

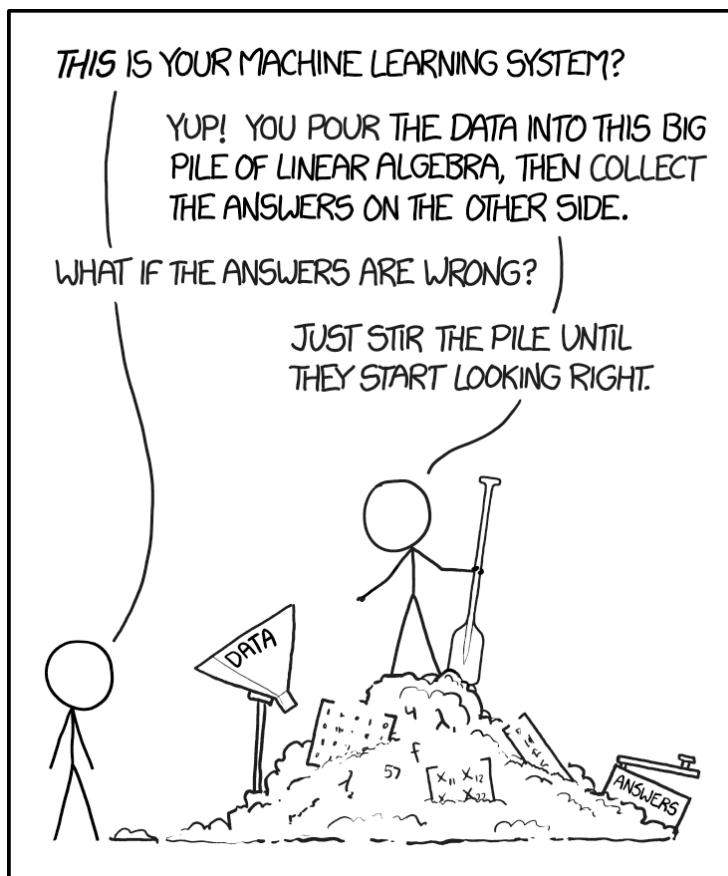
Summary

Pascal Fua
IC-CVLab

What is Machine Learning?

Machine learning algorithms:

- seek to provide knowledge to computers through data, observations, and interaction with the world,
- can make predictions given new observations,
- improve when given access to large amounts of training data.



<https://xkcd.com/>

Artificial Intelligence

Artificial Intelligence

Expert Systems

A^*

min-max

Machine Learning

Support Vector Machines

Boosting

Random Forests

Deep Learning

Lenet

VGG

ResNet

1997: Deep blue beats chess world champion

2017: AlphaGo beats go world champion

Self-Driving Cars

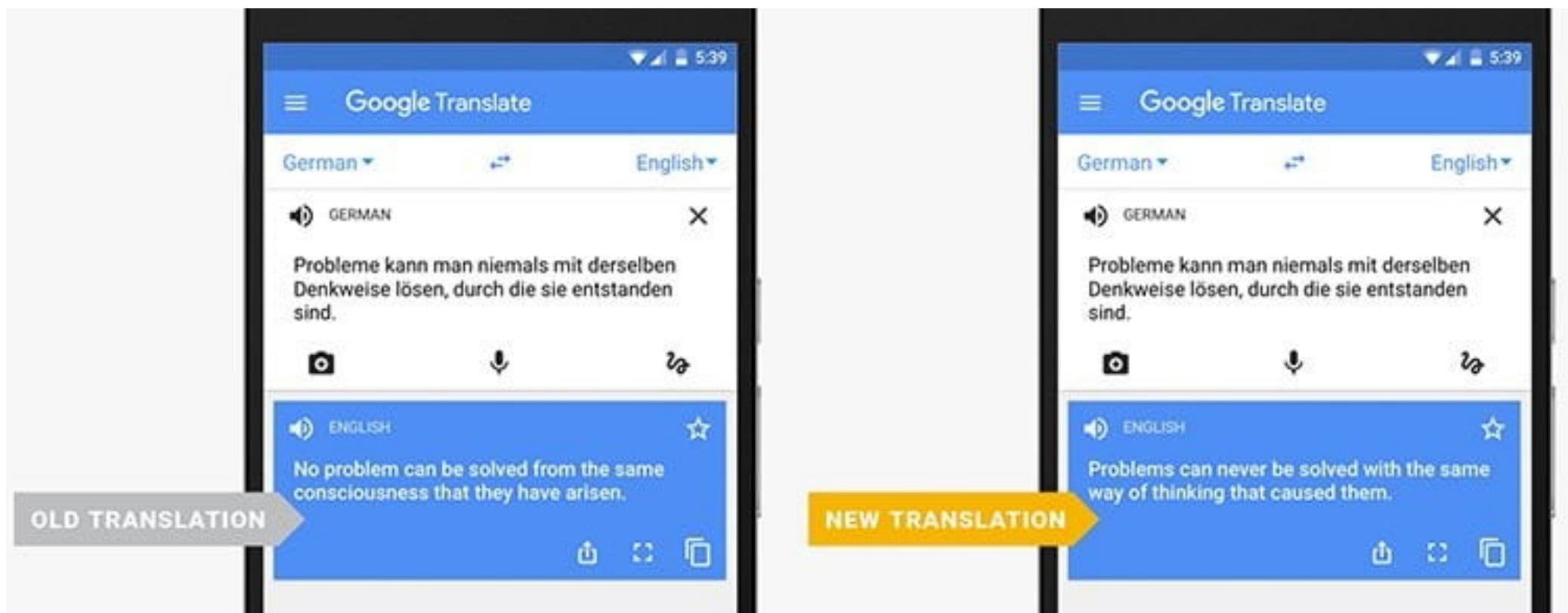
1985
DARPA ALV

2007
DARPA Urban Challenge

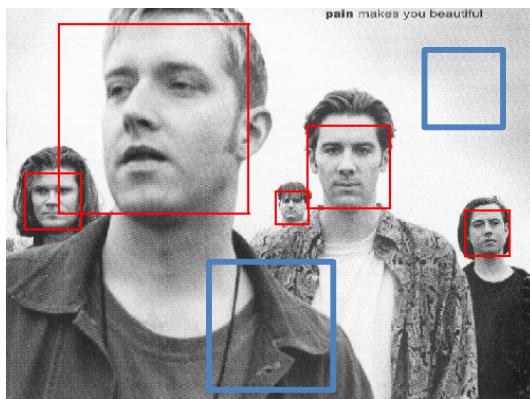
2024
Google Waymo

- More computing power.
- Better sensors.
- Detailed maps of the environment.
- Machine learning

Machine Translation

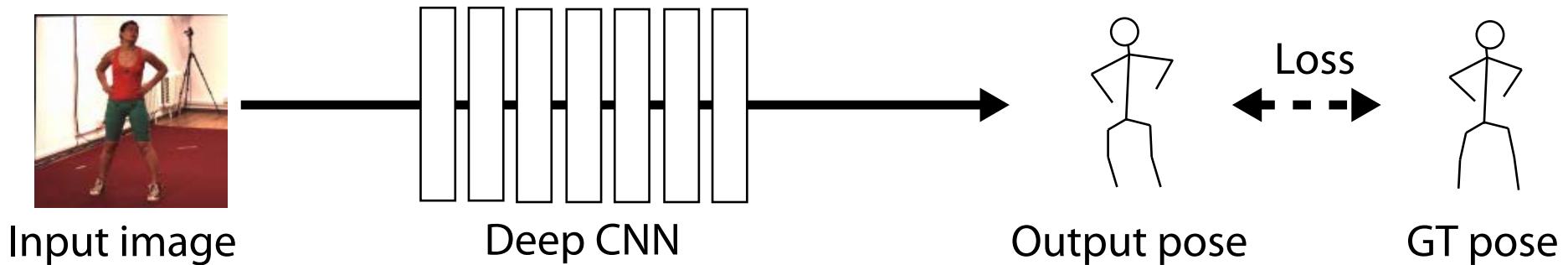


Classification vs Regression



Face
 Not Face

- Classification algorithms seek to estimate a mapping function y from the input vector x to discrete or categorical output variables.



- Regression algorithms seek to estimate the mapping function y from the input vector x to **numerical or continuous** output variables.

Supervised Classification

Minimize:

$$E(\mathbf{w}) = \sum_{n=1}^N L(y(\mathbf{x}_n; \mathbf{w}), t_n)$$

Predicted label for sample n

True label for sample n

- **x:** Feature vector
- **w:** Model parameters
- **t:** Label
- **y:** Predictor
- **L:** Loss Function
- **E:** Error Function

→ ML is an optimization problem

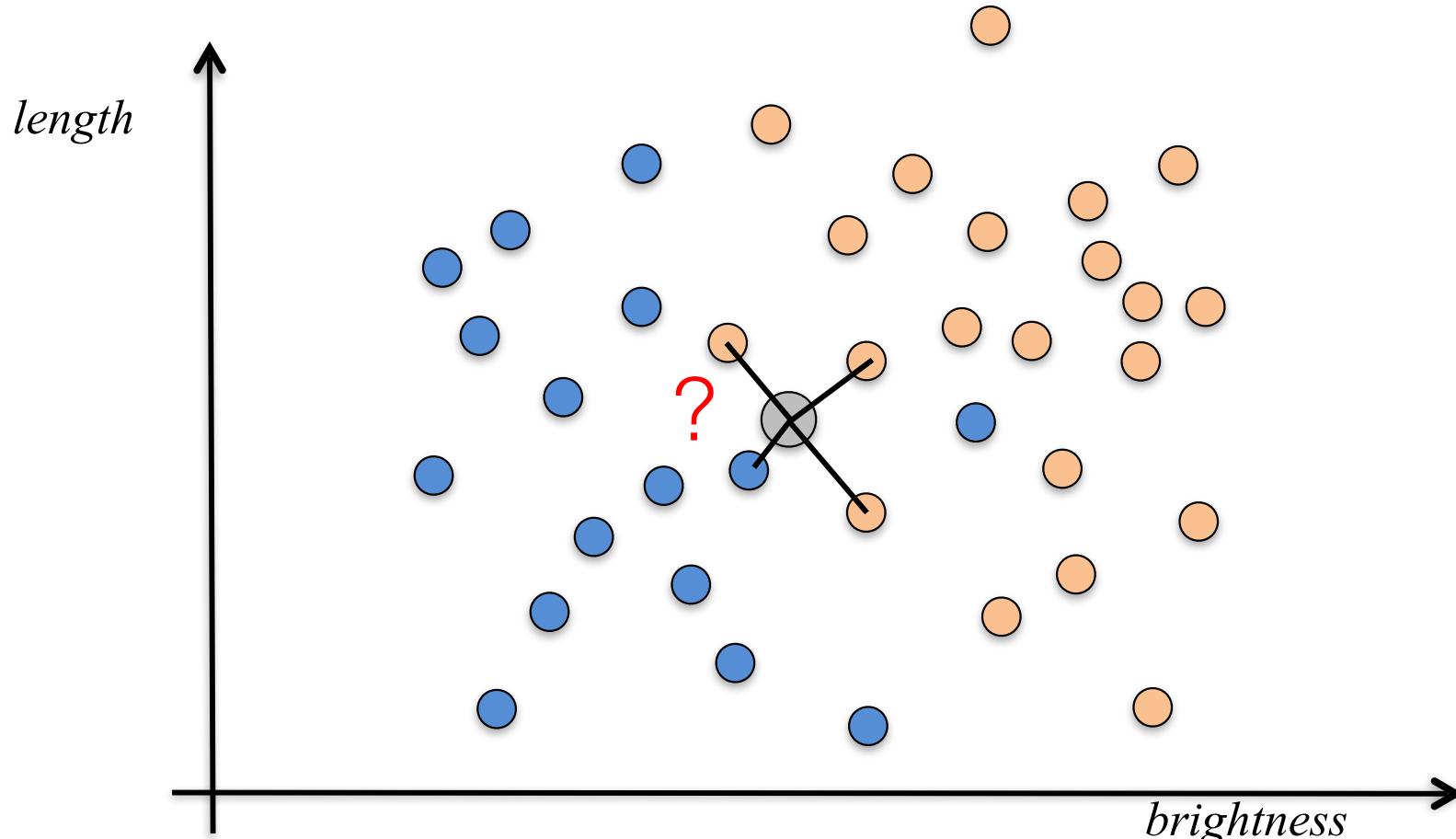
Classification Techniques

- Nearest-Neighbors and K-Means
- Logistic Regression
- Boosting
- Support Vector Machines
- Decision Trees and Forests
- Multilayer Perceptrons
- Convolutional Neural Networks
- Tranformers

