
1

Convolutional Neural Nets

Pascal Fua
IC-CVLab

2

Reminder: Fully Connected Layers

▪ The descriptive power of the net increases with the
number of layers.

▪ In the case of a 1D signal, it is roughly proportional to
 , where Wn represents the width of a layer.

▪ The number of parameters grows like

∏
n

Wn

∑
n

WnWn+1

3

Processing Digital Images

• A MxN image can be represented as an MN vector.
• It can therefore be used an input to an MLP.
• However

• the neighborhood relationships are then lost,
• the number of parameters grows very fast.

—> This is not the best approach.

4

Image Specificities

x

• In a typical image, the values of neighboring pixels
tend to be more highly correlated than those of
distant ones.

• An image filter should be translation equivariant.

—> These two properties can be exploited to
drastically reduce the number of weights required by
CNNs using so-called convolutional layers.

5

1D Convolution in the Continuous Domain

g ⇤ f(t) =
Z

⌧
g(t� ⌧)f(⌧)d⌧

g ⇤ f(m) =
X

n

g(m� n)f(n)
<latexit sha1_base64="7DAFU+pMsejm5xuV5zhEmRvCRCc=">AAACWnicbVFNS+wwFE2rz4/6PsaPnZvg8B6joLRudCOIblwqOCpMh5KmtzWYpH3JrTCU+ZNuRPCvCKYzI/h1IbmHc88hyUlaSWExDJ88f27+x8Li0nKw8vPX7z+d1bUrW9aGQ5+XsjQ3KbMghYY+CpRwUxlgKpVwnd6dtvPrezBWlPoSRxUMFSu0yAVn6Kik8z+IUyiEbpgUhd4ZBwXdoTnt4Tb9d0RjoTFpYmT1mBY93G3RNs170561jcbxm0dNPbZWiXZytatbrduCGHT2dkLS6YZ74aToVxDNQJfM6jzpPMRZyWsFGrlk1g6isMJhwwwKLmEcxLWFivE7VsDAQc0U2GEziWZM/zomo3lp3NJIJ+x7R8OUtSOVOqVieGs/z1ryu9mgxvxw2Ahd1QiaTw/Ka0mxpG3ONBMGOMqRA4wb4e5K+S0zjKP7jcCFEH1+8ldwtb8XOXyx3z0+mcWxRDbJFumRiByQY3JGzkmfcPJIXrwFb9F79n1/2V+ZSn1v5lknH8rfeAX4Jq4L</latexit><latexit sha1_base64="7DAFU+pMsejm5xuV5zhEmRvCRCc=">AAACWnicbVFNS+wwFE2rz4/6PsaPnZvg8B6joLRudCOIblwqOCpMh5KmtzWYpH3JrTCU+ZNuRPCvCKYzI/h1IbmHc88hyUlaSWExDJ88f27+x8Li0nKw8vPX7z+d1bUrW9aGQ5+XsjQ3KbMghYY+CpRwUxlgKpVwnd6dtvPrezBWlPoSRxUMFSu0yAVn6Kik8z+IUyiEbpgUhd4ZBwXdoTnt4Tb9d0RjoTFpYmT1mBY93G3RNs170561jcbxm0dNPbZWiXZytatbrduCGHT2dkLS6YZ74aToVxDNQJfM6jzpPMRZyWsFGrlk1g6isMJhwwwKLmEcxLWFivE7VsDAQc0U2GEziWZM/zomo3lp3NJIJ+x7R8OUtSOVOqVieGs/z1ryu9mgxvxw2Ahd1QiaTw/Ka0mxpG3ONBMGOMqRA4wb4e5K+S0zjKP7jcCFEH1+8ldwtb8XOXyx3z0+mcWxRDbJFumRiByQY3JGzkmfcPJIXrwFb9F79n1/2V+ZSn1v5lknH8rfeAX4Jq4L</latexit><latexit sha1_base64="7DAFU+pMsejm5xuV5zhEmRvCRCc=">AAACWnicbVFNS+wwFE2rz4/6PsaPnZvg8B6joLRudCOIblwqOCpMh5KmtzWYpH3JrTCU+ZNuRPCvCKYzI/h1IbmHc88hyUlaSWExDJ88f27+x8Li0nKw8vPX7z+d1bUrW9aGQ5+XsjQ3KbMghYY+CpRwUxlgKpVwnd6dtvPrezBWlPoSRxUMFSu0yAVn6Kik8z+IUyiEbpgUhd4ZBwXdoTnt4Tb9d0RjoTFpYmT1mBY93G3RNs170561jcbxm0dNPbZWiXZytatbrduCGHT2dkLS6YZ74aToVxDNQJfM6jzpPMRZyWsFGrlk1g6isMJhwwwKLmEcxLWFivE7VsDAQc0U2GEziWZM/zomo3lp3NJIJ+x7R8OUtSOVOqVieGs/z1ryu9mgxvxw2Ahd1QiaTw/Ka0mxpG3ONBMGOMqRA4wb4e5K+S0zjKP7jcCFEH1+8ldwtb8XOXyx3z0+mcWxRDbJFumRiByQY3JGzkmfcPJIXrwFb9F79n1/2V+ZSn1v5lknH8rfeAX4Jq4L</latexit><latexit sha1_base64="7DAFU+pMsejm5xuV5zhEmRvCRCc=">AAACWnicbVFNS+wwFE2rz4/6PsaPnZvg8B6joLRudCOIblwqOCpMh5KmtzWYpH3JrTCU+ZNuRPCvCKYzI/h1IbmHc88hyUlaSWExDJ88f27+x8Li0nKw8vPX7z+d1bUrW9aGQ5+XsjQ3KbMghYY+CpRwUxlgKpVwnd6dtvPrezBWlPoSRxUMFSu0yAVn6Kik8z+IUyiEbpgUhd4ZBwXdoTnt4Tb9d0RjoTFpYmT1mBY93G3RNs170561jcbxm0dNPbZWiXZytatbrduCGHT2dkLS6YZ74aToVxDNQJfM6jzpPMRZyWsFGrlk1g6isMJhwwwKLmEcxLWFivE7VsDAQc0U2GEziWZM/zomo3lp3NJIJ+x7R8OUtSOVOqVieGs/z1ryu9mgxvxw2Ahd1QiaTw/Ka0mxpG3ONBMGOMqRA4wb4e5K+S0zjKP7jcCFEH1+8ldwtb8XOXyx3z0+mcWxRDbJFumRiByQY3JGzkmfcPJIXrwFb9F79n1/2V+ZSn1v5lknH8rfeAX4Jq4L</latexit>

