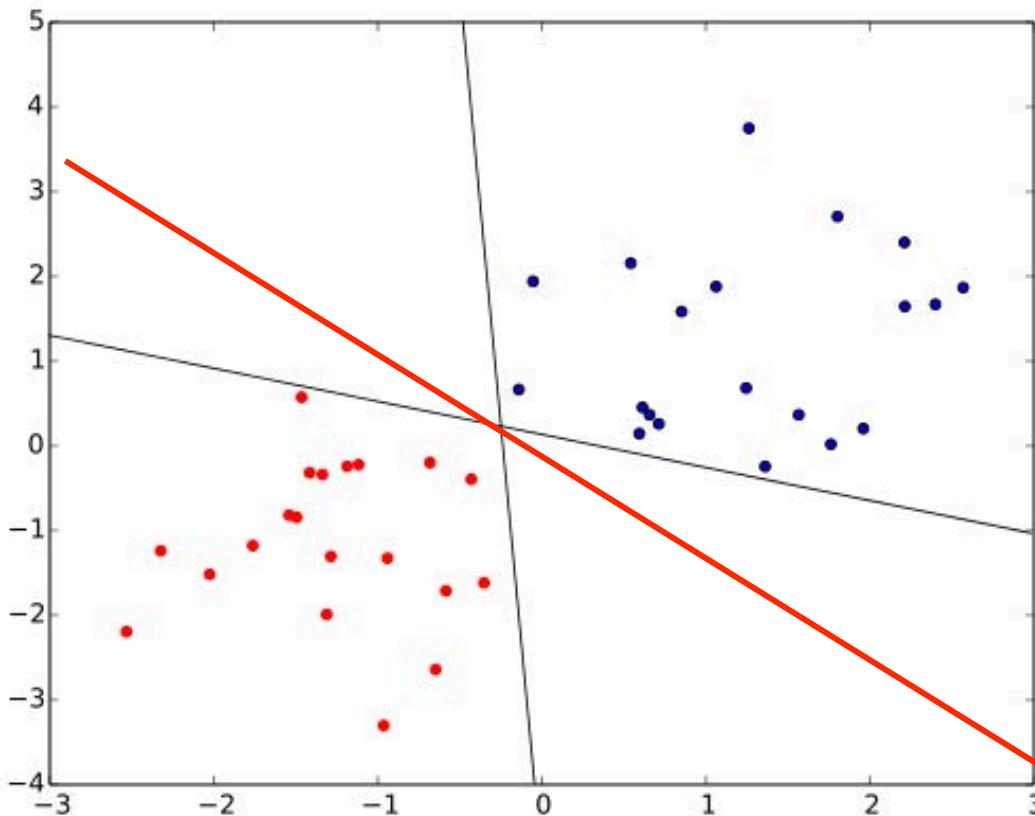
$$\begin{aligned}y(\mathbf{x}; \tilde{\mathbf{w}}) &= \sigma(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}) \\&= \frac{1}{1 + \exp(-\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}})}\end{aligned}$$

- $0 \leq y(\mathbf{x}; \mathbf{w}) \leq 1$
- $y(\mathbf{x}; \mathbf{w}) = 0.5$ if $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} = 0$, i.e. \mathbf{x} is on the decision boundary.
- $y(\mathbf{x}; \mathbf{w}) = 0.0$ or 1.0 if \mathbf{x} far from the decision boundary.

$\Rightarrow y(\mathbf{x}; \tilde{\mathbf{w}})$ can be interpreted as the probability that \mathbf{x} belongs to one class or the other.

Logistic regression finds what is called the **maximum likelihood solution** under the assumption that the noise is Gaussian.