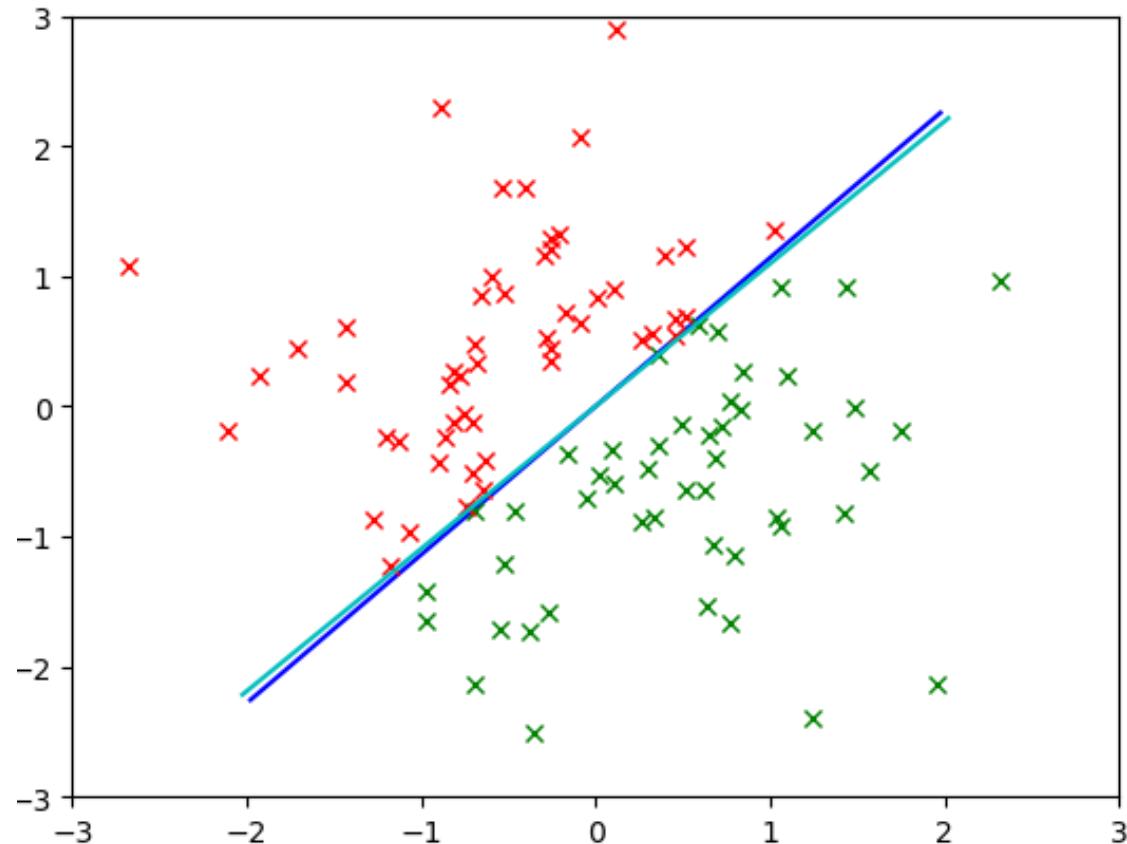
K-Nearest-Neighbor Classifier

Improved algorithm:

- Given a new \mathbf{x} to be classified, find its k nearest neighbors in the training set.
- Classify the point according to the majority of labels of its nearest neighbors.



Perceptron

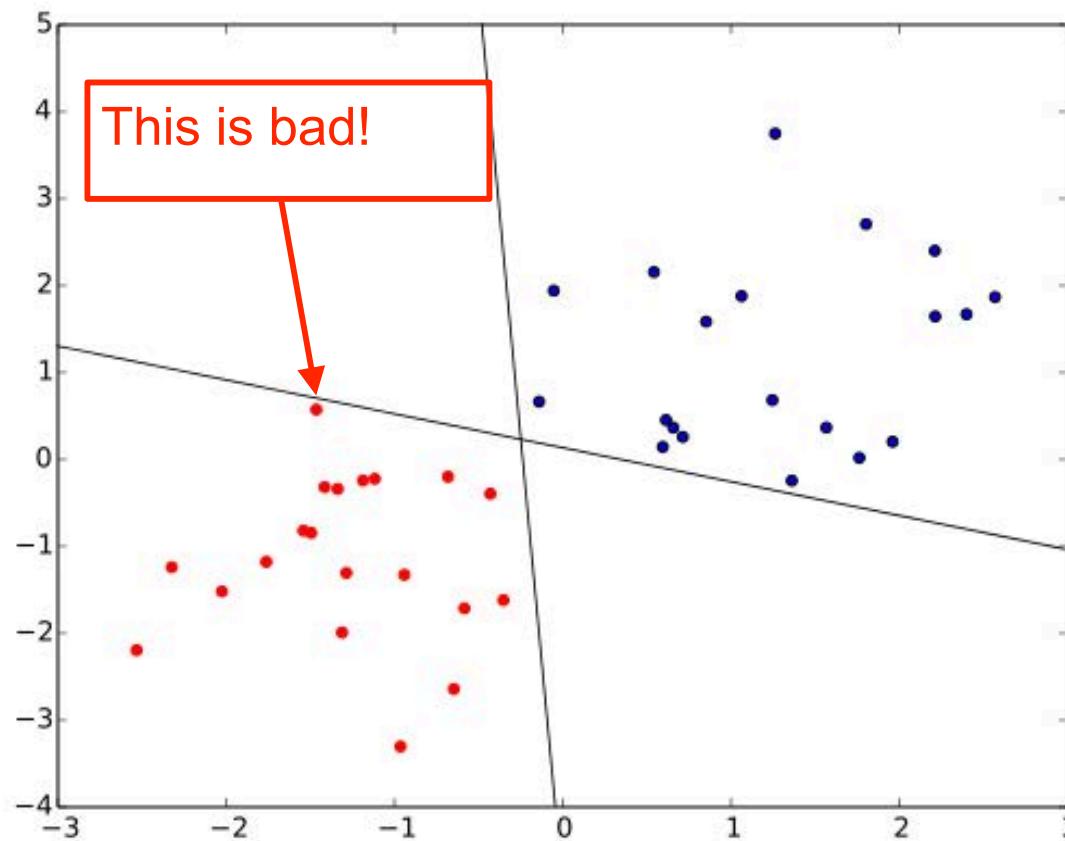


$$y(\mathbf{x}; \mathbf{w}, w_0) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x} + w_0 \geq 0, \\ -1 & \text{otherwise.} \end{cases}$$

Given the training set $\{(x_n, t_n)_{1 \leq n \leq N}\}$, choose a \mathbf{w} that minimizes

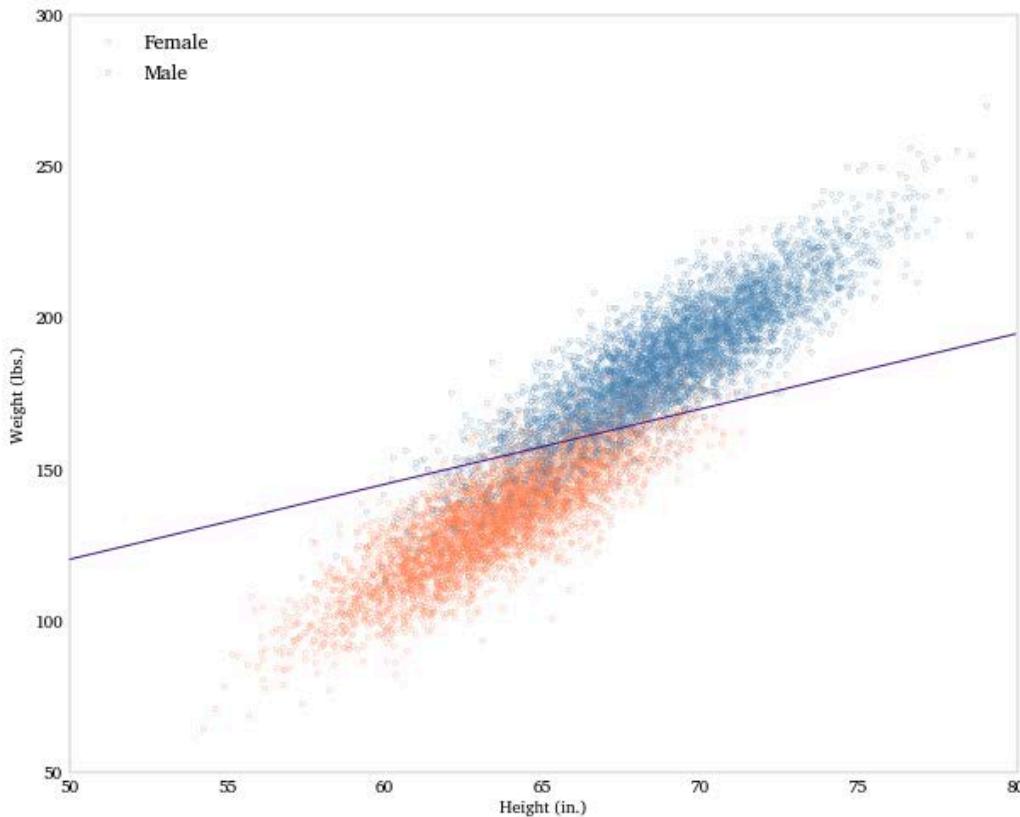
$$E(\mathbf{w}, w_0) = - \sum_{n=1}^N (\mathbf{w}^T \mathbf{x}_n + w_0) t_n$$

The Problem with the Perceptron

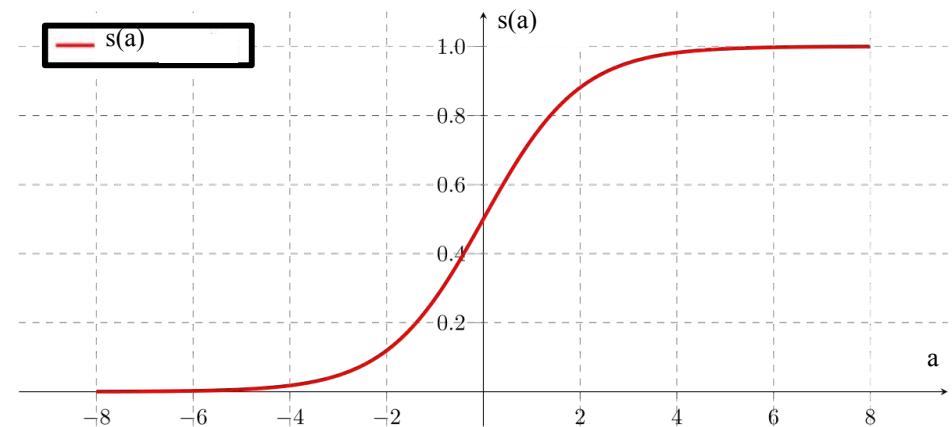


- Two different solutions among infinitely many.
- The perceptron has no way to favor one over the other.