6

Example 1: Convolution with a Gaussian

€

f

g

g* f

∂
∂x
(g* f)• Each sample is replaces by a weighted average of its neighbors.

• This yields a smoothed version of the original signal.

7€

f

∂g
∂x

∂
∂x
(g* f) =

∂g
∂x
* f

Example 2: Convolution with the Derivative of a Gaussian

• Convolving with the derivative of a gaussian is the same as
smoothing first and then differentiating.

8

Discrete 1D Convolution

Input

W

Mask

w

1 4 -1 0 2 -2 1 3 3 1

1 2 0 -1

9

Discrete 1D Convolution

W − w + 1

w

1 2 0 -1

Output

W

1 4 -1 0 2 -2 1 3 3 1

Input

9

10

Discrete 1D Convolution

Output

W − w + 1

w

1 2 0 -1

9 0

W

1 4 -1 0 2 -2 1 3 3 1

Input

11

Discrete 1D Convolution

Output

W − w + 1

w

1 2 0 -1

9 0 1

W

1 4 -1 0 2 -2 1 3 3 1

Input

12

Discrete 1D Convolution

Output

W − w + 1

w

1 2 0 -1

9 0 1 3

W

1 4 -1 0 2 -2 1 3 3 1

Input

13

1D Convolution

Output

W − w + 1

w

1 2 0 -1

9 0 1 3 -5

W

1 4 -1 0 2 -2 1 3 3 1

Input

14

Discrete 1D Convolution

Output

W − w + 1

w

1 2 0 -1

9 0 1 3 -5 -3

W

5 / 14

1 4 -1 0 2 -2 1 3 3 1

Input

15

Discrete 1D Convolution

Output

W − w + 1

w

1 2 0 -1

9 0 1 3 -5 -3 6

W

1 4 -1 0 2 -2 1 3 3 1

Input

16

Discrete 1D Convolution

W − w + 1

9 0 1 3 -5 -3 6

W

Mask

w

Output

1 4 -1 0 2 -2 1 3 3 1

1 2 0 -1

Input

f

m

m*f

m * f(x) =
w

∑
i=0

m(i)f(x − i)

17

Discrete 2D Convolution

Convolution mask m, also known as a kernel.

m * *f(x, y) =
w

∑
i=0

w

∑
j=0

m(i, j)f(x − i, y − j)

Input image: f
Convolved image: m**f

[
m11 … m1w… … …
mw1 … mww]

18

Convolution Example

-1 0 +1
-1 0 +1
-1 0 +1

s

This approximates an x derivative.

