Convolutional Neural Nets
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Reminder: Fully Connected Layers

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

- P > output layer

sl —
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The descriptive power of the net increases with the
number of layers.

In the case of a 1D signal, 1t is roughly proportional to
H W, , where W. represents the width of a layer.

The number of parameters grows like Z W.W
n
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Processing Digital Images
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A MxN image can be represented as an MN vector.
It can therefore be used an input to an MLP.
However
the neighborhood relationships are then lost,
the number of parameters grows very fast.

CPEL —> This is not the best approach.




Image Specificities

In a typical image, the values of neighboring pixels
tend to be more highly correlated than those of

distant ones.
An image filter should be translation equivariant.

—> These two properties can be exploited to
drastically reduce the number of weights required by
CNNs using so-called convolutional layers.
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1D Convolution in the Continuous Domain
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Example 1: Convolution with a Gaussian

Sigma = 50
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e Each sample is replaces by a weighted average of its neighbors.
e This yields a smoothed version of the original signal.

PrL A

Ml




Example 2: Convolution with the Derivative of a Gaussian

Sigma = 50
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e Convolving with the derivative of a gaussian is the same as
smoothing first and then differentiating.
PEL -
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Discrete 1D Convolution

Input
1 4 1 0 2 -2 1 3 3 1
w
Mask
1 2 0 1
w
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Discrete 1D Convolution

Input
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w
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Discrete 1D Convolution

Input
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Discrete 1D Convolution

Output

=PrL



Discrete 1D Convolution
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1D Convolution

Input
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Discrete 1D Convolution
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Discrete 1D Convolution

Input
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Discrete 1D Convolution

Input
f 1 4 1 0 2 -2 1 3 3 1
w
Mask
1 2 0 1
m
w
Output
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Discrete 2D Convolution

Input image: {

099000 Convolved image: m™**f
0000 a0 :
538883
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Convolution mask m, also known as a kernel.

myp .- mlw m**f(X,y)=sz(i’j)f(x_i’y_j)

myy ... My, i=0 ;=0
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Convolution Example
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hi; =s(fi1*xx+ by 1)

This approximates an x derivative.
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2D Convolutional Layer

input neurons

E%“%ﬁ first hidden layer
)
1 _
di,j— g b+ Z Z xy l+X]+y
- =0=0 )
» The same weights wxy are used to compute all the activations.
* There are far fewer weights than 1n a fully connected layer.
* The neighborhood relationships are explicitly used.
=PrL ‘ﬁ




Feature Maps

28 x 28 input neurons first hidden layver: 3 x 24 x 24 neurons

—4

Fiters ﬁ E

* In practice, one uses several filters, that 1s, sets of weights wyy, to
compute several convolved versions of the input.
* These are known as feature maps. ﬂ
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Derivative Filters
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Pooling Layer

hidden neurons (output from feature map)

max-pooling units

Reduces the number of inputs by replacing all
activations in a neighborhood by a single one.

Can be thought as asking if a particular feature
is present in that neighborhood while ignoring

the exact location.
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Adding the Pooling Layers

28 x 28 input neurons 3 X 24 x 24 neurons

—_—

3 x 12 x 12 neurons

—
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Pooling Example

Max-pooling:

h;|u,v] = max{ h;

2u,
2u,
2u + 1,
2u + 1,
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Adding a Fully Connected Layer

28 x 28 3 x 24 x 24

. 3 x 12 x 12
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Each neutron in the final fully connected layer is
connected to all neurons in the preceding one.

Deep architecture with many parameters to learn but
still far fewer than an equivalent multilayer perceptron.
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PyTorch Translation (1)

class ConvNet(nn.Module):

def __init_ (n1=10,n2=20,n3=50):

self.nl = nl

self.n2 = n2

self.cvl = nn.Conv2d(1, n1, kernel_size=5)
self.cv2 = nn.Conv2d(n1,n2, kernel_size=5)
self.fcl = nn.Linear(n2*16, n3)

self.fc2 = nn.Linear(n3,10)

def forward(self,x):

x = Rrelu(Fmax_pool2d(self.cvi(x), 2))
x = Frelu(F.max_pool2d(self.cv2(x), 2))
X = X.view(-1,16*self.n2)

x = Frelu(self.fc1(x))

x = self.fc2(x)

return Flog_softmax(x,dim=1)

L
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e Using a stride larger than one reduces and convolves at

e This ignores parts of the signal and is often preceded
by one of stride one to mitigate this.