Logistic Regression



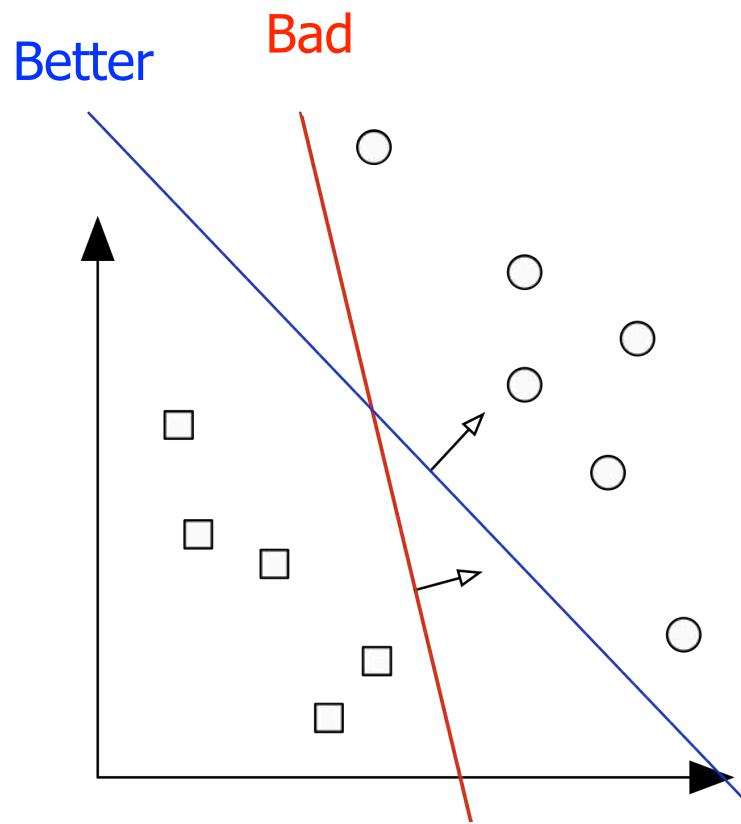
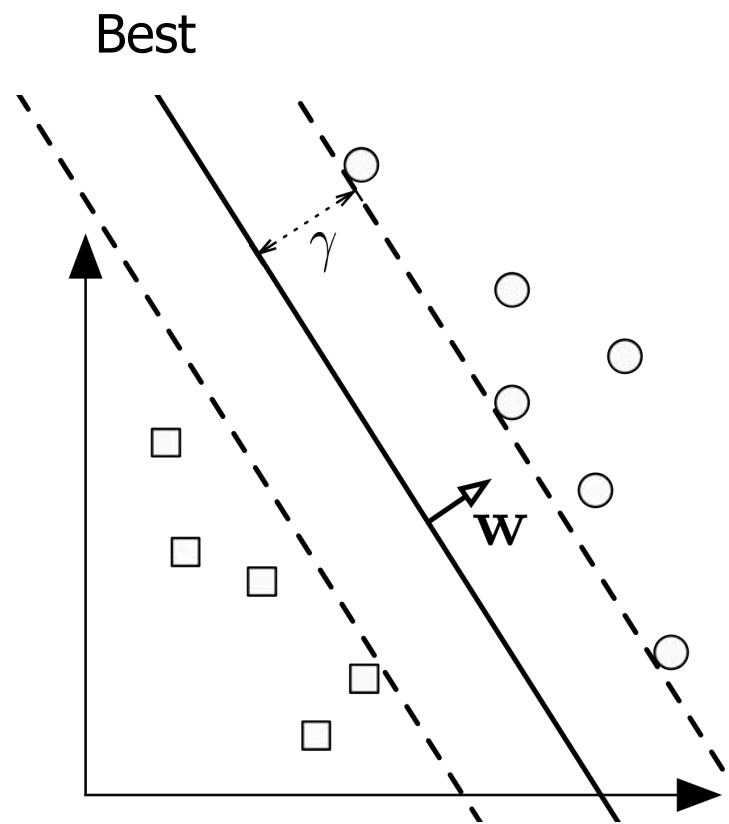
$$y(\mathbf{x}; \mathbf{w}, w_0) = \sigma(\mathbf{w}^T \mathbf{x} + w_0) \approx p(t = 1, \mathbf{x})$$



Given the training set $\{(x_n, t_n)_{1 \leq n \leq N}\}$, choose a \mathbf{w} that minimizes

$$E(\mathbf{w}, w_0) = - \sum_n \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\} \approx -\ln(p(\mathbf{t}|\mathbf{w}, w_0)) .$$

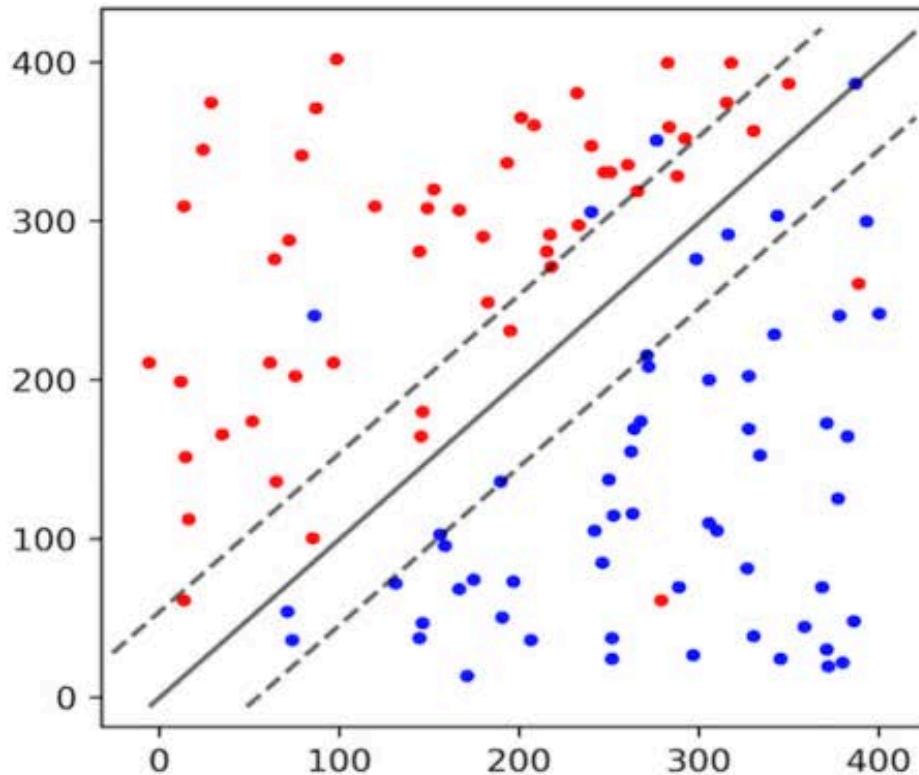
Maximizing the Margin



- The larger the margin, the better!
- In the presence of outliers, the logistic regression does not guarantee a large one.

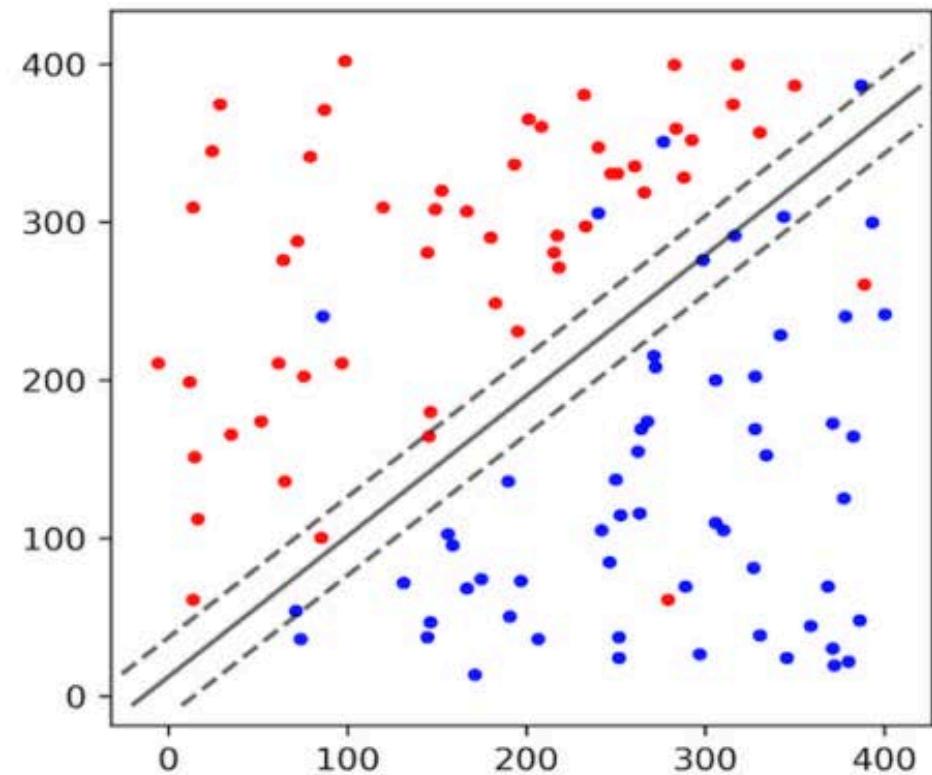
How do we maximize it?

Max Margin Classifier



$C=1$:

- Large margin.
- Many training samples misclassified.