19

2D Convolutional Layer

• The same weights wx,y are used to compute all the activations.
• There are far fewer weights than in a fully connected layer.
• The neighborhood relationships are explicitly used.

a1
i, j = σ b +

nx

∑
x=0

ny

∑
y=0

wx,ya0
i+x, j+y

20

Feature Maps

Filters:

• In practice, one uses several filters, that is, sets of weights wx,y, to
compute several convolved versions of the input.

• These are known as feature maps.

21

Derivative Filters

Derivatives Learned filters

22

Pooling Layer

• Reduces the number of inputs by replacing all
activations in a neighborhood by a single one.

• Can be thought as asking if a particular feature
is present in that neighborhood while ignoring
the exact location.

23

Adding the Pooling Layers

The output size is reduced by the pooling layers.

24

Pooling Example

Max-pooling:

25

Adding a Fully Connected Layer

• Each neutron in the final fully connected layer is
connected to all neurons in the preceding one.

• Deep architecture with many parameters to learn but
still far fewer than an equivalent multilayer perceptron.

26

PyTorch Translation (1)
class ConvNet(nn.Module):

 def __init__(n1=10,n2=20,n3=50):
 self.n1 = n1
 self.n2 = n2
 self.cv1 = nn.Conv2d(1, n1, kernel_size=5)
 self.cv2 = nn.Conv2d(n1,n2, kernel_size=5)
 self.fc1 = nn.Linear(n2*16, n3)
 self.fc2 = nn.Linear(n3,10)

 def forward(self,x):
 x = F.relu(F.max_pool2d(self.cv1(x), 2))
 x = F.relu(F.max_pool2d(self.cv2(x), 2))
 x = x.view(-1,16*self.n2)
 x = F.relu(self.fc1(x))
 x = self.fc2(x)
 return F.log_softmax(x,dim=1)

I28

28

n2
4 4

12
n112

16*n2

n3

10

27

Introducing a Stride Parameter

stride=1 stride=2 stride=3

• Using a stride larger than one reduces and convolves at
the same time.

• This ignores parts of the signal and is often preceded
by one of stride one to mitigate this.

28

PyTorch Translation (2)
class ConvNet(nn.Module):

 def __init__(n1=10,n2=20,n3=50):
 self.n1 = n1
 self.n2 = n2
 self.cv1 = nn.Conv2d(1, n1,kernel_size=5,stride=2)
 self.cv2 = nn.Conv2d(n1,n2,kernel_size=5,stride=2)
 self.fc1 = nn.Linear(n2*16,n3)
 self.fc2 = nn.Linear(n3,10)

 def forward(self,x):
 x = F.relu(self.cv1(x))
 x = F.relu(self.cv2(x))
 x = x.view(-1, 16*self.n2)
 x = F.relu(self.fc1(x))
 x = self.fc2(x)
 return F.log_softmax(x,dim=1)

I28

28

n2
4 4

12
n112

16*n2

n3

10

Springenberg et al., ICLR’15

• No explicit pooling.
• Similar accuracy if additional convolution with stride one added.

29

MNIST

• The network takes as input 28x28 images represented as 784D
vectors.
• The output is a 10D vector giving the probability of the image
representing any of the 10 digits.
• There are 50’000 training pairs of images and the
corresponding label, 10’000 validation pairs, and 5’000 testing
pairs.

30

Lenet (1989-1999)

31

0

1

2

3

4

5

6

7

8

9

32

Lenet Results

Knn: 96.8

SVM: 98.6

LN5: 99.05

Given the appropriate architecture, the CNN outperforms the
other approaches, whereas the MLP did not.

33

Lenet5 (1992)

• Worked beautifully on MNIST.
• Very few people believed it would scale up.

34

AlexNet (2012)

Task: Image classification
Training images: Large Scale Visual Recognition Challenge 2010
Training time: 2 weeks on 2 GPUs

Major Breakthrough: Training large networks
has now been shown to be practical!!