Introducing a Stride Parameter

SR P e
I'f.ﬁﬁ' | N N H H u
S T Foee e
stride=1 stride=2 stride=3

the same time.
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PyTorch Translation (2)

class ConvNet(nn.Module):

def __init_ (n1=10,n2=20,n3=50):
self.nl1 = nl
self.n2 = n2
self.cvl = nn.Conv2d(1, n1,kernel_size=5,stride=2)
self.cv2 = nn.Conv2d(n1,n2,kernel_size=5,stride=2)
self.fcl = nn.Linear(n2*16,n3)
self.fc2 = nn.Linear(n3,10)

def forward(self,x):
x = Frelu(self.cvl(x))
x = Frelu(self.cv2(x))
X = X.view(-1, 16*self.n2)
x = Frelu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x,dim=1)

e No explicit pooling.
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e Similar accuracy if additional convolution with stride one added. !

Springenberg et al., ICLR’15




MNIST

S0 /1q]|#

* The network takes as input 28x28 images represented as 784D
vectors.

* The output is a 10D vector giving the probability of the image
representing any of the 10 digits.

 There are 50’000 training pairs of images and the
corresponding label, 10’000 validation pairs, and 5000 testing
pairs.
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Lenet (1989-1999)
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hy = [g(f1,1 % x),..., g(f1,m * x)]
hy; = pooling(hy)

:33 [g(f?),l * h2)7 R 7g(f3,n * hQ)]
h, = pooling(hs)

h) = Vec(hy)

h5 — Q(W5h£1 -+ b5)

O = W6h5 -+ b6




Lenet Results
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LN5: 99.05
SVM: 98.6

Knn: 96.8

Given the appropriate architecture, the CNN outperforms the
other approaches, whereas the MLP did not.

.




Lenet5 (1992)

1 23456789012 235
1 2 348 S0 01135

G A f bb
Ly ‘!!'& -

e Worked beautifully on MNIST.

e \Very few people believed it would scale up.
=PFL
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AlexNet (2012)

5 Convolutional Layers 1000 ways
Softmax

) 2
ense

3 Fully-Connected
Layers

'ask: Image classification
raining images: Large Scale Visual Recognition Challenge 2010
Training time:[2 weeks on 2 GPUs \

Major Breakthrough: Training large networks
has now been shown to be practical!!
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AlexNet Results
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o At the 2012 ImageNet Large Scale
Visual Recognition Challenge,
AlexNet achieved a top-5 error of
15.3%, more than 10.8% lower
than the runner up.

e Since 2015, networks outperform

humans on this task. 5

Krizhevsky, NIPS’12



Feature Maps

== \ i (c) @)
First convolutional layer  Second convolutional layer

Some of the convolutional masks are very similar to oriented
Gaussian or Gabor filters.

The trained neural nets compute oriented derivatives, which the
brain is also believed to do.
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Size and Depth Matter

| image

conv-64
conv-64

maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool
conv-512
conv-512
maxpool

conv-512
conv-512
maxpool
FC-4096
FC-4096

FC-1000
softmax

“hibiscus” “dahlia”

VGG19, 3 weeks of training. GoogleLeNet.

“It was demonstrated that the representation depth is beneficial for the classification accuracy, and
that state-of-the-art performance on the ImageNet challenge dataset can be achieved using a
conventional ConvNet architecture.”

E P F L Simonyan & Zisserman, I[CLR’15 A




Hand Pose Estimation (2015)
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Input: Depth image. Output: 3D pose vector.

