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Reminder: Fully Connected Layers

▪ The descriptive power of the net increases with the 
number of layers.  

▪ In the case of a 1D signal, it is roughly proportional to
 , where Wn represents the width of a layer. 

▪ The number of parameters grows like 

∏
n

Wn

∑
n

WnWn+1
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Processing Digital Images

• A MxN image can be represented as an MN vector. 
• It can therefore be used an input to an MLP.  
• However  

• the neighborhood relationships are then lost, 
• the number of parameters grows very fast. 

—> This is not the best approach. 
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Image Specificities

x

• In a typical image, the values of neighboring pixels 
tend to be more highly correlated than those of 
distant ones.  

• An image filter should be translation equivariant.  

—> These two properties can be exploited to 
drastically reduce the number of weights required by 
CNNs using so-called convolutional layers. 
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1D Convolution in the Continuous Domain

g ⇤ f(t) =
Z

⌧
g(t� ⌧)f(⌧)d⌧

g ⇤ f(m) =
X

n

g(m� n)f(n)
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Example 1: Convolution with a Gaussian

€ 

f

g

g* f

∂
∂x
(g* f )• Each sample is replaces by a weighted average of its neighbors. 

• This yields a smoothed version of the original signal.  
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∂g
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∂
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(g* f ) =

∂g
∂x
* f

Example 2: Convolution with the Derivative of a Gaussian

• Convolving with the derivative of a gaussian is the same as 
smoothing first and then differentiating.
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Discrete 1D Convolution

Input

W 

Mask

w

1 4 -1 0 2 -2 1 3 3 1

1 2 0 -1
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Discrete 1D Convolution

W − w +  1

w

1 2 0 -1

Output 

W

1 4 -1 0 2 -2 1 3 3 1

Input
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Discrete 1D Convolution

Output

W − w +  1

w

1 2 0 -1

9 0
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Discrete 1D Convolution

Output

W − w +  1
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1 2 0 -1

9 0 1
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Discrete 1D Convolution

Output
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1D Convolution

Output
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Discrete 1D Convolution

Output

W − w +  1

w

1 2 0 -1

9 0 1 3 -5 -3

W
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Input
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Discrete 1D Convolution

Output

W − w +  1

w
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Discrete 1D Convolution

W − w +  1

9 0 1 3 -5 -3 6

W 

Mask

w 

Output

1 4 -1 0 2 -2 1 3 3 1

1 2 0 -1

Input

f

m

m*f

m * f(x) =
w

∑
i=0

m(i)f(x − i)
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Discrete 2D Convolution

Convolution mask m, also known as a kernel.

m * *f(x, y) =
w

∑
i=0

w

∑
j=0

m(i, j)f(x − i, y − j)

Input image: f
Convolved image: m**f

[
m11 … m1w… … …
mw1 … mww]
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Convolution Example

-1 0 +1
-1 0 +1
-1 0 +1

s

This approximates an x derivative. 
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2D Convolutional Layer

• The same weights wx,y are used to compute all the activations. 
• There are far fewer weights than in a fully connected layer. 
• The neighborhood relationships are explicitly used. 

a1
i, j = σ b +

nx

∑
x=0

ny

∑
y=0

wx,ya0
i+x, j+y
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Feature Maps

Filters:

• In practice, one uses several filters, that is, sets of weights wx,y, to 
compute several convolved versions of the input.  

• These are known as feature maps. 
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Derivative Filters

Derivatives Learned filters
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Pooling Layer

• Reduces the number of inputs by replacing all 
activations in a neighborhood by a single one.  

• Can be thought as asking if a particular feature 
is present in that neighborhood while ignoring 
the exact location.  
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Adding the Pooling Layers

The output size is reduced by the pooling layers.
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Pooling Example

Max-pooling:
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Adding a Fully Connected Layer

• Each neutron in the final fully connected layer is 
connected to all neurons in the preceding one. 