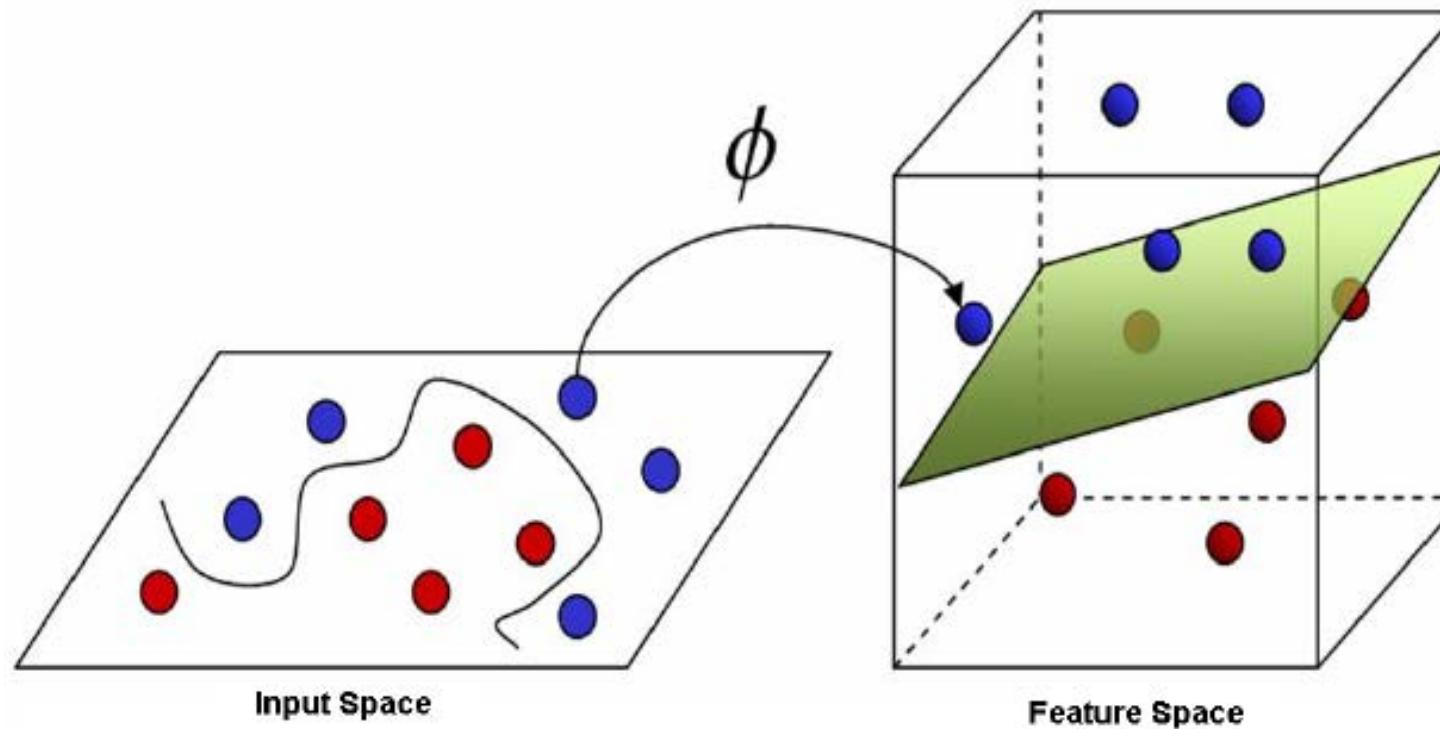
$C=100$:

- Small margin.
- Few training samples misclassified.

Which is best?

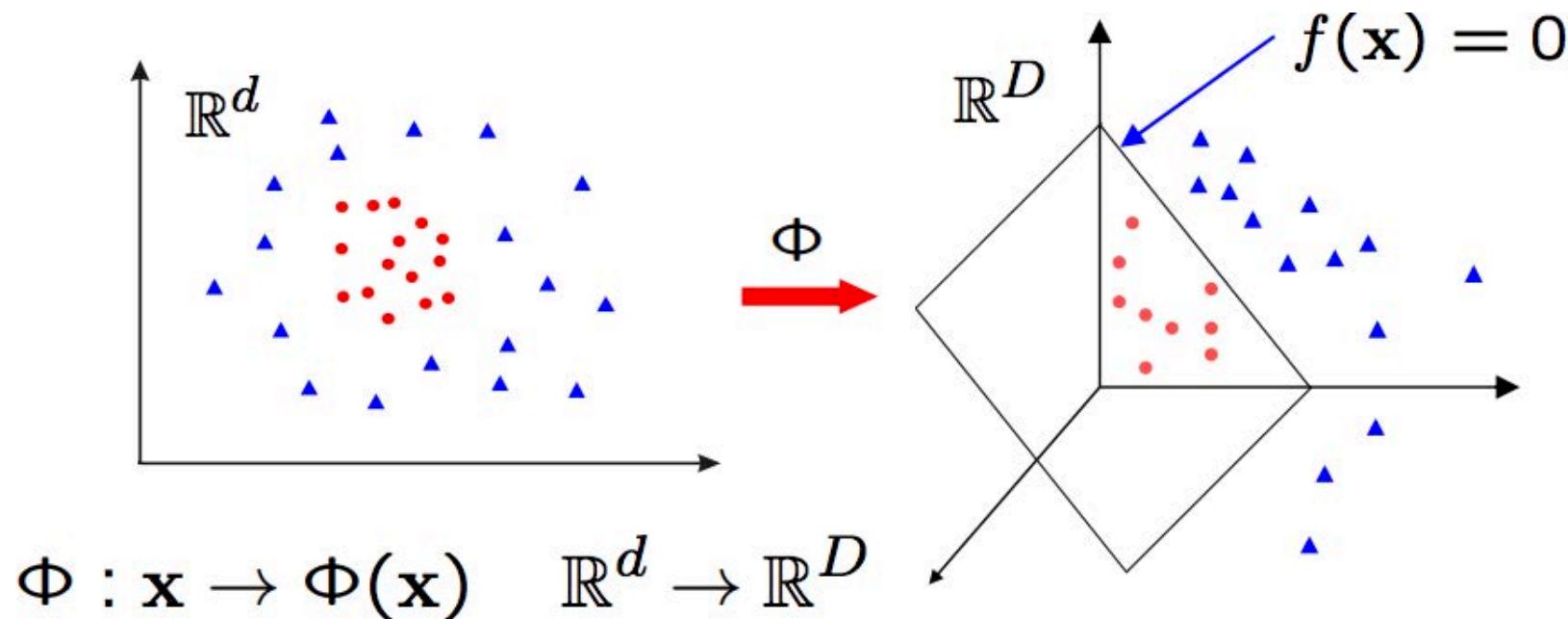
- It depends.
- Must use cross-validation, as we did for k-Means.

Non Linearly Separable Data



- Map to a higher dimensional space in which it is.
- Use an ensemble of classifiers.
- Use a deep network.

Classification in Feature Space



- Map from \mathbb{R}^d to \mathbb{R}^D
- Learn a linear classifier in \mathbb{R}^D

$$y(\mathbf{x}) = \sigma(\mathbf{w}^T \phi(\mathbf{x}) + w_0)$$

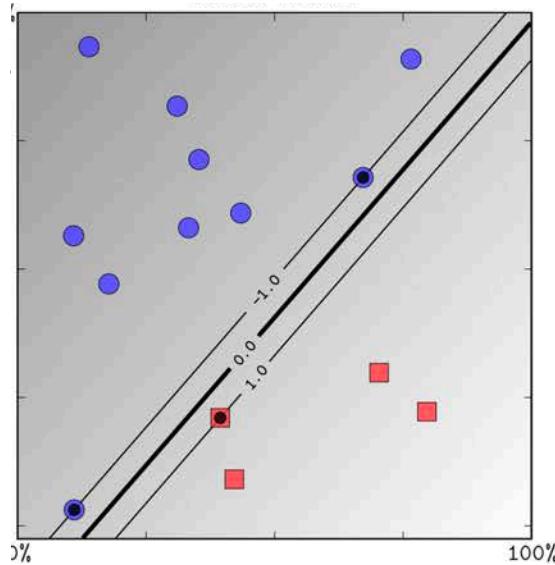
$$\phi : \mathbb{R}^d \rightarrow \mathbb{R}^D$$

Polynomial SVMs

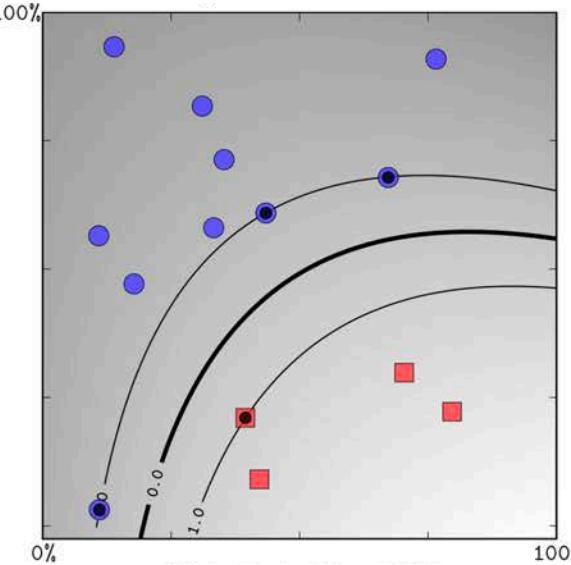
$$\mathbf{w}^* = \min_{(\mathbf{w}, \{\xi_n\})} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^N \xi_n,$$

subject to $\forall n, \quad t_n \cdot (\tilde{\mathbf{w}} \cdot \phi(\mathbf{x}_n)) \geq 1 - \xi_n$ and $\xi_n \geq 0$.

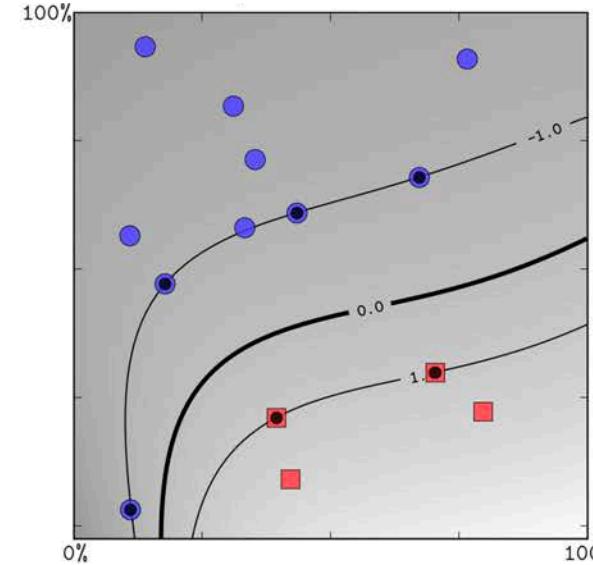
- C is constant that controls how costly constraint violations are.



