AdaBoost

Pascal Fua
|C-CVLab

=PrL

Reminder: Logistic Regression

Female

0

Given the training set {(z,,t,)1<n<n}, choose a w that minimizes

E(w,wy) = — Z{t” Iny, + (1 —t,)In(1 —y,)} = — In(p(t|w,wp)) .

n

=PrL A

Ml

Non Linearly Separable Data

e One way is to combine multiple linear classifiers.
e \We will see others in the next classes.

PrL A

Boosting Methods

0% 10% 20% 30% 40% 50% 60%

Logistic Regression
Decision Trees
Random Forests
Neural Networks
Bayesian Techniques
Ensemble Methodsl
svms
Gradient Boosted Machines I
CNNs
RNNs
Other

Evolutionary Approaches - 5.5%

HMMs [5.4%

Markov Logic Networks - 4.9%

GANs [} 2.8%

=PrL

Combining Linear Classifiers

e Use linear classifiers as “weak” classifiers,
that is, classifiers operating only slightly
better than chance.

o Write a strong classifier as a weighted sum
of weak ones.

PrL A

Ml

Ada Boost

[teratively building a weighted sum of weak
classifiers:

y(x) = a1y1(x) + azy2(x) + asys(x) + . ..

|

Weak classifier

Strong classifier
Weight

Ml
v
"N
r

Ml
"N

Toy Example

® O
@ O
® ® @ Each data point has
C
® O ° o°b 0O @ o a class label:
o ® o O OO O
e O°P oo e @ yt={+1 (@)
. -
O 09 % o o 1)
@ o ® ® o
® and a weight:
e o © |© O
w, =1
o © t
@ o o
® O
<—>

Classifier is roughly at chance. ﬂ

Ml
"N

Toy Example

® O
1© O
® ® @ Each data point has
C
® O ° 000 @ o a class label:
e ® | O OO O
e P°° 00 o @ yt={+1 (@)
. -
O °0° % o o 1)
@ o ® ® o
® and a weight:
e o @ © O
w, =1
o © t
@ o o
® O
<—>

Classifier is now slightly better than chance.

It becomes y1.

8

Toy Example

Each data point is given

..“‘ @
O

O
H 00 9 o

_ (e
o O OC; ‘. 4 {-1 ©)

O
and a new weight
%
O . O ‘ ‘

V1

a new class label

W,

w, is chosen so that the classifier operates at chance again. !

Toy Example

y1 y2

Ml
v
"N
r

Find a new classifier y2 and reset the weights again. 5

Each data point is given

a new class label

_| 1 (o)
4 {-1 ©)

and a new weight

W,

Ml
"N

Toy Example

Each data point is given

@ ® @ a new class label
O O
® ‘QDOOO y={+1(‘)
. O 00 © Cl)
o ©
va . and a new weight
° o "

y1 y2

Find a new classifier y3z and reset the weights again. H

To
y Exampl
e

ys —
@ ‘
@
9
@ @

Adaboost Algorithm

For a training set x = {Xy,t,} where t,, € {-1,1} for 1 < n <N:
1. Initialize data weights: Vn,w. = 1/N.
2. Fort=11,...,T]:

(a) Find classifier y; : x — {—1,1} that minimizes weighted error >, . wk.
(b) Evaluate

t : :
B Ztn;éy +(xn) Wn Inferior to 0.5 if yt operates
€ = N p at better than chance.
1 —¢ Positive if t
o= lo yt operates
t g(€4) at better than chance.

(c) Update weights

t+1 _ t The weight of misclassified
Wy = Wy exp(atl(tn 7 Yt (X”))) samples is increased.

— Final classifier: Y (x) = sign(Zle Y (%)) A

Optional: Proof Sketch (1)

At 1teration t:

1 t
fi) = — Z‘; a,y,(X) ,

1
=f_1(X) + EO‘M(X) .