Perceptron vs Logistic Regression



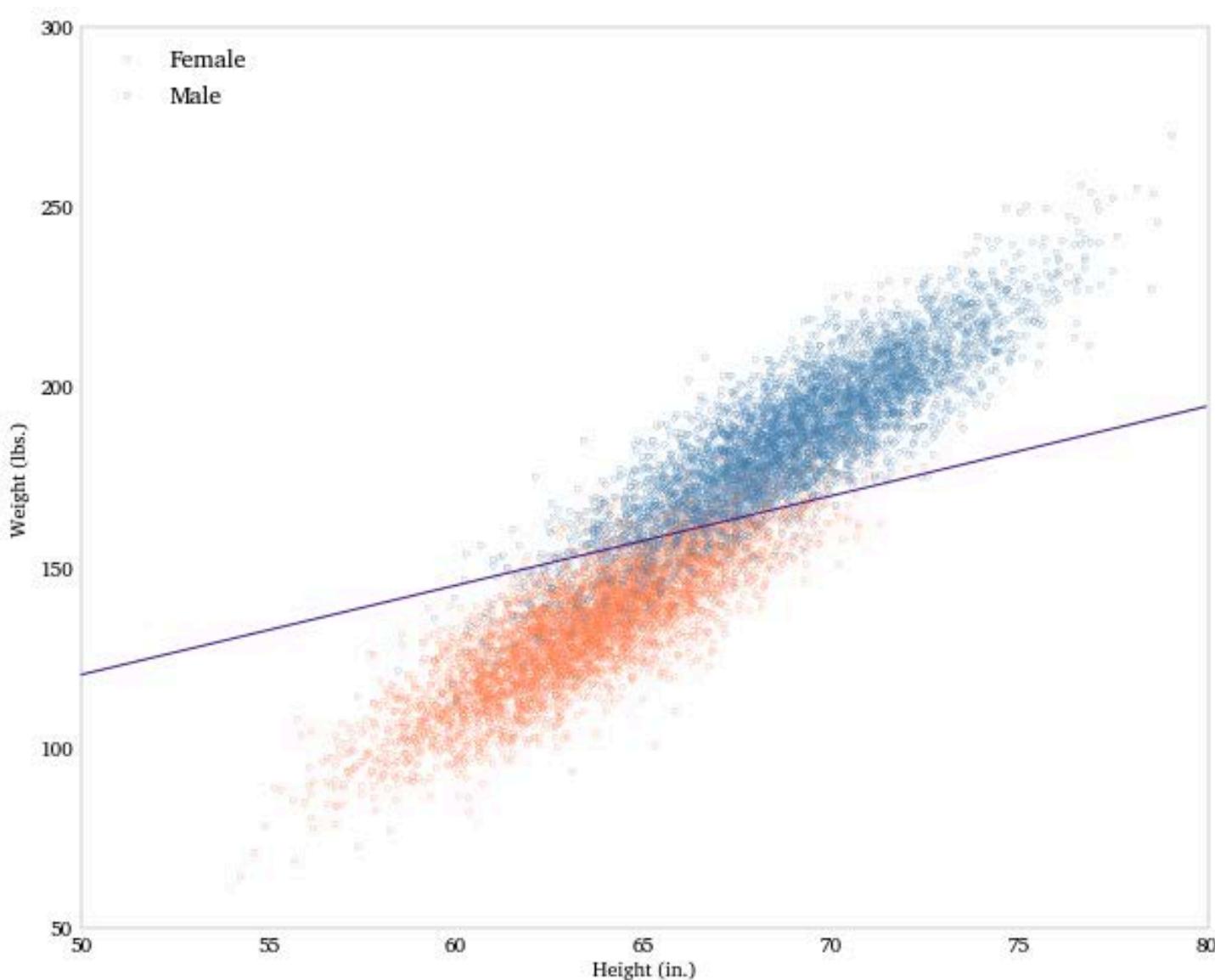
- Two different solutions among infinitely many.
- The perceptron has no way to favor one over the other.
- Logistic regression does.