$M = 1$

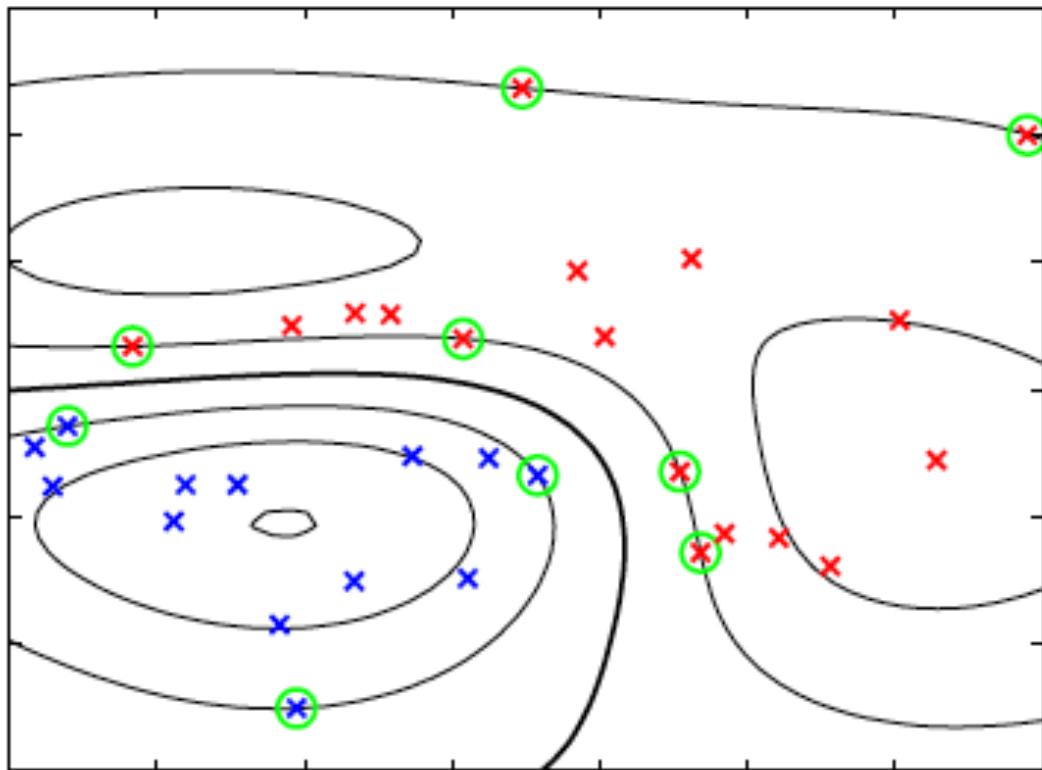


$M = 2$



$M = 5$

Kernel SVMs



$$\mathbf{w} = \sum_{n=1}^N a_n t_n \phi(\mathbf{x}_n) .$$

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b ,$$

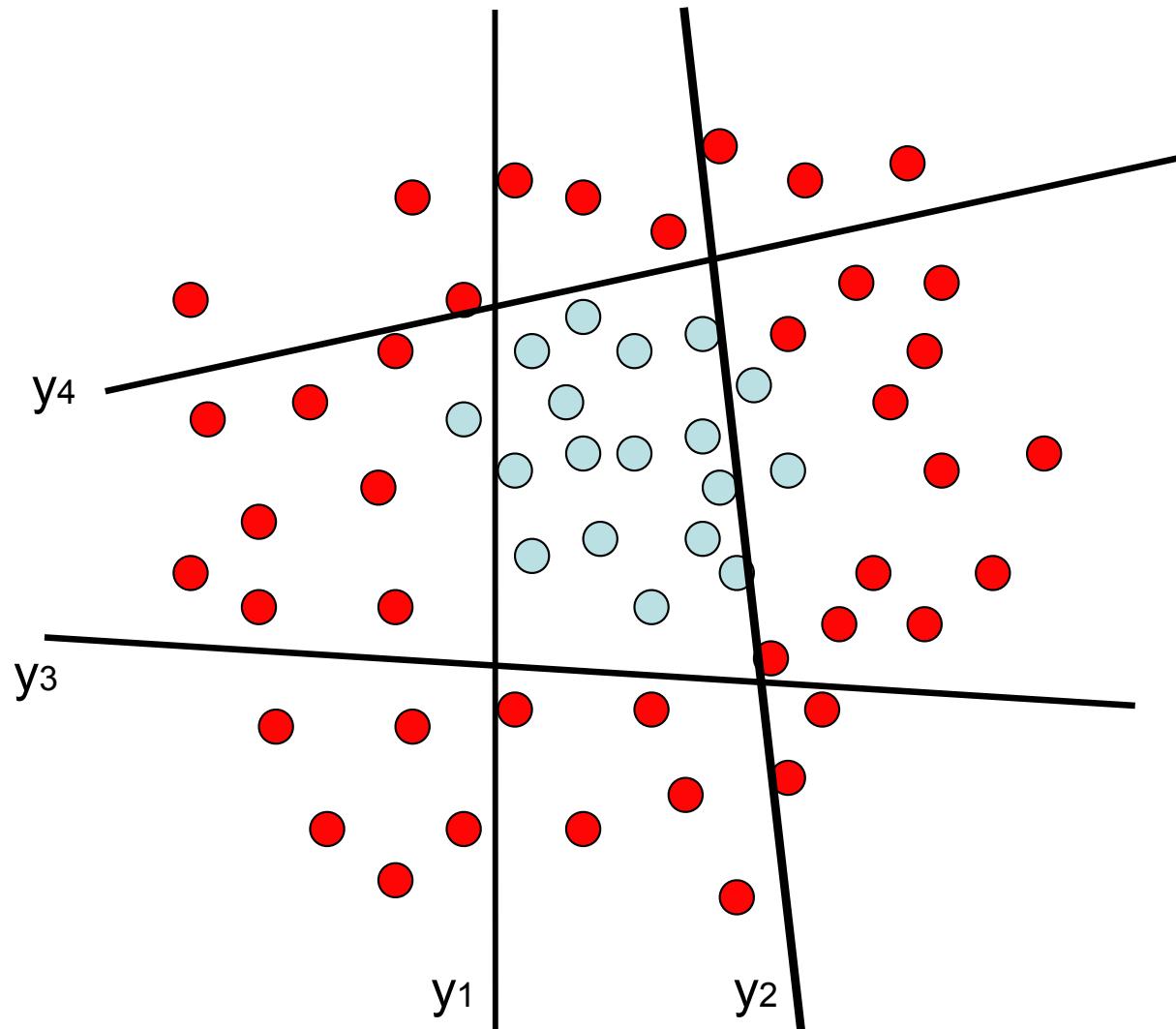
$$= \sum_{n=1}^N a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b ,$$

$$\text{with } k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}') .$$

- Only for a subset of the data points is a_n is non zero.
- The corresponding \mathbf{x}_n are the support vectors and satisfy $t_n y(\mathbf{x}_n) = 1$.
- They are the only ones that need to be considered as test time.

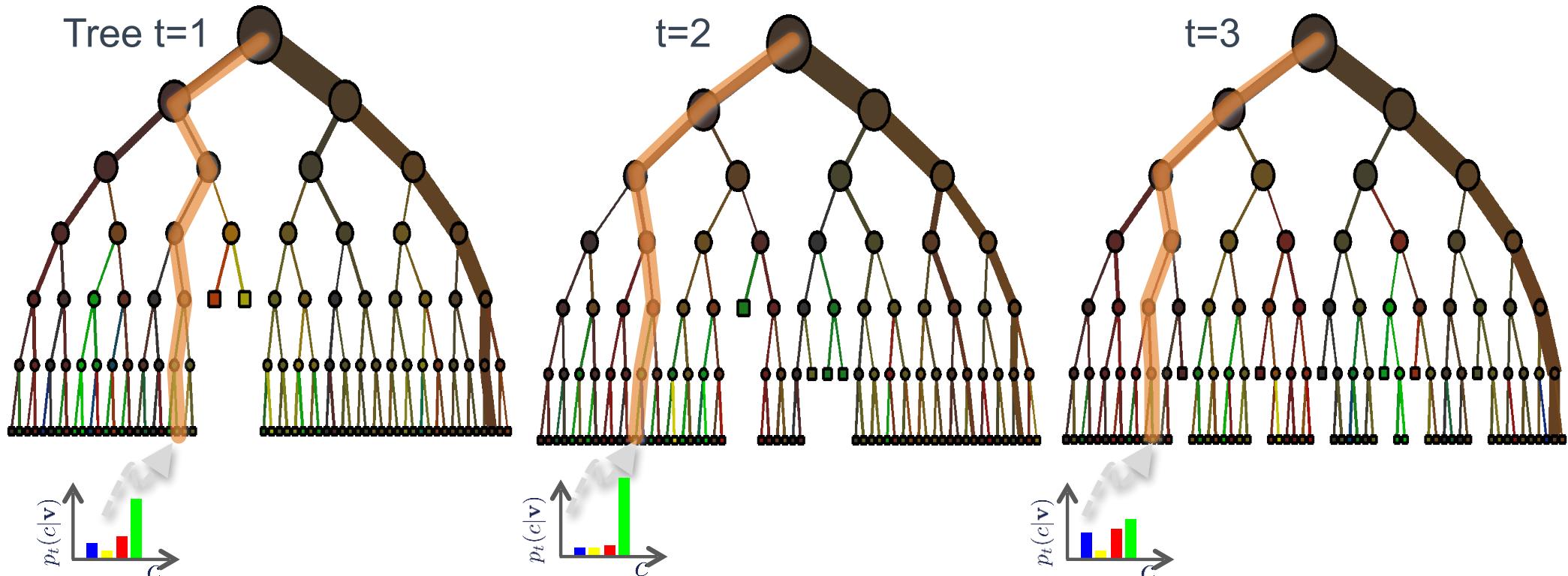
→ That is what makes SVMs practical!

AdaBoost

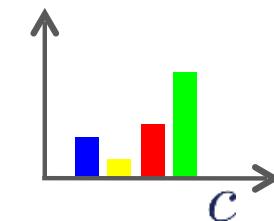


$$y(\mathbf{x}) = \alpha_1 y_1(\mathbf{x}) + \alpha_2 y_2(\mathbf{x}) + \alpha_3 y_3(\mathbf{x}) + \alpha_4 y_4(\mathbf{x})$$

Decision Forests

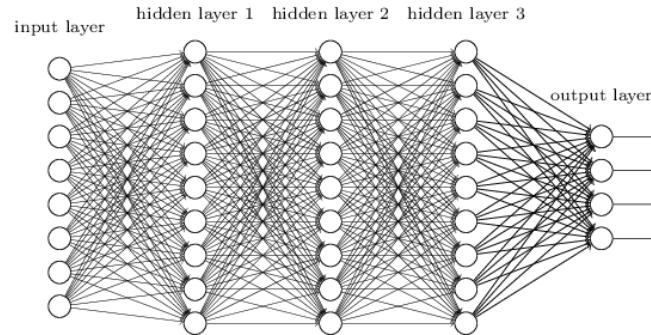


$$L(c, \mathbf{v}) = \frac{1}{T} \sum_t -\log(p_t(c|\mathbf{v}))$$

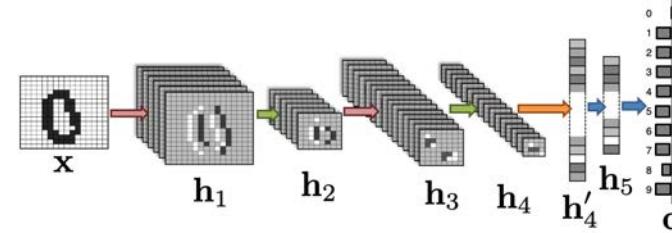


Simple and flexible approach.