Oberweger et al. , ICCV’15 A
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Deeper is Better
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In general, the more ResNet layers, the better the results.
=PrL He et al., CVPR’16




Human Body Pose Estimation

Tekin et al. , BMVC’16 Pavlakos et al., CVPR’19

Now working on:
e Multiple people in crowded scenes.

e People wearing loose clothing.
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Connectomics

Horizontal Coronal
-------- 3 M1
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e Building the wiring diagram of the brain.
e Finding long range connections.
—> One step towards understanding how it works.
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Dendrites and Axons

Fluorescent neurons in the adult mouse brain
imaged imaged in vivo through a cranial window

using a 2-photon microscope.
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Google Earth
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The road centerlines are used to plot routes.
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Before Machine Learning

Detect road centerlines
Find generic paths

Apply semantic filter

cPFL Fischler & Heller, 1998. A




Boxology

MASK PATHS

UNCONNECTED
‘ . ROAD-SEGS
3D) (2D)
ROAD-NETW ORKS ROAD-NETW ORKS

ROAD
ATTRIBUTES
(WIDTH, FINAL ROAD

MATERIAL...) MODEL
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After Machine Learning

Train a classifier to do this.

To train the classifier, we must associate a feature vector to each
path and they all must be of the same dimension.

=PrL Turetken et al., PAMI’16. A




Histogram of Oriented Gradients

_ dominant
e direction HOG

-ﬂ’\ £ -/ £
2Ny ‘r > IR/ ’
L \ e 1 ‘.
o m . »
| - X y
|“ ! 'H," g ' ‘J' -
Ly, |48 y

» tile window into 8 x 8 pixel cells

» each cell represented by HOG

frequency

orientation

Feature vector dimension = 16 x 8 (for tiling) x 8 (orientations) = 1024
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Histogram of Gradient Deviations

angle(VI(x),N(x)),if ||x — C(sx)|| > ¢
| angle(VI(x),II(x)) , otherwise,

—> One histogram per radius interval plus four
geometric features (curvature, tortuosity, ....).
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Roads

>
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Brainbow Images
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Blood Vessels




Deep Learning Tsunami

AlexNet 2012

The end of computer
science as we know it

An opportunity to revisit and improve the pipeline:

e Reformulate individual components in terms of CNNs.
e Make them consistent with each other.
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0.2

e Machine learning enables the same algorithm to work in many
different contexts but requires hand-designed features.

e However, computing the tubularity and classifying the paths are
closely related tasks. They should not be treated separately.

—> Can we use Deep Learning to account for this?
=PrL Turetken et al., PAMI’16 A
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ResNet block U-Net
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Reminder: Downsampling by Pooling

hidden neurons (output from feature map)

max-pooling units

-0

Reduces the number of inputs by replacing all
activations in a neighborhood by a single one.

Can it be reversed?

-
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Upsampling by Duplication
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Upsampling by Interpolation

i1 i2 i1 i5=(i1+i2)/2 12
3 ” i6=(i1+i3)/2 i9=(i1+i2+i3+i4)/4 i7=(i2+i4)/2
i3 i8=(i3+i4)/2 i4

=PrL A




Upsampling by Bilinear Interpolation

[10=(i1 +i2+.+.)/4
11 12 i1 i11=(i10+i1+i2+i9)/4 |iD
i3 | i4 i9=(i1+i2+i3+i4)/4
i3 14

=pEL —> Each pixel is the average of 4 neighbors. A




Upsampling by Transposed 1D Convolution

Output
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Upsampling by Transposed 1D Convolution

Output
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Transposed 1D Convolution

2 3 0 1
w
1 2 1
2 4 2
3 6 3
0 0 0
Output
2 7 4
W+ w-1
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Transposed 1D Convolution

2 3 0 1
w
1 2 1
2 4 2
3 6 3
0 0 0
1 -2 1
Output
2 7 4 |4 2 1
W+ w-1
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Transposed 1D Convolution

2 3 0 1
w
2 4 2
3 6 3
0 0 0
1 -2 1
Output
2 7 4 |4 2 1
W+ w-1
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Ml
"N

Transposed 1D Convolution

e The summations are performed
in the vertical direction instead
of the horizontal one.

e If we wrote this in terms of a
fully connected layer, this
would amount to transposing
the weight matrix.

e Can be extended to 2D layers.

2 3 0
w
Kernel
1 2 -1
%
Output
2 7 4 -4 2 1
W+ w-1

.