$$E(\tilde{\mathbf{w}}) = - \sum_{n=1}^N \text{sign}(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_n) t_n$$

vs

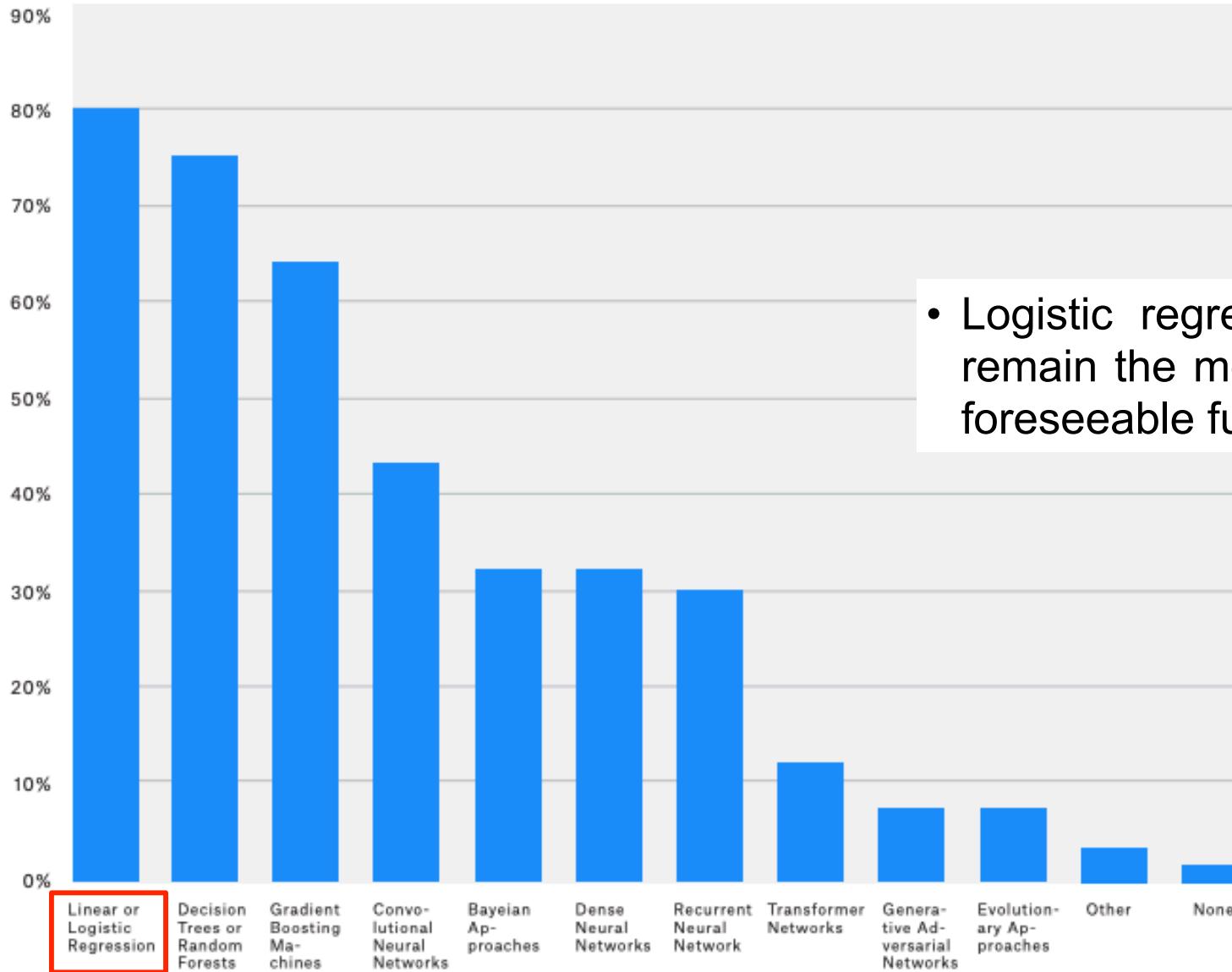
$$E(\tilde{\mathbf{w}}) = - \sum \{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \}$$

Example



- The algorithm does the best it can.
- Some samples can be misclassified.