• Deep architecture with many parameters to learn but 
still far fewer than an equivalent multilayer perceptron. 
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PyTorch Translation (1)
class ConvNet(nn.Module): 

   def __init__(n1=10,n2=20,n3=50): 
        self.n1 = n1 
        self.n2 = n2 
        self.cv1 = nn.Conv2d(1, n1,  kernel_size=5) 
        self.cv2 = nn.Conv2d(n1,n2, kernel_size=5) 
        self.fc1 = nn.Linear(n2*16, n3) 
        self.fc2 = nn.Linear(n3,10) 

   def forward(self,x): 
        x = F.relu(F.max_pool2d(self.cv1(x), 2)) 
        x = F.relu(F.max_pool2d(self.cv2(x), 2)) 
        x = x.view(-1,16*self.n2) 
        x = F.relu(self.fc1(x)) 
        x = self.fc2(x) 
        return F.log_softmax(x,dim=1)

I28

28

n2
4 4

12
n112

16*n2

n3

10
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Introducing a Stride Parameter 

stride=1 stride=2 stride=3

• Using a stride larger than one reduces and convolves at 
the same time.  

• This ignores parts of the signal and is often preceded 
by one of stride one to mitigate this.
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PyTorch Translation (2)
class ConvNet(nn.Module): 

   def __init__(n1=10,n2=20,n3=50): 
        self.n1 = n1 
        self.n2 = n2 
        self.cv1 = nn.Conv2d(1, n1,kernel_size=5,stride=2) 
        self.cv2 = nn.Conv2d(n1,n2,kernel_size=5,stride=2) 
        self.fc1 = nn.Linear(n2*16,n3) 
        self.fc2 = nn.Linear(n3,10) 

   def forward(self,x): 
        x = F.relu(self.cv1(x)) 
        x = F.relu(self.cv2(x)) 
        x = x.view(-1, 16*self.n2) 
        x = F.relu(self.fc1(x)) 
        x = self.fc2(x) 
        return F.log_softmax(x,dim=1) 

I28

28

n2
4 4

12
n112

16*n2

n3

10

Springenberg et al., ICLR’15 

• No explicit pooling.  
• Similar accuracy if additional convolution with stride one added. 
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MNIST

• The network takes as input 28x28 images represented as 784D 
vectors.  
• The output is a 10D vector giving the probability of the image 
representing any of the 10 digits. 
• There are 50’000 training pairs of images and the 
corresponding label, 10’000 validation pairs, and 5’000 testing 
pairs.  
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Lenet (1989-1999)
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Lenet Results

Knn: 96.8

SVM: 98.6

LN5: 99.05

Given the appropriate architecture, the CNN outperforms the 
other approaches, whereas the MLP did not. 
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Lenet5 (1992)

• Worked beautifully on MNIST.  
• Very few people believed it would scale up. 
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AlexNet (2012)

Task: Image classification 
Training images: Large Scale Visual Recognition Challenge 2010 
Training time: 2 weeks on 2 GPUs

Major Breakthrough: Training large networks  
has now been shown to be practical!!
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AlexNet Results

Krizhevsky, NIPS’12 

• At the 2012 ImageNet Large Scale 
Visual Recognition Challenge, 
AlexNet achieved a top-5 error of 
15.3%, more than 10.8% lower 
than the runner up. 

• Since 2015, networks outperform 
humans on this task.  
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Feature Maps

First convolutional layer Second convolutional layer

• Some of the convolutional masks are very similar to oriented 
Gaussian or Gabor filters. 

• The trained neural nets compute oriented derivatives, which the 
brain is also believed to do.   
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Size and Depth Matter

VGG19, 3 weeks of training.

Simonyan & Zisserman, ICLR’15

GoogleLeNet.
“It was demonstrated that the representation depth is beneficial for the classification accuracy, and 
that state-of-the-art performance on the ImageNet challenge dataset can be achieved using a 
conventional ConvNet architecture.”
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Hand Pose Estimation (2015)

Input: Depth image. Output: 3D pose vector.

Oberweger et al. , ICCV’15
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Deeper is Better

He et al. , CVPR’16

s
Conv Layer

Conv Layer

x

x+l2( (l1(x))σ

In general, the more ResNet layers, the better the results. 
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Human Body Pose Estimation

Tekin et al. , BMVC’16 Pavlakos et al., CVPR’19

Now working on: 
• Multiple people in crowded scenes. 
• People wearing loose clothing.  
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Connectomics

• Building the wiring diagram of the brain.  
• Finding long range connections. 
—> One step towards understanding how it works. 
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Dendrites and Axons

Fluorescent neurons in the adult mouse brain 
imaged imaged in vivo through a cranial window 
using a 2-photon microscope.
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Cartography

The road centerlines are used to plot routes. 



44

Before Machine Learning

Fischler & Heller, 1998.