/ AN

Computed at previous iteration. | | To be estimated.

To estimate the unknowns, we seek to minimize

Exponential loss.

N
E =) exp(—1,f(X,) , +—
n=1

with respect to , and y, .

Optional: Proof Sketch (2)

At iteration ¢, given y1,...,y;—1 and aq,...,q;_1, minimize
al 1
B, = Y lexp(~talfe1(xn) + 5ouse(x,)))
n=1
N Q
5wt expl- b))
n=1

with respect to y; and a;.

Ml
v
"N
r

Optional: Proof (2)

— an eXp(_%tnyt@(n))
= exp(—at/2) Z wy, + exp(a/2) Z W

tn=Y1+ (Xn) tnZYt (Xn)

Mz

N
= (exp(ay/2) — exp(—ay/2)) tn 7 U (Xn))wh, + exp(—oay/2) Z
n=1 n—1

oy) | S

Greater than 0 Must be minimized Independent of yt

Therefore, for E} to be minimized, y; must minimize », ., . ywy,.

-

Ml
v
"N
r

Optional: Proof (3)

@
by = Z W, eXp(__ttnyt (Xn))

2
5Et t t
= 25— = —exp(—ou/2) Z wp, + exp(at/2) Z W,
o b =1 (%) 71 (%)
Therefore:
_ ‘-
SF Dot — w
50ét _Ztn#yt (Xn) Wn i
1 —
—log(—t) with ¢ =
€t

Ml
1
"N
r

Optional: Proof (4)
At the following iteration:

wffl = exp(—tn, ft(Xn))

= exp(—tp fi_1(Xn) — %attnyt (%n))

1
= Wnp eXp(— 504ttnyt (Xn))

tnyt(Xn) =1 = 21 (ye(Xn) # tn)

= wit = w! exp(—ay/2) exp(ouI(t, # yi(xn)))
o |w! exp(o I (t, # ye(x,)))

EPFL -

Optional: Proof Sketch (5)

Minimizing ij:l w}, exp(—Sttnyi(xp)) w.r.t. to y; and oy yields:

Yy must minimize Z w!
tn#yt (xn)
1 —€ 2 w;
a; = log(") with € t”#ﬁt(x”)t -

wfz—i_l — w;jq, exp(atl(tn # yt(Xn)))

—> Adaboost performs a form of gradient descent on the
exponential loss.

PrL A

Ml

Adaboost Algorithm

For a training set x = {Xy,t,} where t,, € {-1,1} for 1 < n <N:
1. Initialize data weights: Vn,w. = 1/N.
2. Fort=[l,...,T):

(a) Find classifier y; : x — {—1,1} that minimizes weighted error >, . we.
(b) Evaluate

Ztn#Zyt (X'n) wn
€t — N :
1 —
oy = log(et)
€t

(c) Update weights

witt = wl exp(a] (t, # yi(xn)))

— Final classifier: Y (x) = sign(Zle Y (%)) A

Ml
v
"N
r

Adaboost in Python

def fit(self,nit=10):
Initialize weights and list of classifiers
self.weakCls =[]
bestAcc = 0.0
self.datCoeffs = np.ones(self.ns,dtype=np.float)/self.ns

Find nit weak classifiers and update weights each time.

for m in range(nit):
weakC=self.getWeakC()
self.weakCls.append(weakC)
weakC.alpha=self.updateWeights(weakC)

Ml
1
"N
r

def updateWeights(self,weakC):
Compute alpha
err,_ = self.weakClassError(weakC)
alpha = np.log(1.0/max(1le-10,err)-1.0)
Compute numbers of misclassified samples.
nerrs = np.logical_not(weakC.predict(self.xs)==self.ys)
Update and normalize weights.
self.datCoeffs *= np.exp(alpha*nerrs)
self.datCoeffs /= sum (self.datCoeffs)

return alpha

500
400
300
200
100
0

0 100 200 300 400 500

=PrL

Circular Distribution

Training (100 iterations)