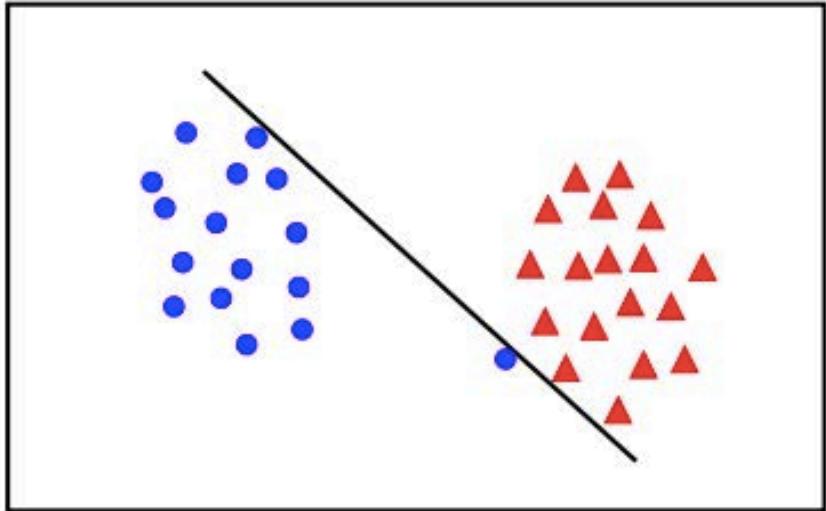
Kaggle Survey (2019)



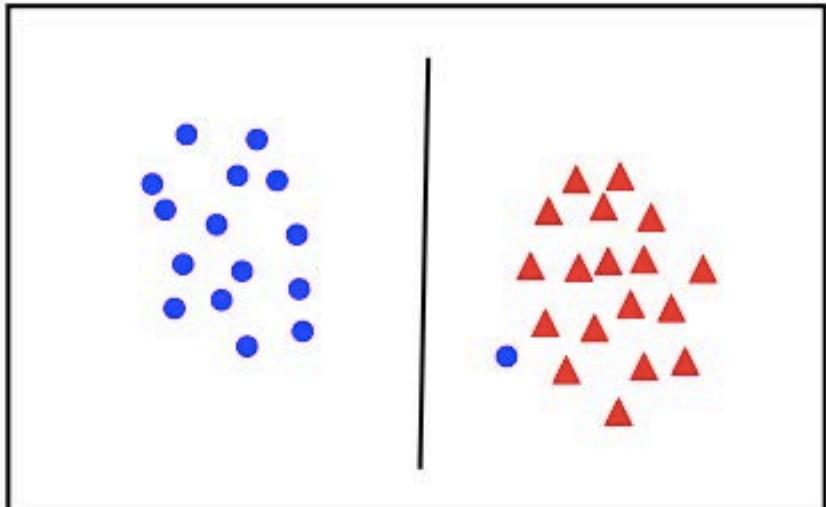
- Logistic regression is and is likely to remain the most used technique for the foreseeable future.

What data science methods do you use at work?

