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Reminder: Logistic Regression

Female
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Given the training set {(z,,t,)1<n<n}, choose a w that minimizes

E(w,wy) = — Z{t” Iny, + (1 —t,)In(1 —y,)} = — In(p(t|w,wp)) .

n
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Non Linearly Separable Data

e One way is to combine multiple linear classifiers.
e \We will see others in the next classes.
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Boosting Methods

0% 10% 20% 30% 40% 50% 60%

Logistic Regression
Decision Trees
Random Forests
Neural Networks
Bayesian Techniques
Ensemble Methodsl
svms
Gradient Boosted Machines I
CNNs
RNNs
Other

Evolutionary Approaches - 5.5%

HMMs [ 5.4%

Markov Logic Networks - 4.9%

GANs [} 2.8%
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Combining Linear Classifiers

e Use linear classifiers as “weak” classifiers,
that is, classifiers operating only slightly
better than chance.

o Write a strong classifier as a weighted sum
of weak ones.

PrL A

Ml




Ada Boost

[teratively building a weighted sum of weak
classifiers:

y(x) = a1y1(x) + azy2(x) + asys(x) + . ..

|

Weak classifier

Strong classifier
Weight
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Toy Example
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Classifier is roughly at chance. ﬂ
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Toy Example
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Classifier is now slightly better than chance.

It becomes y1.

8




Toy Example

Each data point is given
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and a new weight
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V1

a new class label

W,

w, is chosen so that the classifier operates at chance again. !




Toy Example

y1 y2
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Find a new classifier y2 and reset the weights again. 5

Each data point is given

a new class label

_| 1 (o)
4 {-1 ©)

and a new weight

W,
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Toy Example

Each data point is given

@ ® @ a new class label
O O
® ‘QDOOO y={+1(‘)
. O 00 © Cl )
o ©
va . and a new weight
° o "

y1 y2

Find a new classifier y3z and reset the weights again. H
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Adaboost Algorithm

For a training set x = {Xy,t,} where t,, € {-1,1} for 1 < n <N:
1. Initialize data weights: Vn,w. = 1/N.
2. Fort=11,...,T]:

(a) Find classifier y; : x — {—1,1} that minimizes weighted error >, . wk.
(b) Evaluate

t : :
B Ztn;éy +(xn) Wn Inferior to 0.5 if yt operates
€ = N p at better than chance.
1 —¢ Positive if t
o= lo yt operates
t g( €4 ) at better than chance.

(c) Update weights

t+1 _  t The weight of misclassified
Wy = Wy exp(atl(tn 7 Yt (X”))) samples is increased.

— Final classifier: Y (x) = sign(Zle Y (%)) A




Optional: Proof Sketch (1)

At 1teration t:

1 t
fi) = — Z‘; a,y,(X) ,

1
=f_1(X) + EO‘M(X) .

/ AN

Computed at previous iteration. | | To be estimated.

To estimate the unknowns, we seek to minimize

Exponential loss.

N
E =) exp(—1,f(X,) , +—
n=1

with respect to , and y, .




Optional: Proof Sketch (2)

At iteration ¢, given y1,...,y;—1 and aq,...,q;_1, minimize
al 1
B, = Y lexp(~talfe1(xn) + 5ouse(x,)))
n=1
N Q
5wt expl- b))
n=1

with respect to y; and a;.
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Optional: Proof (2)

— an eXp(_%tnyt@(n))
= exp(—at/2) Z wy, + exp(a/2) Z W

tn=Y1+ (Xn) tnZYt (Xn)

Mz

N
= (exp(ay/2) — exp(—ay/2)) tn 7 U (Xn))wh, + exp(—oay/2) Z
n=1 n—1

oy ) | S

Greater than 0 Must be minimized Independent of yt

Therefore, for E} to be minimized, y; must minimize », ., . ywy,.

-
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Optional: Proof (3)

@
by = Z W, eXp(__ttnyt (Xn))

2
5Et t t
= 25— = —exp(—ou/2) Z wp, + exp(at/2) Z W,
o b =1 (%) 71 (%)
Therefore:
_ ‘-
SF Dot — w
50ét _Ztn#yt (Xn) Wn i
1 —
—log(—t)  with ¢ =
€t
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Optional: Proof (4)
At the following iteration:

wffl = exp(—tn, ft(Xn))

= exp(—tp fi_1(Xn) — %attnyt (%n))

1
= Wnp eXp(— 504ttnyt (Xn))

tnyt(Xn) =1 = 21 (ye(Xn) # tn)

= wit = w! exp(—ay/2) exp(ouI(t, # yi(xn)))
o |w! exp(o I (t, # ye(x,)))
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Optional: Proof Sketch (5)

Minimizing ij:l w}, exp(—Sttnyi(xp)) w.r.t. to y; and oy yields:

Yy must minimize Z w!
tn#yt (xn)
1 —€ 2 w;
a; = log( ") with € t”#ﬁt(x”)t -

wfz—i_l — w;jq, exp(atl(tn # yt(Xn)))

—> Adaboost performs a form of gradient descent on the
exponential loss.
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Adaboost Algorithm

For a training set x = {Xy,t,} where t,, € {-1,1} for 1 < n <N:
1. Initialize data weights: Vn,w. = 1/N.
2. Fort=[l,...,T):

(a) Find classifier y; : x — {—1,1} that minimizes weighted error >, . we.
(b) Evaluate

Ztn#Zyt (X'n) wn
€t — N :
1 —
oy = log( et)
€t

(c) Update weights

witt = wl exp(a] (t, # yi(xn)))

— Final classifier: Y (x) = sign(Zle Y (%)) A
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Adaboost in Python

def fit(self,nit=10):
# Initialize weights and list of classifiers
self.weakCls =[]
bestAcc = 0.0
self.datCoeffs = np.ones(self.ns,dtype=np.float)/self.ns

# Find nit weak classifiers and update weights each time.

for m in range(nit):
weakC=self.getWeakC()
self.weakCls.append(weakC)
weakC.alpha=self.updateWeights(weakC)
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def updateWeights(self,weakC):
# Compute alpha
err,_ = self.weakClassError(weakC)
alpha = np.log(1.0/max(1le-10,err)-1.0)
# Compute numbers of misclassified samples.
nerrs = np.logical_not(weakC.predict(self.xs)==self.ys)
# Update and normalize weights.
self.datCoeffs *= np.exp(alpha*nerrs)
self.datCoeffs /= sum (self.datCoeffs)

return alpha
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Circular Distribution

Training (100 iterations)
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Training (100 iterations)
r(z,y)
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(y —2%)* + (1 —x)*

if r(x,y) < T

otherwise
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The incorrect labels have relatively little impact because they are
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Changing the Weak Learners

Using boxes instead of lines.
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y(xsw) =

W =

1 if xo<x[l] <z
—1 otherwise.

(xo, Yo, T1, y1)

and  yo < x[2] <y1,
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Training and Testing Errors

e The training error goes down exponentially fast if the
weighted errors &: of the component classifiers is always

strictly inferior to 0.5.
Z #+ h(x,)] <H\/€t (1 —€)

e The testing error may eventually go up due to
overfitting.

20 40 60 80 100
# of rounds ()

—> Use a validation set.
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Training (100 iterations)

Failure Mode
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e Individual linear classifiers cannot do better than chance!

» Box classifiers would work though.

Validation (56% accuracy)
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Adaboost in Python

def fit(self,nit=10): def updateWeights(self,weakC):

# Initialize weights and list of classifiers # Compute alpha

self.weakCls =[] err,_ = self.weakClassError(weakC)

bestAcc = 0.0 alpha = np.log(1.0/max(1e-10,err)-1.0)

self.datCoeffs = np.ones(self.ns,dtype=np.float)/self.ns # Compute numbers of misclassified samples.
" # Find nit weak classifiers and update weights each nerrs = np.logical_not(weakC.predict(self.xs)==self.ys)
ime.

# Update and normalize weights.
for m in range(nit):

weakC=self.getWeakC()
self.weakCls.append(weakC)

self.datCoeffs *= np.exp(alpha*nerrs)
self.datCoeffs /= sum (self.datCoeffs)

return alpha
weakC.alpha=self.updateWeights(weakC)

* A strikingly simple algorithm that works well.
* The weak classifiers do not have to be linear
classifiers.

—>Versatile and generic.

-
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Face Detection
JUDYBATS
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Viola & Jones, Rapid Object Detection using a Boosted Cascade of Simple
Features, CVPR 2001:

— First reliable, real-time face detection system.
— Used in commercial products, such as digital cameras.




Weak Learners for Images

Value = ) (pixels in white area) — ) (pixels in black area)

Haar Wavelets:

e Allow target function over an interval to be represented in
terms of an orthonormal basis.

e Fast to compute (4 operations per rectangle).
e 180’000 possibilities for a 24x24 window.

—> Use AdaBoost to choose a good subset. @
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https://en.wikipedia.org/wiki/Orthonormal_basis

Feature Selection
= ol = |

— —
Among: - [I i
H N H ) [I —

Pick:
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Cascade

T T T
gglf;\-(v;gmnow Classifier 1 Classifler J— @ FACE
F lF F

NON-FACE NON-FACE NON-FACE

Reject large portions of the images using only the
response of the first few weak classifiers.

—> Large potential speed-up at run-time.
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Training Set
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ion Results (2001)

Detect
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Detection Results (2017)
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AdaBoost Today

An elegant weanon for a more civilized age

e Useful one when computational resources are limited.
e A good hint about what more complex techniques do.
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