35

AlexNet Results

Krizhevsky, NIPS’12

• At the 2012 ImageNet Large Scale
Visual Recognition Challenge,
AlexNet achieved a top-5 error of
15.3%, more than 10.8% lower
than the runner up.

• Since 2015, networks outperform
humans on this task.

36

Feature Maps

First convolutional layer Second convolutional layer

• Some of the convolutional masks are very similar to oriented
Gaussian or Gabor filters.

• The trained neural nets compute oriented derivatives, which the
brain is also believed to do.

37

Size and Depth Matter

VGG19, 3 weeks of training.

Simonyan & Zisserman, ICLR’15

GoogleLeNet.
“It was demonstrated that the representation depth is beneficial for the classification accuracy, and
that state-of-the-art performance on the ImageNet challenge dataset can be achieved using a
conventional ConvNet architecture.”

38

Hand Pose Estimation (2015)

Input: Depth image. Output: 3D pose vector.

Oberweger et al. , ICCV’15

39

Deeper is Better

He et al. , CVPR’16

s
Conv Layer

Conv Layer

x

x+l2((l1(x))σ

In general, the more ResNet layers, the better the results.

40

Human Body Pose Estimation

Tekin et al. , BMVC’16 Pavlakos et al., CVPR’19

Now working on:
• Multiple people in crowded scenes.
• People wearing loose clothing.

41

Connectomics

• Building the wiring diagram of the brain.
• Finding long range connections.
—> One step towards understanding how it works.

42

Dendrites and Axons

Fluorescent neurons in the adult mouse brain
imaged imaged in vivo through a cranial window
using a 2-photon microscope.

43

Cartography

The road centerlines are used to plot routes.

44

Before Machine Learning

Fischler & Heller, 1998.

Detect road centerlines

Find generic paths

Apply semantic filter

45

Boxology

46

After Machine Learning

Turetken et al., PAMI’16.

Train a classifier to do this.

To train the classifier, we must associate a feature vector to each
path and they all must be of the same dimension.

47

Histogram of Oriented Gradients

48

Histogram of Gradient Deviations

—> One histogram per radius interval plus four
geometric features (curvature, tortuosity, .…).

49

Roads

50

Brainbow Images

51

Blood Vessels

52

Deep Learning Tsunami

An opportunity to revisit and improve the pipeline:

• Reformulate individual components in terms of CNNs.
• Make them consistent with each other.

or …..

AlexNet 2012

The end of computer
science as we know it

53

Before Deep Learning

Turetken et al., PAMI’16

• Machine learning enables the same algorithm to work in many
different contexts but requires hand-designed features.

• However, computing the tubularity and classifying the paths are
closely related tasks. They should not be treated separately.

—> Can we use Deep Learning to account for this?

54

From ResNet to U-Net
Image Tubularity Map

s
Conv Layer

Conv Layer

x

x+l2((l1(x))σ

ResNet block U-Net

Downsampling Upsampling

55

Reminder: Downsampling by Pooling

• Reduces the number of inputs by replacing all
activations in a neighborhood by a single one.

• Can it be reversed?

56

i1 i1 i2

i1 i1 i2

i3 i3 i4

Upsampling by Duplication

i1 i2

i3 i4

57

i1 i5=(i1+i2)/2 i2

i6=(i1+i3)/2 i9=(i1+i2+i3+i4)/4 i7=(i2+i4)/2

i3 i8=(i3+i4)/2 i4

Upsampling by Interpolation

i1 i2

i3 i4

i1 i5=(i1+i2)/2 i2

i6=(i1+i3)/2 i9=(i1+i2+i3+i4)/4 i7=(i2+i4)/2

i3 i8=(i3+i4)/2 i4

58

I10=(i1 + i2 + . + .) / 4

i1 i11=(i10+i1+i2+i9)/4 i2
i9=(i1+i2+i3+i4)/4

i3 i4

Upsampling by Bilinear Interpolation

 —> Each pixel is the average of 4 neighbors.