Outliers Can Cause Problems

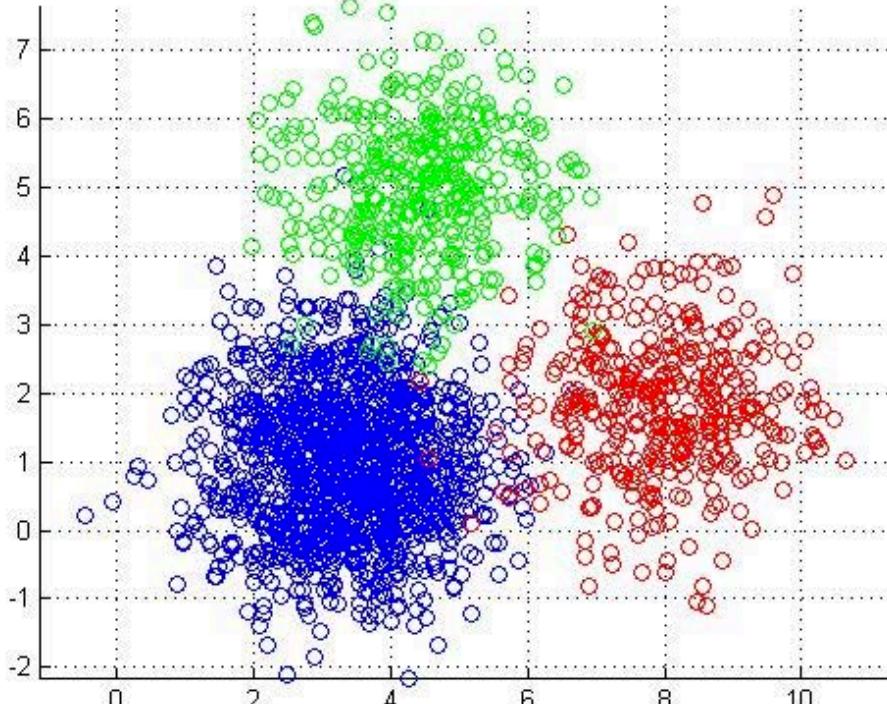
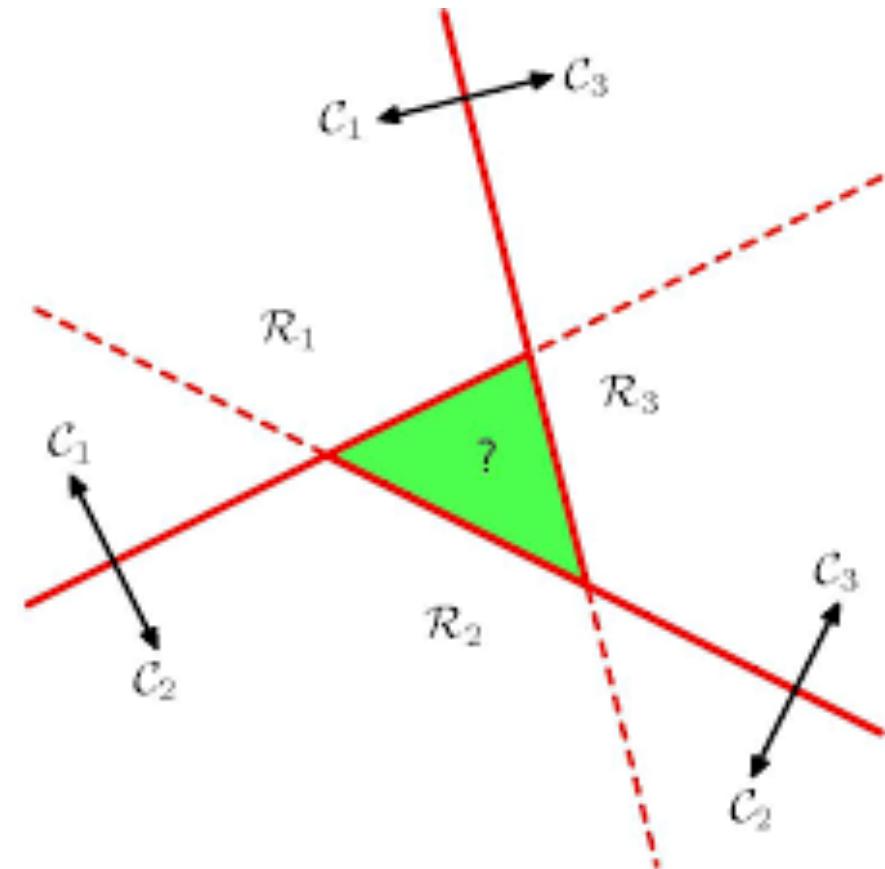


- Logistic regression tries to minimize the error-rate at training time.
- Can result in poor classification rates at test time.