N

=

2.0
x x
X X
1.5 - » X x y
x X >$(
X X X
1.0 X
X X X X X
X v, %
. % X o X
. X & 0% ® X
X wx % » X
X X o X o X % X
0.0 . x b X§ x X X
X X x X .
X X
-0.5 - X X »
X x X X oy X
X
—1.0 - » X X X
X ¥ « X
_15 X
1.5 X x X &%
x X
'—2-0 T T T T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Validation (98% accuracy)

2.0

8

500

400 1'%

Rosenbrock Function

300 4

200 +

100 1A%

=PrL

300

100 200 400 500

Training (100 iterations)
r(z,y)

f(z,y)

b X X
X x X X o X x
1.5 - X X
X
% xX X
10 ‘x X b’ X X X Xx X
X
X 4 X X
0.5 » x X “
X X X
0.0 X XX X "
X X Xx X
X X X
-0.5 x X "x X
v % % X X
X
-1.04 X x X X X %
X
X X
X X X
-1.5 ® »
® X
X X
_2-0 T T T 1 1 > T Y T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Validation (98% accuracy)

(y —2%)* + (1 —x)*

if r(x,y) < T

otherwise

-

500

400

300

200

100

0 100

200 300 400

10% mislabeled

500

2.0
X x X < X X y X X
X X
1.5 4 X X X x xX X
x
X x X % x X
1.0 1 X
x X X X
* x X @x
0.5 1 X b3
X %
X xX
x
0.0 1 ® X o x
X X x
x
—-0.5 X « X %
X
% x
x
~1.0 x % x
X » x
X X X ® X X %
-154 «x x x % X x
Xx % @ X % % x
-2.0 T T Xy T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Noisy Labels

500
400
300
200
100
0

0 100 200 300 400 500

20% mislabeled

2.0 - <
x
x X X)xx X
1.5 A X X X
x X ® X
Lo x ¥ x x %
X
X X ® x
(€] X x X ox
0.5 x X
® X
X x X
0.0 « % %
x
X
-0.5 X x X x Xx X X
X x X
X
X X
104 X X X
% X x XX
X
X x
-151® x x X X %
X X X X § >S(X X % X Xx
-2.0 . X . —x X . ;
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

500

400

300

200

100

0
0 100 200 300 400 500
30% mislabeled
(0]
2.0 X
X
X x . x X
15 _X X % xx X X
X X xX
X x xx
1% x
1.0 L, @ N y N
. x
X X
0.5 A X X
X X » %
0.0 - & x x x X X,
X
® x x x
-054x X X X x *
X X xX
x X X % X
x
-1.0 % » % 5
X x X *ox X x
-1.5 4 X
X X « X x
x X Xx
-2.0 T T T T
-20 -15 -1.0 -05 0.0 0.5 1.0 1.5 2.0

The incorrect labels have relatively little impact because they are

=PrL

randomly distributed, but they could.

N

(=

o

500
400
300
200

100

=PrL

Changing the Weak Learners

Using boxes instead of lines.

100

200 300 400 500

Training (100 iterations)

3 2.0
X N X ¥ X
| X X X x
X
1.5 4 x X X
X X X
1.0 - X 8 X X XX
® X » X X X
0.5 - y X X X X
e X x Ve
X
0.0 1 X X X
X x y
X
054 * x X Xy X X .
X
X X 5 xXxX XX
_1.0 n x X
X X 5 X X § %
X X
—-1.5 1 x X X
X X % X
X X
_2-0 xl T xl T T T x xl
-20 -15 -10 -05 0.0 0.5 1.0 1.5 2.0

Validation (99% accuracy)

y(xsw) =

W =

1 if xo<x[l] <z
—1 otherwise.