i1 i2

i3 i4

I10=(i1 + i2 + . + .) / 4

i1 i11=(i10+i1+i2+i9)/4 i2
i9=(i1+i2+i3+i4)/4

i3 i4

59

Upsampling by Transposed 1D Convolution

Output

W + w − 1

1 2 -1

2 4 -2

W

2 3 0 -1

2

60

Upsampling by Transposed 1D Convolution

Output

W + w − 1

1 2 -1

2 4 -2

3 6 -3

W

2 3 0 -1

2 7

61

Transposed 1D Convolution

Output

W + w − 1

1 2 -1

2 4 -2

3 6 -3

0 0 0

W

6 / 14

2 3 0 -1

2 7 4

62

Transposed 1D Convolution

Output

W + w − 1

1 2 -1

2 4 -2

3 6 -3

0 0 0

-1 -2 1

W

6 / 14

2 3 0 -1

2 7 4 -4 -2 1

63

Transposed 1D Convolution

Output

W + w − 1

2 4 -2

3 6 -3

0 0 0

-1 -2 1

W

2 3 0 -1

2 7 4 -4 -2 1

64

Transposed 1D Convolution

Output

W + w − 1

1 2 -1
Kernel

w

W

2 3 0 -1

2 7 4 -4 -2 1

• The summations are performed
in the vertical direction instead
of the horizontal one.

• If we wrote this in terms of a
fully connected layer, this
would amount to transposing
the weight matrix.

• Can be extended to 2D layers.

65

Introducing a Stride Parameter

Output

s (W − 1) + w

1 2 -1

2 4 -2

W

2 3 0 -1

2 4

66

Introducing a Stride Parameter

Output

s (W − 1) + w

1 2 -1

2 4 -2

3 6 -3s

W

2 3 0 -1

2 4 1 6

67

Introducing a Stride Parameter

Output

s (W − 1) + w

1 2 -1

2 4 -2

3 6 -3

0 0 0

s

s

W

2 3 0 -1

2 4 1 6 -3 0

68

Introducing a Stride Parameter

s (W − 1) + w

1 2 -1

2 4 -2

3 6 -3

0 0 0

-1 -2 1

s

s

s

Output

W

2 3 0 -1

2 4 1 6 -3 0 -1 -2 1

69

Introducing a Stride Parameter

s (W − 1) + w

2 4 -2

3 6 -3

0 0 0

-1 -2 1

s

s

s

Output

W

2 3 0 -1

2 4 1 6 -3 0 -1 -2 1

70

Introducing a Stride Parameter

Output

s (W − 1) + w

1 2 -1
Kernel

w

W

2 3 0 -1

2 4 1 6 -3 0 -1 -2 1

71

Shrinking and Reexpanding
• The composition of a convolution and a transposed

convolution with the same parameters keep the
signal size roughly unchanged.

• Transposed convolutions may create grid-structure
artifacts because generated pixels are not all covered
similarly.

• Smoothing layers are required to prevent this.

4 × 4 kernel and stride 3

class Autoencoder(nn.Module):

 def __init__(nChannel=10,nHidden=50):
 self.convE1 = nn.Conv2d(1, nChannel, kernel_size=5,padding=2)
 self.convE2 = nn.Conv2d(nc, nChannel, kernel_size=5,padding=2)
 self.convD1 = nn.ConvTranspose2d(nChannel,nChannel,kernel_size=4,stride=2,padding=1)
 self.convD2 = nn.ConvTranspose2d(nChannel,1 ,kernel_size=4,stride=2,padding=1)

 def encode(self,x):
 x = self.convE1(x)
 x = sigma(F.max_pool2d(x,2))
 x = self.convE2(x)
 x = sigma(F.max_pool2d(x,2))
 return x

 def decode(self, z):
 z= sigma(self.convD1(z)
 z= self.convD2(z)
 return z

 def forward(self,x):
 z = self.encode(x)
 return self.decode(z)

72

Autoencoder in Python

73

From Autoencoder to UNet
def encode(self,x):

 x = self.convE1(x)

 x = sigma(F.max_pool2d(x,2))

 z = self.convE2(x)

 z = sigma(F.max_pool2d(z,2))

 return z

 def decode(self, z):

 z = sigma(self.convD1(z)

 z = self.convD2(z)

 return z

 def forward(self,x):

 z = self.encode(x)

 return self.decode(z)

Concatenate z on the way up with the equivalent x on the way
down, before running self.conD1 and self.convD2

X Z

X Z

74

Training UNet

Mosinska et al, CVPR’18.