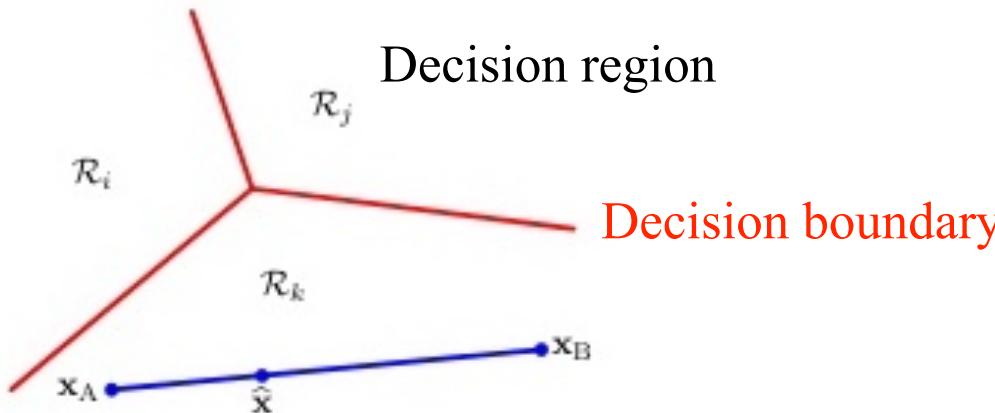
→ We will talk about ways to prevent this in the next lecture.

From Binary to Multi-Class



- k classes.
- Simply using $k(k-1)/2$ binary classifiers results in ambiguities.

Linear Discriminant



Given K linear classifiers of the form $y_k(\mathbf{x}) = \tilde{\mathbf{w}}_k \cdot \tilde{\mathbf{x}}$:

- Decision boundaries $y_k(\mathbf{x}) = y_l(\mathbf{x}) \Leftrightarrow (\tilde{\mathbf{w}}_k - \tilde{\mathbf{w}}_l) \cdot \tilde{\mathbf{x}} = 0$.
- These boundaries define decision regions.
- Decision regions are convex:

$$(\tilde{\mathbf{w}}_k - \tilde{\mathbf{w}}_l) \cdot \tilde{\mathbf{x}}_A > 0$$

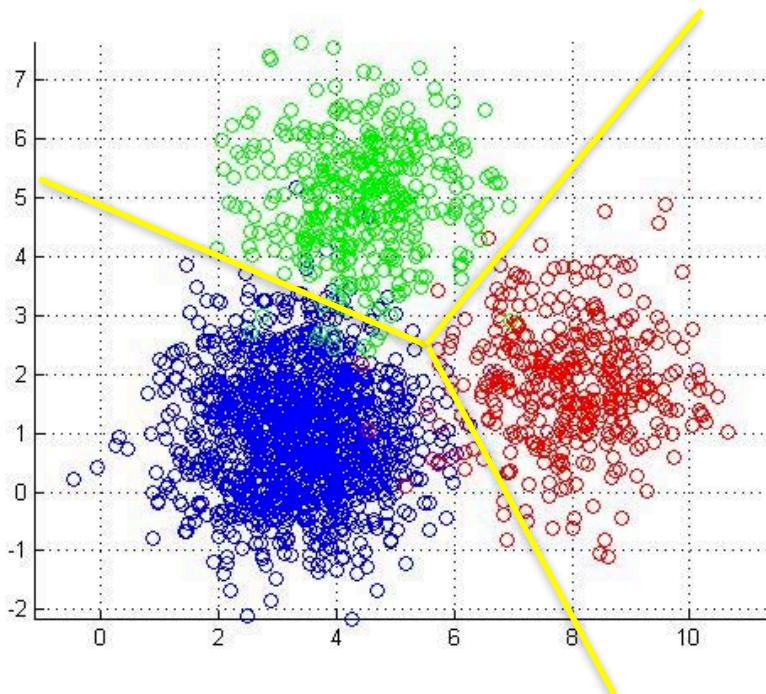
$$(\tilde{\mathbf{w}}_k - \tilde{\mathbf{w}}_l) \cdot \tilde{\mathbf{x}}_B > 0$$