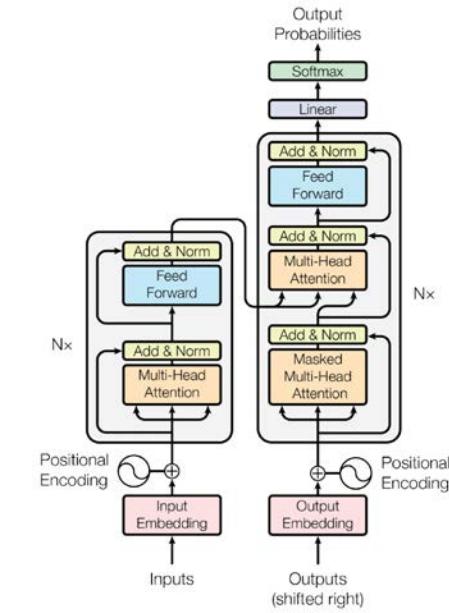
Neural Networks



Fully connected



Convolutional



Transformers

- Some of the most powerful techniques around when enough training data is available.
- Convolutional Neural Nets are particularly well adapted for image processing.
- Transformers excel at natural language processing but are also very good for image processing

Regression Techniques

- Linear Regression
- Polynomial Regression
- Neural Networks

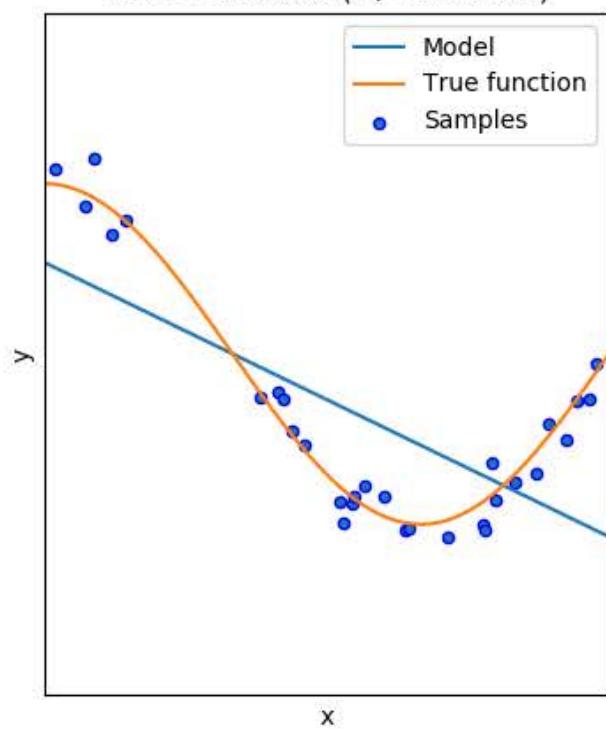
Supervised Regression

$$\text{Minimize } E(\mathbf{w}) = \sum_{n=1}^N L(y(\mathbf{x}_n; \mathbf{w}), t_n)$$

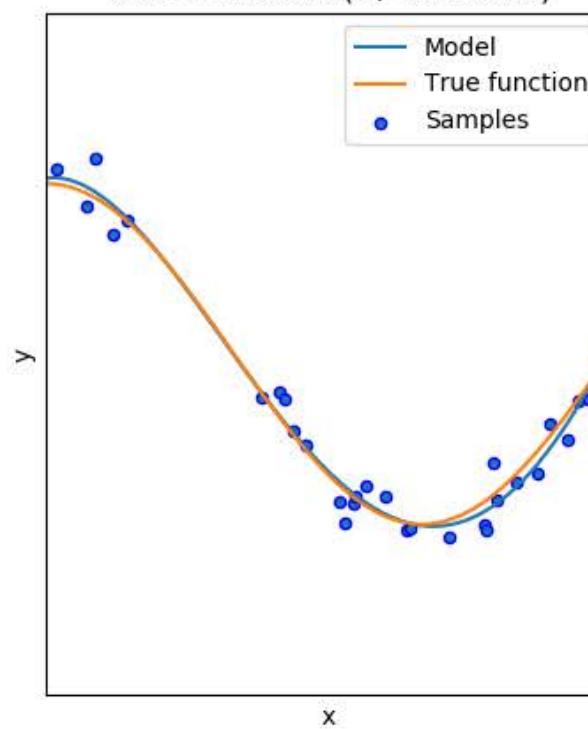
- **x:** Feature vector
- **w:** Model parameters
- t: Label
- y: Predictor
- L: Loss Function
- E: Error Function

Same as for classification, except for the fact that the t_n now denotes continuous values!

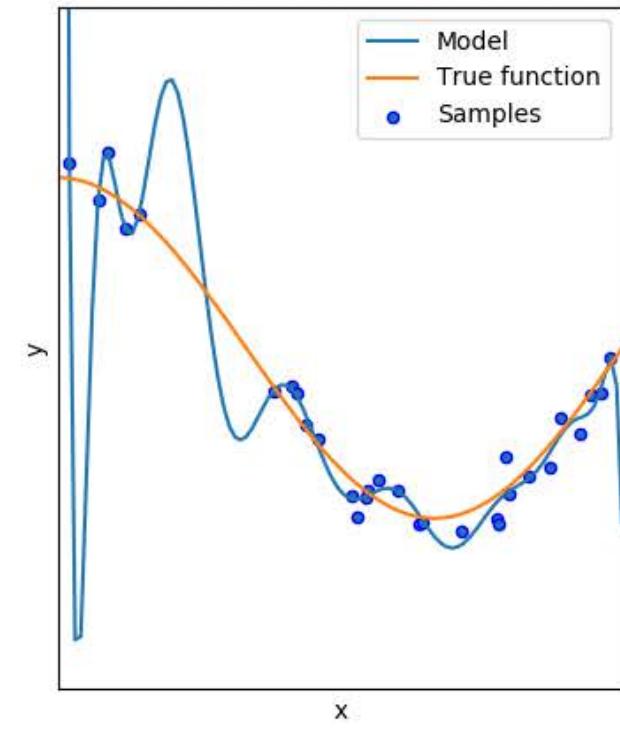
Linear and Non-Linear Regression



Order 1



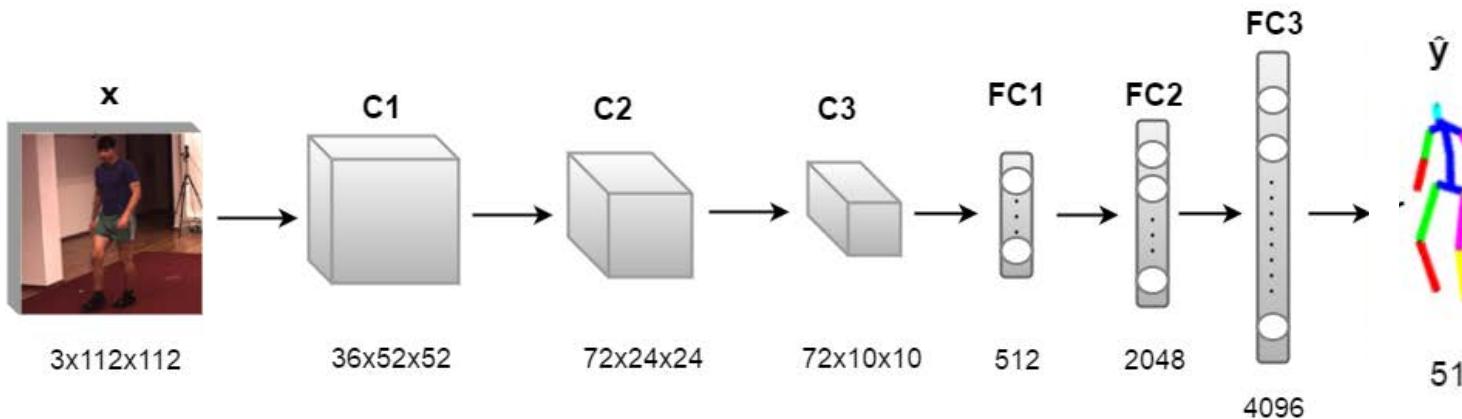
Order 4



Order 15

The trick is to find the best compromise between simplicity and goodness of fit.