Minimize

Lbce(x,y;w) = �1

i

PX

1

[yn log(ŷi) + (1� yi) log(1� ŷi)]

where

• ŷ = fw(x),

• x in an input image,

• y the corresponding ground truth.
<latexit sha1_base64="y6uVcXpeee8E8ZCbyyhOx0GC6pw=">AAADSHicbVJNb9QwEE1SPkr4auHIZcQWaSva1aYcAKFKFVw4gFQkllZaL5HjTDZWEzuyHdpg5e9x4caN/8CFAyBuONnVClpGsvNm5o3yPDNJVXBtxuOvfrB26fKVq+vXwus3bt66vbF5552WtWI4YbKQ6jihGgsucGK4KfC4UkjLpMCj5ORFlz/6gEpzKd6apsJZSeeCZ5xR40Lxph8TIblIURh4zQUv+UcMyTQkZSLPLMl1RRna3UesbFt4FduEYTu0JMngrN3pv9C08Ax6eNpuwz7sAskUZTZqLW+B6LqMo/f2EBwuMDNTsE0bC+fIOQxJTk3n8214CMPIFUPTOYtstNvnYUEAovg8NzOAkMzC0xwVOpTgnAvLDXbS2xBIB2GrL+xEOXn7kMV2qXClfntrZ0VehraAC6DC3VVtgLtW4TlO4zgmR2BSKdSVFCkXc5grWYsUjKpNPnIFKNKVoHhjMB6Ne4OLIFqCgbe0w3jjC0klq0s3EVZQrafRuDIzS5XhrHAPJLVGN5QTJ27qoKAl6pntN6GFBy6SQiaVO26iffTvCktLrZsyccySmlyfz3XB/+WmtcmezGzfGBRs8aOsLsBI6NYKUq6QmaJxgDLFnVZgOXVrYNzyha4J0fknXwSTvdHTUfRmb3DwfNmNde+ed98bepH32DvwXnqH3sRj/if/m//D/xl8Dr4Hv4LfC2rgL2vuev/YWvAHyqQHuA==</latexit><latexit sha1_base64="y6uVcXpeee8E8ZCbyyhOx0GC6pw=">AAADSHicbVJNb9QwEE1SPkr4auHIZcQWaSva1aYcAKFKFVw4gFQkllZaL5HjTDZWEzuyHdpg5e9x4caN/8CFAyBuONnVClpGsvNm5o3yPDNJVXBtxuOvfrB26fKVq+vXwus3bt66vbF5552WtWI4YbKQ6jihGgsucGK4KfC4UkjLpMCj5ORFlz/6gEpzKd6apsJZSeeCZ5xR40Lxph8TIblIURh4zQUv+UcMyTQkZSLPLMl1RRna3UesbFt4FduEYTu0JMngrN3pv9C08Ax6eNpuwz7sAskUZTZqLW+B6LqMo/f2EBwuMDNTsE0bC+fIOQxJTk3n8214CMPIFUPTOYtstNvnYUEAovg8NzOAkMzC0xwVOpTgnAvLDXbS2xBIB2GrL+xEOXn7kMV2qXClfntrZ0VehraAC6DC3VVtgLtW4TlO4zgmR2BSKdSVFCkXc5grWYsUjKpNPnIFKNKVoHhjMB6Ne4OLIFqCgbe0w3jjC0klq0s3EVZQrafRuDIzS5XhrHAPJLVGN5QTJ27qoKAl6pntN6GFBy6SQiaVO26iffTvCktLrZsyccySmlyfz3XB/+WmtcmezGzfGBRs8aOsLsBI6NYKUq6QmaJxgDLFnVZgOXVrYNzyha4J0fknXwSTvdHTUfRmb3DwfNmNde+ed98bepH32DvwXnqH3sRj/if/m//D/xl8Dr4Hv4LfC2rgL2vuev/YWvAHyqQHuA==</latexit><latexit sha1_base64="y6uVcXpeee8E8ZCbyyhOx0GC6pw=">AAADSHicbVJNb9QwEE1SPkr4auHIZcQWaSva1aYcAKFKFVw4gFQkllZaL5HjTDZWEzuyHdpg5e9x4caN/8CFAyBuONnVClpGsvNm5o3yPDNJVXBtxuOvfrB26fKVq+vXwus3bt66vbF5552WtWI4YbKQ6jihGgsucGK4KfC4UkjLpMCj5ORFlz/6gEpzKd6apsJZSeeCZ5xR40Lxph8TIblIURh4zQUv+UcMyTQkZSLPLMl1RRna3UesbFt4FduEYTu0JMngrN3pv9C08Ax6eNpuwz7sAskUZTZqLW+B6LqMo/f2EBwuMDNTsE0bC+fIOQxJTk3n8214CMPIFUPTOYtstNvnYUEAovg8NzOAkMzC0xwVOpTgnAvLDXbS2xBIB2GrL+xEOXn7kMV2qXClfntrZ0VehraAC6DC3VVtgLtW4TlO4zgmR2BSKdSVFCkXc5grWYsUjKpNPnIFKNKVoHhjMB6Ne4OLIFqCgbe0w3jjC0klq0s3EVZQrafRuDIzS5XhrHAPJLVGN5QTJ27qoKAl6pntN6GFBy6SQiaVO26iffTvCktLrZsyccySmlyfz3XB/+WmtcmezGzfGBRs8aOsLsBI6NYKUq6QmaJxgDLFnVZgOXVrYNzyha4J0fknXwSTvdHTUfRmb3DwfNmNde+ed98bepH32DvwXnqH3sRj/if/m//D/xl8Dr4Hv4LfC2rgL2vuev/YWvAHyqQHuA==</latexit><latexit