Introducing a Stride Parameter

2 3 0 1
w
1 2 1
2 4 2
Output
2 4
s(W-1+w
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Introducing a Stride Parameter

2 3 0 1
w
1 2 -1
2 4 2
3 6 3
Output
2 4 1 6
s(W-1+w
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Introducing a Stride Parameter

2 3 0 1

w

1 2 1
2 4 2

3 6 3
0 0 0
Output
2 4 1 6 3 0
s(W-1+w
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Introducing a Stride Parameter

2 3 0 1

w

1 2 1
2 4 2
3 6 3
0 0 0
1 -2 1
Output
2 4 1 6 |3 0 1 2 1
s(W-1+w
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Introducing a Stride Parameter

2 3 0 1
w
2 4 2
3 6 3
0 0 0
1 -2 1
Output
2 4 1 6 |3 0 1 2 1
s(W-1+w
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Introducing a Stride Parameter

Output

s(W-1+w
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Shrinking and Reexpanding

e The composition of a convolution and a transposed
convolution with the same parameters keep the
signhal size roughly unchanged.

e Transposed convolutions may create grid-structure

artifacts because generated pixels are not all covered
similarly.

4 x 4 kernel and stride 3

e Smoothing layers are required to prevent this.
PFL £
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Autoencoder in Python

class Autoencoder(nn.Module):

def __init__(nChannel=10,nHidden=50):
self.convEl = nn.Conv2d(1, nChannel, kernel_size=5,padding=2)
self.convE2 = nn.Conv2d(nc, nChannel, kernel_size=5,padding=2)
self.convD1 = nn.ConvTranspose2d(nChannel,nChannel kernel_size=4,stride=2,padding=1)
self.convD2 = nn.ConvTranspose2d(nChannel,1 ,kernel_size=4,stride=2,padding=1)

def encode(self,x):
x = self.convE1l(x)
x = sigma(F.max_pool2d(x,2))
x = self.convE2(x)
X = sigma(F.max_pool2d(x,2))
return x

def decode(self, z):
z= sigma(self.convD1(z)

z= self.convD2(z)
return z

def forward(self,x): \ t
z = self.encode(x) I"I"l [I’I’I
t

return self.decode(z)

\4
i-E-E (.
EPFL o? 8




From Autoencoder to UNet

def encode(self,x):
x = self.convE1(x)
x = sigma(F.max_pool2d(x,2))
z = self.convE2(x)

z = sigma(F.max_pool2d(z,2))

return z

I def decode(self, z):
z = sigma(self.convD1(z)
z = self.convD2(z)
' « 5 t return z
| IZy
X Z t

\4
l...... e e z = self.encode(x)
\J 4

return self.decode(z)

def forward(self,x):

o [ - [

Concatenate z on the way up with the equivalent x on the way
down, before running self.conD1 and self.convD2

=PrL A




Training UNet

Minimize
1 X A
LBCE — N Z ynlog(yn) + (1 _ yn)log(yn)
where =1
® S’ — fW(X)7

e X In an input image,

e y the corresponding ground truth.

=PrL Mosinska et al, CVPR’18. A
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Tubularity Map

BCE Loss

Ground truth




lterative Refinement

R
h

=

A
.

Image Iter 1 Iter 2 Iter 3 Ground truth

Use the same network to progressively refine the results
keeping the number of parameters constant

=PrL A




Ml
"N

ounting for Topology

A

B

Ground truth UNet output

!

—> Add a term in the
loss function that
penalizes the existence of
a path between A and B.

Improved output A




Before Deep Learning

U-Net does this better.

Can it also do this?

=PrL

Turetken et al., PAMI’16. A




Dual Use UNet

/mage Tubularity Map

and
Binary Mask

[0.991]

Path score

=PrL A




| 1.Compute a probability map.

' 2. Sample and connect the samples.

= 3. Assign a weight to the paths.

-
-

4. Retain the best paths.
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Streets of Toronto

False negatives
False positives

i
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EPFL



Dendrites and Axons

e Deep learning allows the same algorithm to work in different contexts.
e The implementation is informed by earlier approaches.
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1998 - 2038

I
1998 2018 2038

It is difficult to make predictions, especially about the future.
Sometimes attributed to Niels Bohr.
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