(xo, Yo, T1, y1)

and yo < x[2] <y1,

8

Training and Testing Errors

e The training error goes down exponentially fast if the
weighted errors &: of the component classifiers is always

strictly inferior to 0.5.
Z #+ h(x,)] <H\/€t (1 —€)

e The testing error may eventually go up due to
overfitting.

20 40 60 80 100
of rounds ()

—> Use a validation set.

Ml
v
"N
r

500

400

300

200

100

0

=PrL

Training (100 iterations)

Failure Mode

®

®

3 0
0 (69 ® @
® (€9
5 - @
X @ @®
Ry ®
€9
5 -
0 0 A @B % x
5 b 4 X
-1 " X X
X X X
0 ‘xxx X % X
= 5 K >
X
X
-3 0 T — T
0 100 200 300 400 500 : %

® > X x X XX
® X % w
® 3 x T x
XD e ” ’
® ® X i Xx X X &
X X x X
® ®
® ®
x @ ® ®
X (62/79)
" P® ® g
®
x l® T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

e Individual linear classifiers cannot do better than chance!

» Box classifiers would work though.

Validation (56% accuracy)

-

Adaboost in Python

def fit(self,nit=10): def updateWeights(self,weakC):

Initialize weights and list of classifiers # Compute alpha

self.weakCls =[] err,_ = self.weakClassError(weakC)

bestAcc = 0.0 alpha = np.log(1.0/max(1e-10,err)-1.0)

self.datCoeffs = np.ones(self.ns,dtype=np.float)/self.ns # Compute numbers of misclassified samples.
" # Find nit weak classifiers and update weights each nerrs = np.logical_not(weakC.predict(self.xs)==self.ys)
ime.

Update and normalize weights.
for m in range(nit):

weakC=self.getWeakC()
self.weakCls.append(weakC)

self.datCoeffs *= np.exp(alpha*nerrs)
self.datCoeffs /= sum (self.datCoeffs)

return alpha
weakC.alpha=self.updateWeights(weakC)

* A strikingly simple algorithm that works well.
* The weak classifiers do not have to be linear
classifiers.

—>Versatile and generic.

-

Ml
v
"N
r

Face Detection
JUDYBATS

’ 1 y

{
|
|

>
—

Viola & Jones, Rapid Object Detection using a Boosted Cascade of Simple
Features, CVPR 2001:

— First reliable, real-time face detection system.
— Used in commercial products, such as digital cameras.

Weak Learners for Images

Value =) (pixels in white area) —) (pixels in black area)

Haar Wavelets:

e Allow target function over an interval to be represented in
terms of an orthonormal basis.

e Fast to compute (4 operations per rectangle).
e 180’000 possibilities for a 24x24 window.

—> Use AdaBoost to choose a good subset. @

Ml
v
"N
r

https://en.wikipedia.org/wiki/Orthonormal_basis

Feature Selection
= ol = |

— —
Among: - [I i
H N H) [I —

Pick:

=PrL

Ml
"N

Cascade

T T T
gglf;\-(v;gmnow Classifier 1 Classifler J— @ FACE
F lF F

NON-FACE NON-FACE NON-FACE

Reject large portions of the images using only the
response of the first few weak classifiers.

—> Large potential speed-up at run-time.

.

Training Set

a: mduﬂn. N

S P
on T

T & E N S "

© a..n..lluu "

x r_.leaa fe

5§59 €32 S

rBOhrnsm

l,en_Oanvn

aom nnUOo]om

Yo © o 258

c Onee,._Lna
A fﬂ..ll.Oaw.H$i
w u4m5ssaome

A2 Q/e Vrus
= o o 538
E) m._._al“ W,AIP
om a___
m | | M
=

=PrL

ion Results (2001)

Detect

YBATS

Jup

-
A

r

L'J

Detection Results (2017)

EPFL A

Ml

AdaBoost Today

An elegant weanon for a more civilized age

e Useful one when computational resources are limited.
e A good hint about what more complex techniques do.

PrL A