Detect road centerlines

Find generic paths

Apply semantic filter
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Boxology



46

After Machine Learning

Turetken et al., PAMI’16.

Train a classifier to do this.

To train the classifier, we must associate a feature vector to each 
path and they all must be of the same dimension.
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Histogram of Oriented Gradients
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Histogram of Gradient Deviations

—> One histogram per radius interval plus four 
geometric features (curvature, tortuosity, .…). 
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Roads
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Brainbow Images
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Blood Vessels
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Deep Learning Tsunami

An opportunity to revisit and improve the pipeline: 

• Reformulate individual components in terms of CNNs. 
• Make them consistent with each other. 

or …..

AlexNet 2012

The end of computer 
science as we know it
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Before Deep Learning

Turetken et al., PAMI’16

• Machine learning enables the same algorithm to work in many 
different contexts but requires hand-designed features.  

• However, computing the tubularity and classifying the paths are 
closely related tasks. They should not be treated separately. 

—> Can we use Deep Learning to account for this?
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From ResNet to U-Net
Image Tubularity Map

s
Conv Layer

Conv Layer

x

x+l2( (l1(x))σ

ResNet block U-Net

Downsampling Upsampling
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Reminder: Downsampling by Pooling

• Reduces the number of inputs by replacing all 
activations in a neighborhood by a single one.  

• Can it be reversed?  
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i1 i1 i2

i1 i1 i2

i3 i3 i4

 

Upsampling by Duplication

i1 i2

i3 i4
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i1 i5=(i1+i2)/2 i2

i6=(i1+i3)/2 i9=(i1+i2+i3+i4)/4 i7=(i2+i4)/2

i3 i8=(i3+i4)/2 i4

Upsampling by Interpolation

i1 i2

i3 i4  
 

 
 

 
i1 i5=(i1+i2)/2 i2

i6=(i1+i3)/2 i9=(i1+i2+i3+i4)/4 i7=(i2+i4)/2

i3 i8=(i3+i4)/2 i4



58

I10=(i1 + i2 + . + .) / 4

i1 i11=(i10+i1+i2+i9)/4 i2
i9=(i1+i2+i3+i4)/4

i3 i4

Upsampling by Bilinear Interpolation

 —> Each pixel is the average of 4 neighbors. 

i1 i2

i3 i4
 
 

 

I10=(i1 + i2 + . + .) / 4

i1 i11=(i10+i1+i2+i9)/4 i2
i9=(i1+i2+i3+i4)/4

i3 i4
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Upsampling by Transposed 1D Convolution

Output

W +  w − 1

1 2 -1

2 4 -2

W

2 3 0 -1

2
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Upsampling by Transposed 1D Convolution

Output

W +  w − 1

1 2 -1

2 4 -2

3 6 -3

W

2 3 0 -1

2 7
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Transposed 1D Convolution

Output

W +  w − 1

1 2 -1

2 4 -2

3 6 -3

0 0 0

W

6 /  14

2 3 0 -1

2 7 4
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Transposed 1D Convolution

Output

W +  w − 1

1 2 -1

2 4 -2

3 6 -3

0 0 0

-1 -2 1

W

6 /  14

2 3 0 -1

2 7 4 -4 -2 1
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Transposed 1D Convolution

Output

W +  w − 1

2 4 -2

3 6 -3

0 0 0

-1 -2 1

W

2 3 0 -1

2 7 4 -4 -2 1
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Transposed 1D Convolution

Output

W +  w − 1

1 2 -1
Kernel

w

W

2 3 0 -1

2 7 4 -4 -2 1

• The summations are performed 
in the vertical direction instead 
of the horizontal one. 

• If we wrote this in terms of a 
fully connected layer, this 
would amount to transposing 
the weight matrix.  

• Can be extended to 2D layers.
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Introducing a Stride Parameter

Output

s (W − 1) +  w

1 2 -1

2 4 -2

W

2 3 0 -1

2 4
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Introducing a Stride Parameter

Output

s (W − 1) +  w

1 2 -1

2 4 -2

3 6 -3s

W

2 3 0 -1

2 4 1 6



67

Introducing a Stride Parameter

Output

s (W − 1) +  w

1 2 -1

2 4 -2

3 6 -3

0 0 0

s 

s

W

2 3 0 -1

2 4 1 6 -3 0
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Introducing a Stride Parameter

s (W − 1) +  w

1 2 -1

2 4 -2

3 6 -3

0 0 0

-1 -2 1

s 

s 

s 

Output
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Introducing a Stride Parameter

s (W − 1) +  w

2 4 -2

3 6 -3

0 0 0

-1 -2 1

s 

s 

s 

Output

W

2 3 0 -1

2 4 1 6 -3 0 -1 -2 1
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Introducing a Stride Parameter

Output

s (W − 1) +  w

1 2 -1
Kernel

w

W

2 3 0 -1

2 4 1 6 -3 0 -1 -2 1
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Shrinking and Reexpanding
• The composition of a convolution and a transposed 

convolution with the same  parameters keep  the 
signal size  roughly unchanged. 