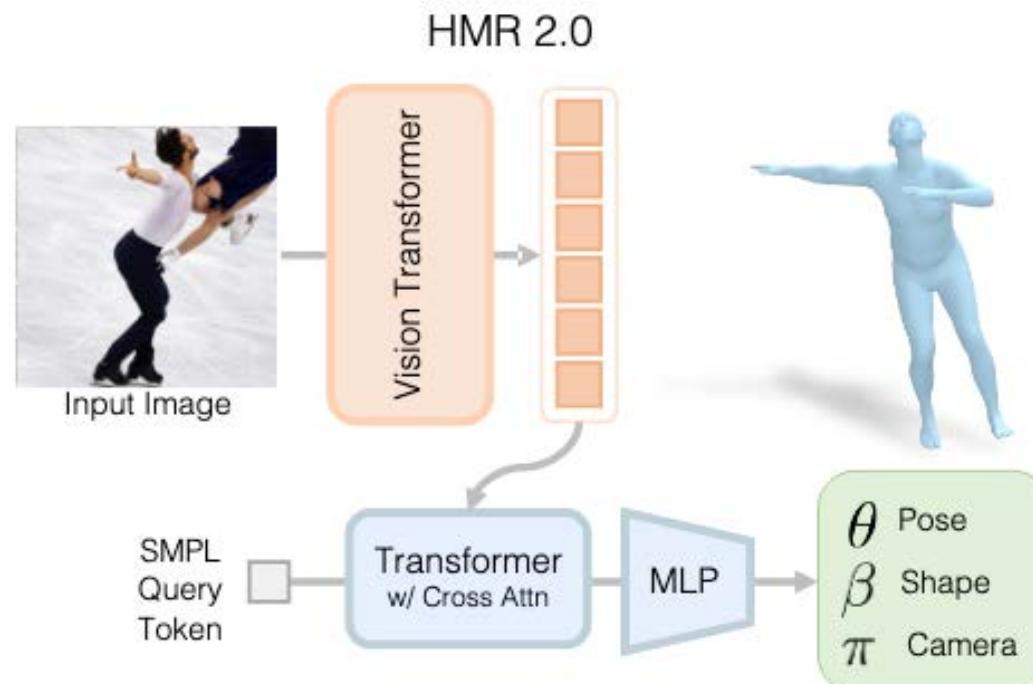
Deep Networks



Input: \mathbf{I}

Output: $\{\mathbf{y}_j\}_{1 \leq j \leq J}$

Tekin et al. CVPR'16

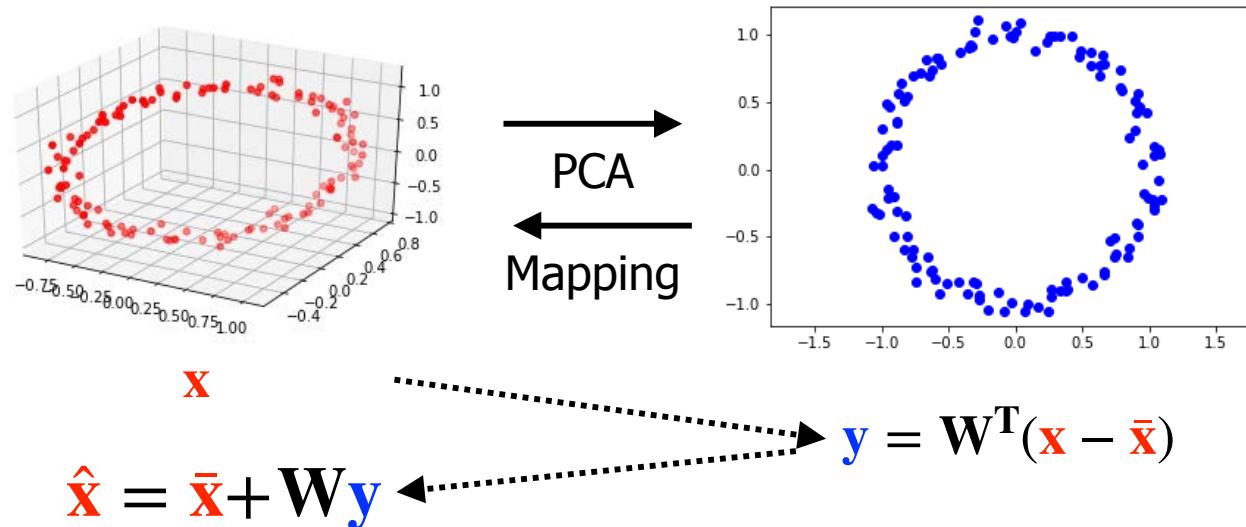


Goel et al. , ICCV'23

Dimensionality Reduction Techniques

- PCA
- LDA
- Autoencoders

PCA



- This mapping incurs some loss of information.
- However, the corresponding rectangular matrix \mathbf{W} is the orthogonal matrix that minimizes the reconstruction error

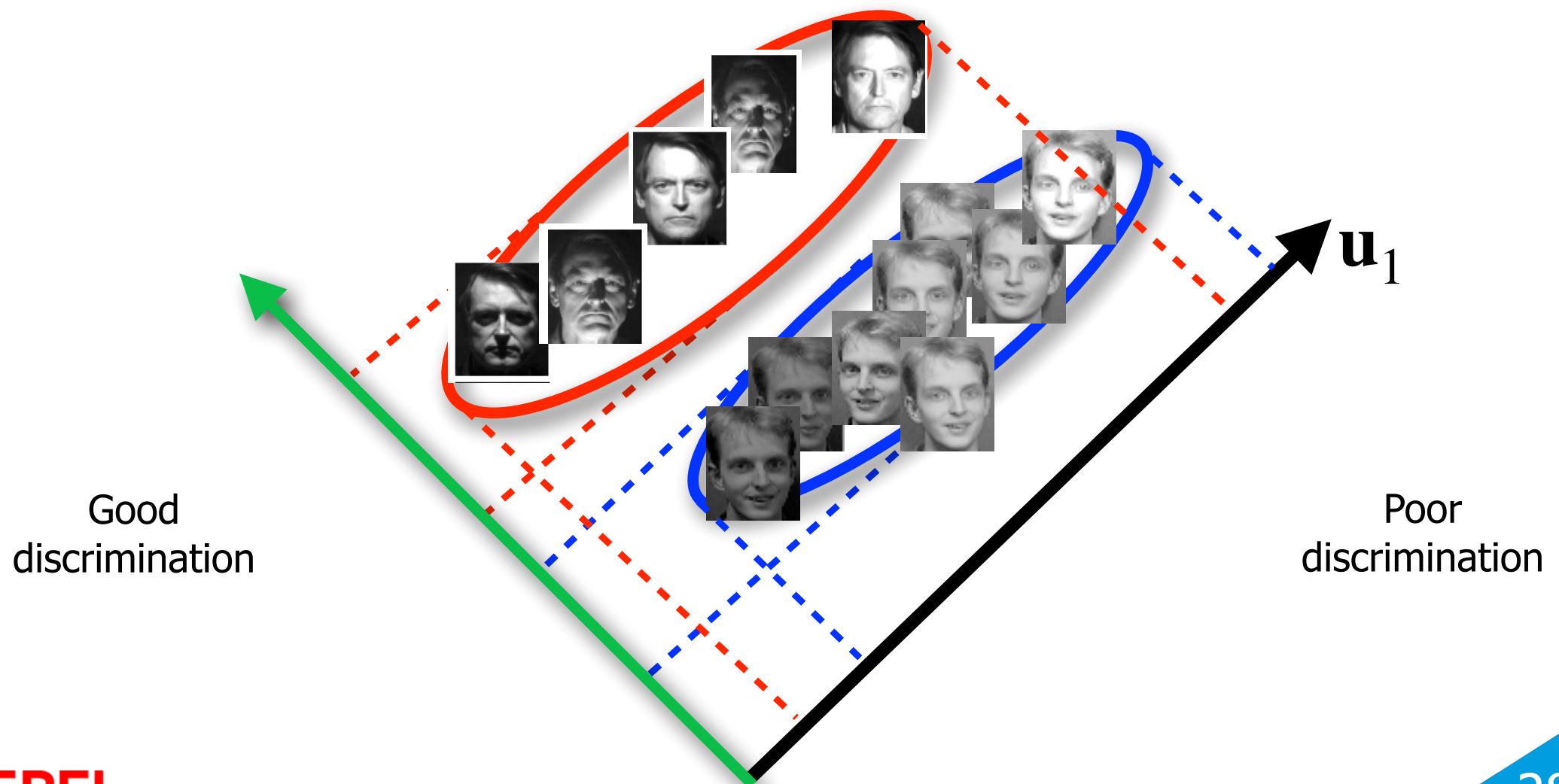
$$e = \|\hat{\mathbf{x}} - \mathbf{x}\|^2$$

where

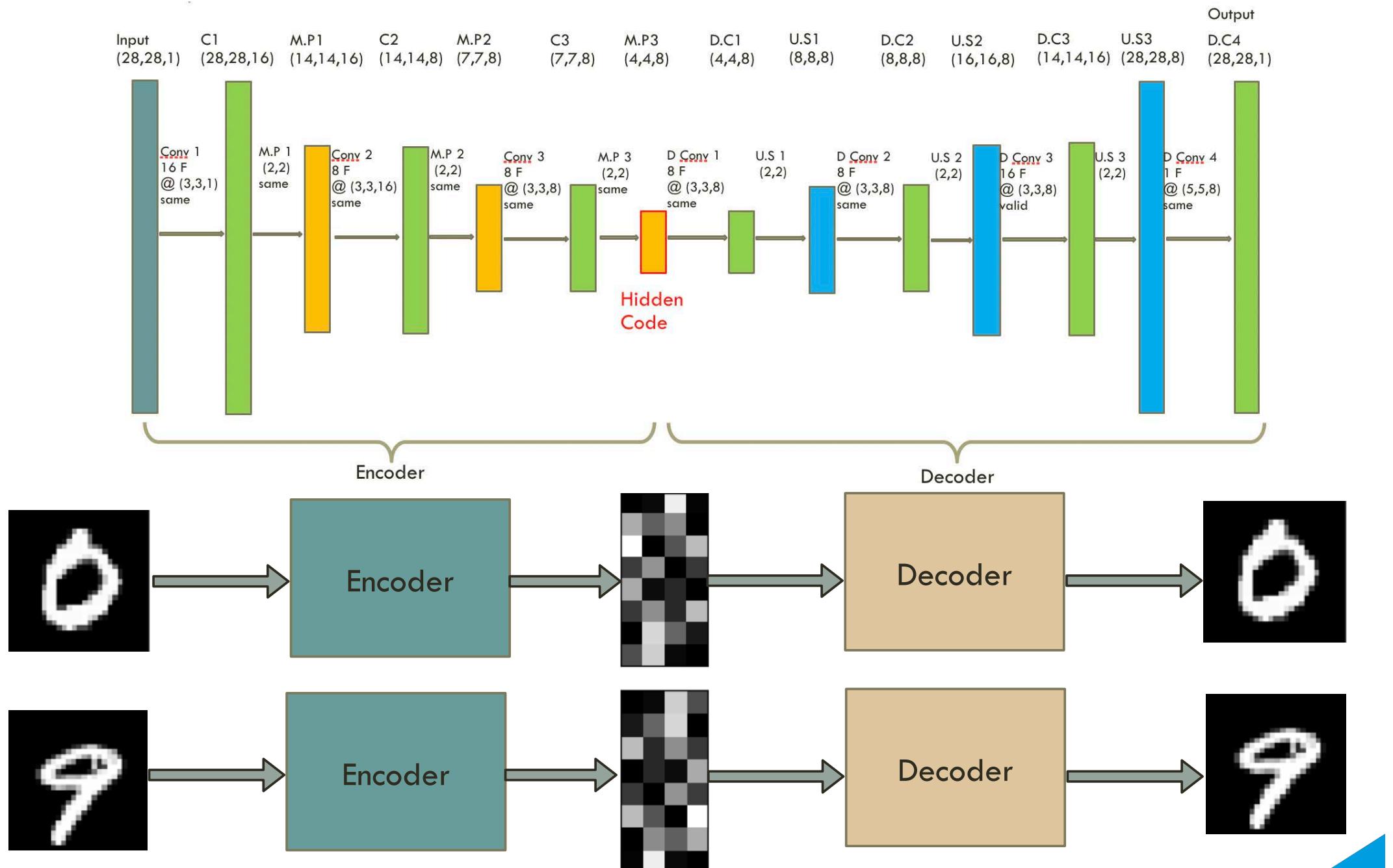
$$\hat{\mathbf{x}} = \bar{\mathbf{x}} + \mathbf{W}\mathbf{y} = \bar{\mathbf{x}} + \mathbf{W}\mathbf{W}^T(\mathbf{x} - \bar{\mathbf{x}})$$