sha1_base64="y6uVcXpeee8E8ZCbyyhOx0GC6pw=">AAADSHicbVJNb9QwEE1SPkr4auHIZcQWaSva1aYcAKFKFVw4gFQkllZaL5HjTDZWEzuyHdpg5e9x4caN/8CFAyBuONnVClpGsvNm5o3yPDNJVXBtxuOvfrB26fKVq+vXwus3bt66vbF5552WtWI4YbKQ6jihGgsucGK4KfC4UkjLpMCj5ORFlz/6gEpzKd6apsJZSeeCZ5xR40Lxph8TIblIURh4zQUv+UcMyTQkZSLPLMl1RRna3UesbFt4FduEYTu0JMngrN3pv9C08Ax6eNpuwz7sAskUZTZqLW+B6LqMo/f2EBwuMDNTsE0bC+fIOQxJTk3n8214CMPIFUPTOYtstNvnYUEAovg8NzOAkMzC0xwVOpTgnAvLDXbS2xBIB2GrL+xEOXn7kMV2qXClfntrZ0VehraAC6DC3VVtgLtW4TlO4zgmR2BSKdSVFCkXc5grWYsUjKpNPnIFKNKVoHhjMB6Ne4OLIFqCgbe0w3jjC0klq0s3EVZQrafRuDIzS5XhrHAPJLVGN5QTJ27qoKAl6pntN6GFBy6SQiaVO26iffTvCktLrZsyccySmlyfz3XB/+WmtcmezGzfGBRs8aOsLsBI6NYKUq6QmaJxgDLFnVZgOXVrYNzyha4J0fknXwSTvdHTUfRmb3DwfNmNde+ed98bepH32DvwXnqH3sRj/if/m//D/xl8Dr4Hv4LfC2rgL2vuev/YWvAHyqQHuA==</latexit>

LBCE =
1
N

N

∑
i=1

ynlog(̂yn) + (1 − yn)log(̂yn)

75

Tubularity Map

BCE Loss Ground truthImage

76

Iterative Refinement

Use the same network to progressively refine the results
keeping the number of parameters constant

1 2 3

Image Iter 1 Iter 2 Iter 3 Ground truth

77

Accounting for Topology

—> Add a term in the
l o s s f u n c t i o n t h a t
penalizes the existence of
a path between A and B.

Image Ground truth UNet output

Improved output

78

Before Deep Learning

Turetken et al., PAMI’16.

U-Net does this better. Can it also do this?

79

Dual Use UNet

[0.991]

Tubularity Map

Path score

Image
and

Binary Mask

80

1.Compute a probability map.

2. Sample and connect the samples.

3. Assign a weight to the paths.

4. Retain the best paths.

After Deep Learning

81

Streets of Toronto

— False negatives
— False positives

82

Dendrites and Axons

• Deep learning allows the same algorithm to work in different contexts.
• The implementation is informed by earlier approaches.

83

1998 - 2038

?
It is difficult to make predictions, especially about the future.

Sometimes attributed to Niels Bohr.

1998

!
ℒ#$%

ℒ&'(

2018 2038