$\Rightarrow \forall \lambda \in [0,1]$, if $\mathbf{x} = \lambda \mathbf{x}_A + (1 - \lambda) \mathbf{x}_B$, then

$$(\tilde{\mathbf{w}}_k - \tilde{\mathbf{w}}_l) \cdot \tilde{\mathbf{x}} > 0$$

In other words, if two points are on the same side of a decision boundary so are all points between them.

Multi-Class Logistic Regression



$$k = \arg \max_j y_k(\mathbf{x})$$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_K \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{w}}_1^T \\ \vdots \\ \tilde{\mathbf{w}}_K^T \end{bmatrix} \tilde{\mathbf{x}}$$
$$k = \arg \max_j y_j$$

- K linear classifiers of the form $y^k(\mathbf{x}) = \sigma(\mathbf{w}_k^T \mathbf{x})$.
- Assign \mathbf{x} to class k if $y^k(\mathbf{x}) > y^l(\mathbf{x}) \forall l \neq k$.

- Still a linear problem.
- Because the sigmoid function is monotonic, the formulation is almost unchanged.
- Only the objective function being minimized need to be reformulated.

Matrix with K lines and the dimension of $\tilde{\mathbf{w}}$ columns.

Multi-Class Cross Entropy

Let the training set be $\{(\mathbf{x}_n, [t_n^1, \dots, t_n^K])_{1 \leq n \leq N}\}$ where $t_n^k \in \{0,1\}$ is the probability that sample \mathbf{x}_n belongs to class k .

Activation:

$$a^k(\mathbf{x}) = \tilde{\mathbf{w}}_k^T \tilde{\mathbf{x}}$$

Probability that \mathbf{x} belongs to class k :

$$y^k(\mathbf{x}) = \frac{\exp(a^k(\mathbf{x}))}{\sum_j \exp(a^j(\mathbf{x}))}$$

Multi-class entropy:

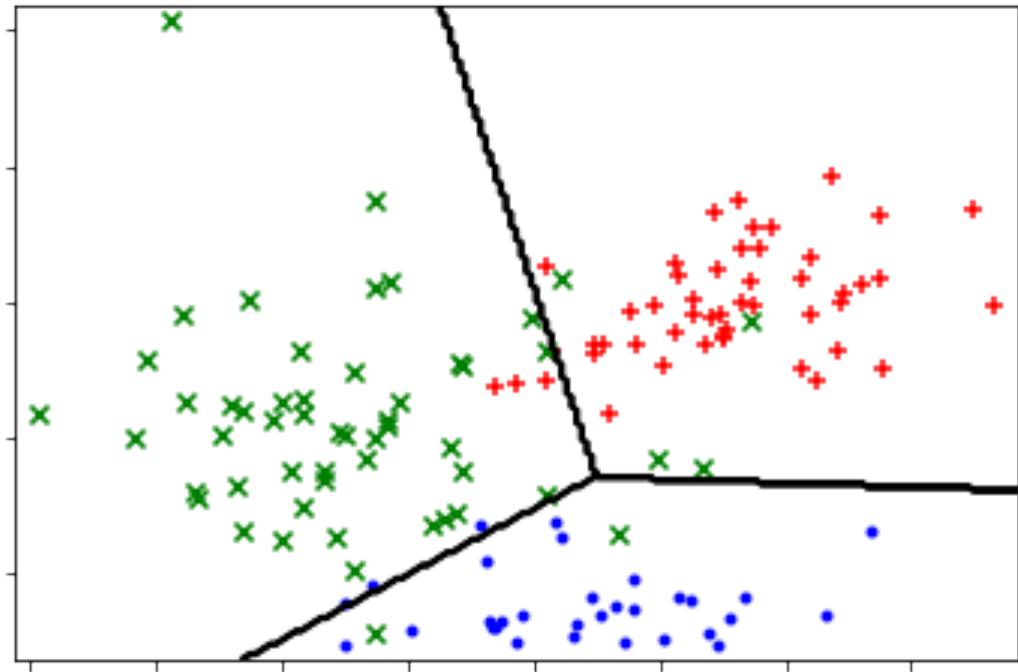
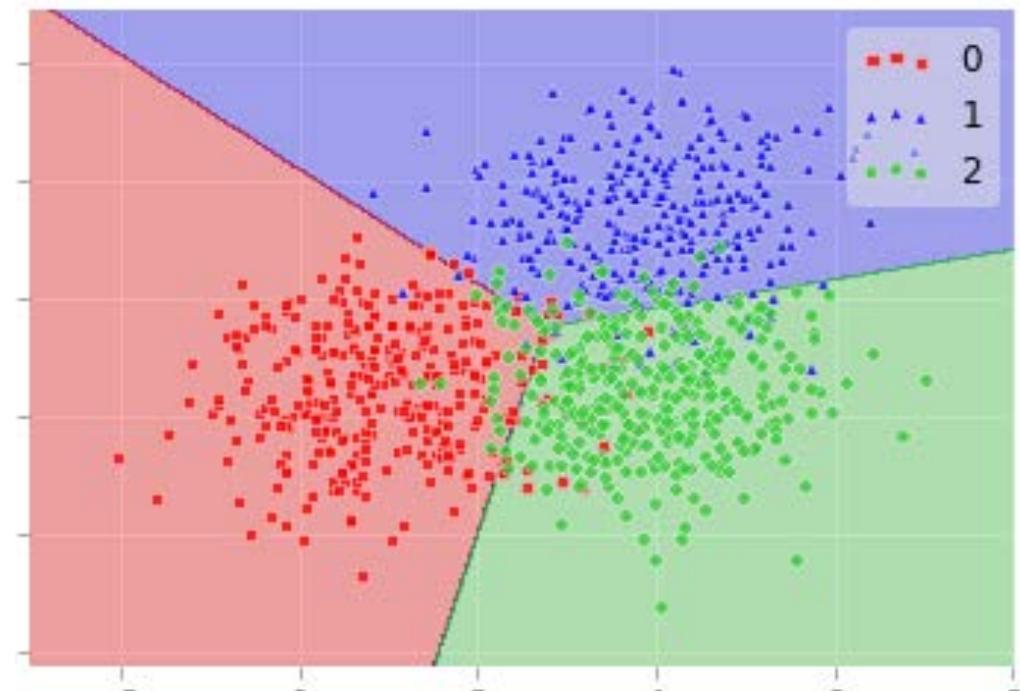
$$E(\tilde{\mathbf{w}}_1, \dots, \tilde{\mathbf{w}}_K) = - \sum_n \sum_k t_n^k \ln(y^k(\mathbf{x}_n))$$

Gradient of the entropy:

$$\nabla E_{\mathbf{w}_j} = \sum_n (y^k(\mathbf{x}_n) - t_n^k) \mathbf{x}_n$$

- This is a natural extension of the binary case.
- The multi-class entropy is still convex and its gradient is easy to compute.

Multi-Class Results



Multiclass logistic regression is a very natural extension of binary logistic regression and has many of the same properties.

Linear Regression in Short

- Logistic regression is simple and effective.
- It extends naturally from binary to multi-class.
- But outliers can cause problems ...