LDA

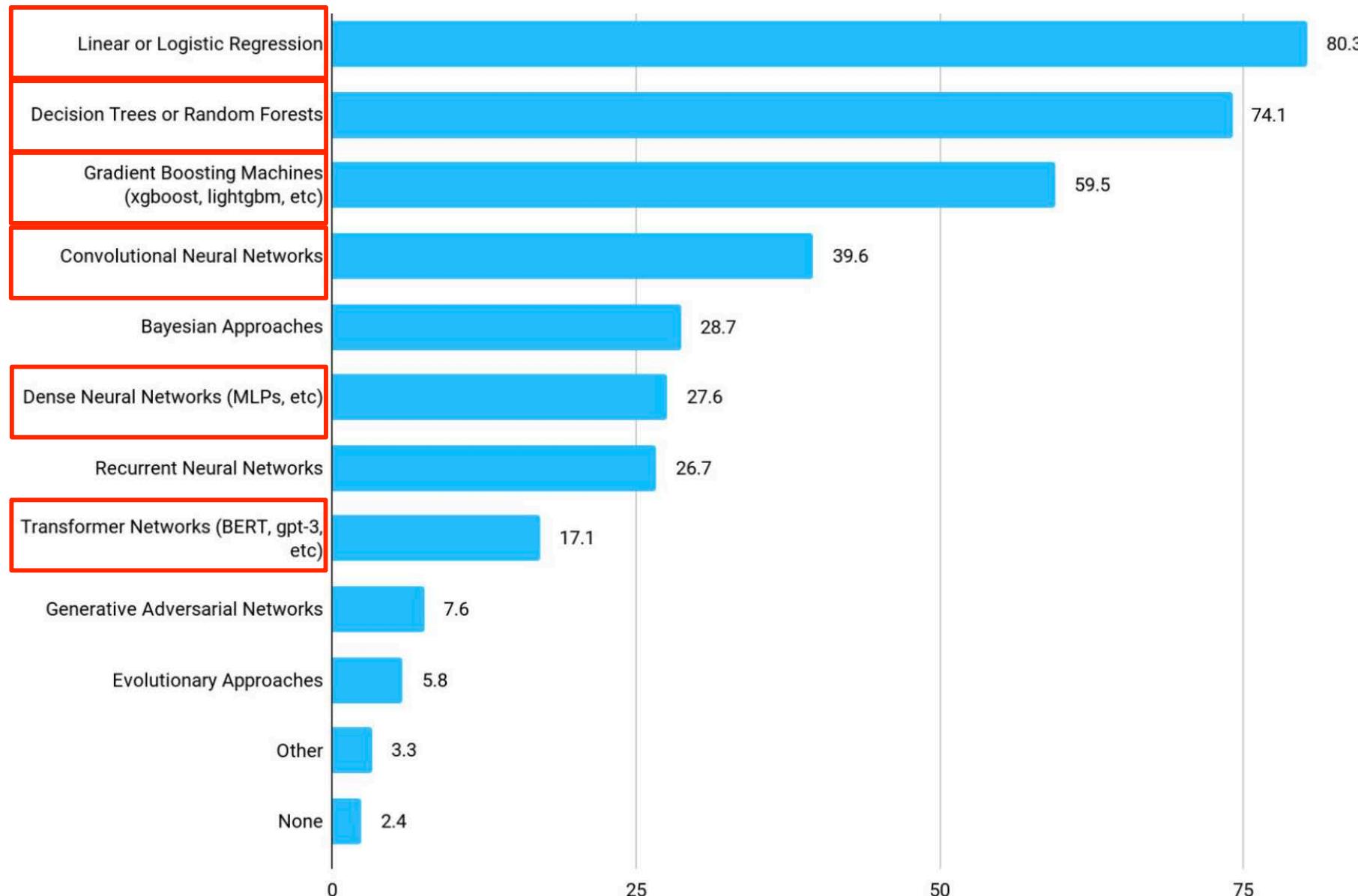
Maximise between class variance and minimize within class variance.



Autoencoders

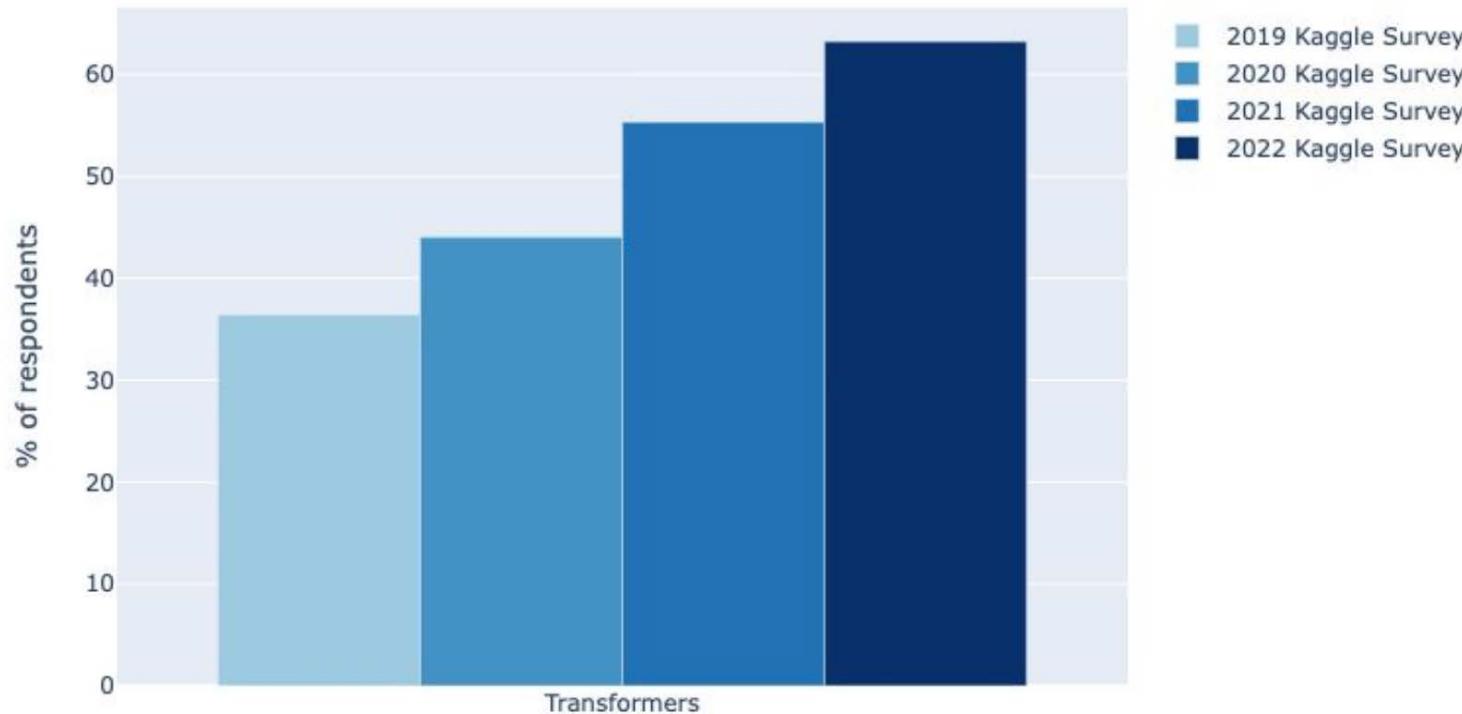


Kaggle Survey (2021)



What data science methods do you use at work?

Kaggle Survey (2022)



- Transformer architectures are becoming more popular for deep learning models?
- Will they dominate?

Time will tell

Logistic Regression on a Massive Scale

Ad Click Prediction at Google:

Methods such as regularized logistic regression are a natural fit for this problem setting. It is necessary to make predictions many billions of times per day and to quickly update the model as new clicks and non-clicks are observed.

→ The simpler methods are not going away and will probably co-exist with the more sophisticated ones.

In Conclusion

Rule of thumb:

- Small training set: Use GPs.
- Medium training sets: Use boosted trees.
- Large training sets: Use neural nets.
- Enormous training sets: Use transformers

As for all such rules, there are exceptions. Real-time requirements define important ones.

Revisions

✓ Introduction to the Class

Introduction

✓ Nearest Neighbors

KNNs

KMeans

✓ Linear Models

Linear Classification

Max Margin Classifiers

▪

▪

▪

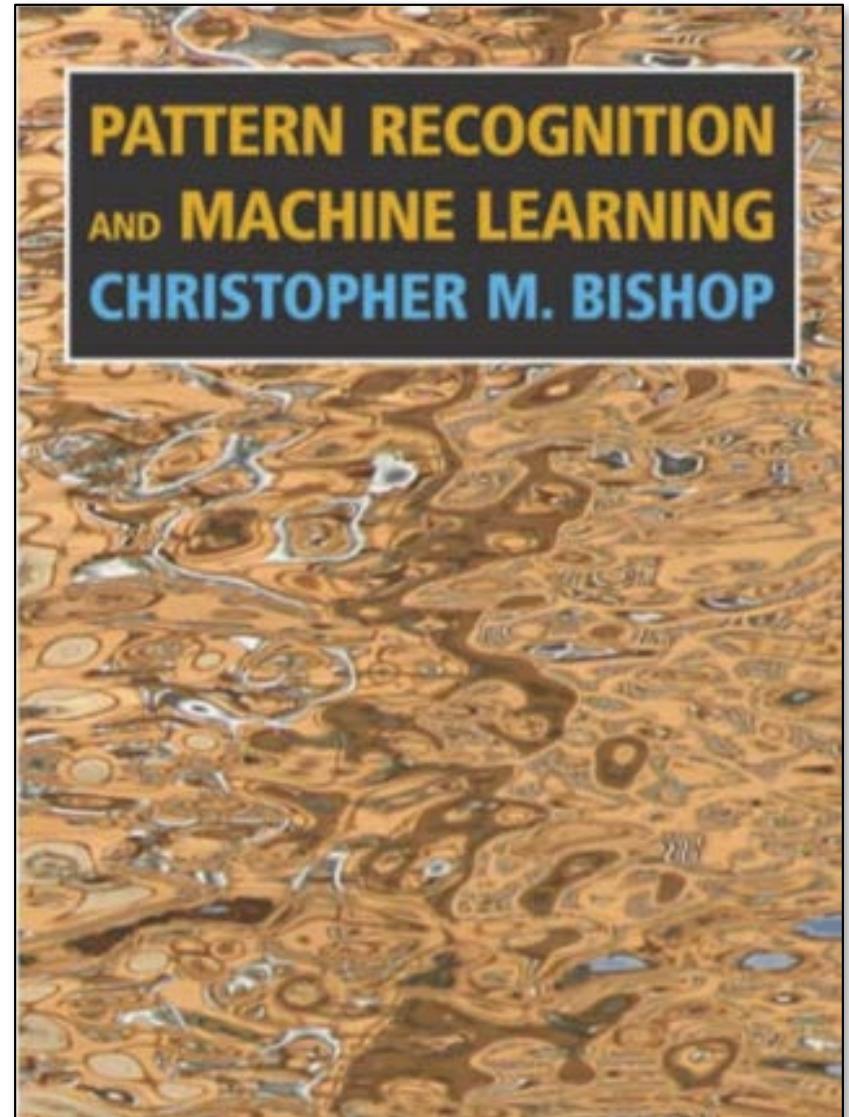
✓ Dimensionality Reduction

Linear Dimensionality Reduction

Non Linear Dimensionality Reduction

✓ Conclusion

Course Summary



Exam

- On June 30th.
- Possibility of extra-mural exam if you **cannot** come.
- 2.0 hours.
- 1 two-sided **hand-written** A4 page of notes.
- Questions on **non-indented** slides on webpage.

See you then.