• Transposed convolutions may create grid-structure 
artifacts because generated pixels are  not all covered  
similarly. 

• Smoothing layers are required to prevent this.  

4 × 4 kernel and stride  3



class Autoencoder(nn.Module): 

   def __init__(nChannel=10,nHidden=50): 
        self.convE1 = nn.Conv2d(1, nChannel, kernel_size=5,padding=2) 
        self.convE2 = nn.Conv2d(nc, nChannel, kernel_size=5,padding=2) 
        self.convD1 = nn.ConvTranspose2d(nChannel,nChannel,kernel_size=4,stride=2,padding=1) 
        self.convD2 = nn.ConvTranspose2d(nChannel,1 ,kernel_size=4,stride=2,padding=1) 
       
   def encode(self,x): 
       x = self.convE1(x) 
       x = sigma(F.max_pool2d(x,2)) 
       x = self.convE2(x) 
       x = sigma(F.max_pool2d(x,2)) 
       return x 

  def decode(self, z): 
        z= sigma(self.convD1(z) 
        z= self.convD2(z) 
        return z 

   def forward(self,x): 
        z = self.encode(x)         
        return self.decode(z) 

72

Autoencoder in Python
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From Autoencoder to UNet
def encode(self,x): 

       x = self.convE1(x) 

       x = sigma(F.max_pool2d(x,2)) 

       z = self.convE2(x) 

       z = sigma(F.max_pool2d(z,2)) 

       return z 

  def decode(self, z): 

        z = sigma(self.convD1(z) 

        z = self.convD2(z) 

        return z 

   def forward(self,x): 

        z = self.encode(x)         

        return self.decode(z) 

Concatenate z on the way up with the equivalent x on the way 
down, before running self.conD1 and self.convD2 

X Z

X Z
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Training UNet

Mosinska et al, CVPR’18.

Minimize

Lbce(x,y;w) = �1

i

PX

1

[yn log(ŷi) + (1� yi) log(1� ŷi)]

where

• ŷ = fw(x),

• x in an input image,

• y the corresponding ground truth.
<latexit sha1_base64="y6uVcXpeee8E8ZCbyyhOx0GC6pw="></latexit><latexit sha1_base64="y6uVcXpeee8E8ZCbyyhOx0GC6pw="></latexit><latexit sha1_base64="y6uVcXpeee8E8ZCbyyhOx0GC6pw="></latexit><latexit sha1_base64="y6uVcXpeee8E8ZCbyyhOx0GC6pw="></latexit>

LBCE =
1
N

N

∑
i=1

ynlog( ̂yn) + (1 − yn)log( ̂yn)
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Tubularity Map

BCE Loss Ground truthImage
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Iterative Refinement

Use the same network to progressively refine the results 
keeping the number of parameters constant

1 2 3

Image Iter 1 Iter 2 Iter 3 Ground truth
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Accounting for Topology

—> Add a term in the 
l o s s f u n c t i o n t h a t 
penalizes the existence of 
a path between A and B. 

Image Ground truth UNet output

Improved output
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Before Deep Learning

Turetken et al., PAMI’16.

U-Net does this better. Can it also do this?
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Dual Use UNet

[0.991]

Tubularity Map

Path score

Image 
and 

Binary Mask
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1.Compute a probability map. 

2. Sample and connect the samples. 

3. Assign a weight to the paths. 

4. Retain the best paths.

After Deep Learning
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Streets of Toronto

— False negatives 
— False positives
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Dendrites and Axons

• Deep learning allows the same algorithm to work in different contexts.  
• The implementation is informed by earlier approaches. 
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1998 - 2038

?
It is difficult to make predictions, especially about the future. 

Sometimes attributed to Niels Bohr.

1998

!
ℒ#$%

ℒ&'(

2018 2038


