=PrL

Week 6: Principles of Parallelism

CS-214 Software Construction

Outline

> What is parallelism and why we need it

> Maps on parallel collections. Parallel matrix multiply
» Divide and conquer using “parallel”. Array norm.

P> Reduce. Associativity

=PrL

What is Parallelism and Why We Need It

CS-214 Software Construction

Parallelism

Parallelism = multiple computations happen at once (simultaneously) in physically
different (parts of) devices.

Examples of physical parallelism:

> several connected computers (cluster, cloud)
» multiple cores in one chip (most important for this lecture!)
» 4 cores: i7-1165G7
» 20 cores: Intel® Xeon® E5-2680
» 06 cores: AMD Ryzen® Threadripper® Pro 7000 WX
» Hundreds of threads on a GPU (used for graphics, ML)
P Intel® AVX-512 Vector instructions that work on 512 bits at a time
» Scala/JVM Int is 32 bit, Long is 64 bit number
» FPGA (e.g. AMD® Alveo U200, over 800k LUTs)
> could put 200+ simple softcore CPUs (like LEON3)

Parallel vs Sequential Programming

Sequential computation: split task into two steps: el; e2

Parallelism: split into independent tasks (fork), solve in parallel, combine (join):

el

e2

Parallel programming is difficult:

» [t subsumes sequential programming

> Need to think which parts of computation are independent
» Different parts of hardware need to communicate

> |ts efficiency depends on hardware details more

Historical Context of Parallel Programming

First established theoretical models were sequential:
> Mathematical computations explained by humans, step by step, as humans have

only one mouth, one verbalized train of thoughts
» Turing machine is well-accepted but sequential model of algorithms:
P read a letter on a tape, write a letter, change the state, repeat

P our substitution model as a sequential sequence of steps

First physical computers were sequential:
P It was hard enough to build a sequential computer with vaccum tubes

In commercial industry, CPUs were getting faster regularly:

» Moore's law (Intel): transistors can be made smaller, more fit in a given area
» Dennard (DRAM) scaling: smaller transistor needs lower voltage, less energy; can

switch faster (GHz)

End of Dennard Scaling in Early 2000s

10,000,000

1,000,000 +

100,000

il Dual-Core |tanium 2

:InteICPU Trends

(sour;ca: Intel, Wikipedia, K. Olukotun)

entium 4

10,000

100

[}

T T ecmases
dewl 2 Power ()
‘ @ Pert/Clock ILF)
1870 1975 1980 1985 1990 1995 2000 2005 2010

More transistors, but not faster.

Multicore Era

We no longer know how to run CPUs at higher clock frequency

P they would melt due to generated heat

Multicore Era

We no longer know how to run CPUs at higher clock frequency
P they would melt due to generated heat
Instead, we develop hardware with:

» more complex cores, which try to automatically parallelize a few consecutive
instructions (pipelined superscalars)
» multiple cores that all run in parallel <=

Multicore Era

We no longer know how to run CPUs at higher clock frequency
P they would melt due to generated heat
Instead, we develop hardware with:

» more complex cores, which try to automatically parallelize a few consecutive
instructions (pipelined superscalars)
» multiple cores that all run in parallel <=

Energy use became even more important: mobile, sustainability

If the same problem can be split into two and solved with cores half the speed, this is
more energy efficient!

» modern mobile phones: many cores, lower frequency (battery!)
» training a LLM: “up to 10 gigawatt-hour (GWh)"’
https://www.washington.edu/news/2023/07/27/how-much-energy-does-chatgpt-use/

Operating Systems (OS) Runs Threads on Cores

OS sits between programs and machine. A key role: handle processes

» run user computation (move a boid, play a game, run web browser)
» handle mouse and keyboard, draw on screen
> read/write files, send/receive network packets

Operating Systems (OS) Runs Threads on Cores

OS sits between programs and machine. A key role: handle processes

» run user computation (move a boid, play a game, run web browser)
» handle mouse and keyboard, draw on screen
> read/write files, send/receive network packets

How does OS do it?

> preemptive multi-tasking (time-slicing): OS gives a slice of time to each process
then interrupts it to give chance to others

» when there are multiple cores: each core executes a different process at the same
time — parallelism

Operating Systems (OS) Runs Threads on Cores

OS sits between programs and machine. A key role: handle processes

» run user computation (move a boid, play a game, run web browser)
» handle mouse and keyboard, draw on screen
> read/write files, send/receive network packets

How does OS do it?

> preemptive multi-tasking (time-slicing): OS gives a slice of time to each process
then interrupts it to give chance to others

» when there are multiple cores: each core executes a different process at the same
time — parallelism

Java Virtual Machine (JVM) can start threads, which run on multiple OS processes.

When OS schedules those processes on multiple cores, we get parallelism!

Example with Threads

class MyThread(val k: Int) extends Thread:
override def run: Unit =
var i: Int = 0
while i < 6 do
println(f”${getName} has counter ${i}”)
i+=1
Thread.sleep(3)

def testThread: Unit =
val t1 = MyThread(0)
val t2 = MyThread(1)
tl.start; t2.start
Thread.sleep(4)
t1.join; t2.join

Race Condition: Loser Writes the Final Result

var result = 0
class MyThread(val k: Int) extends Thread:
override def run: Unit =
var i: Int = 0
while i < 6 do
println(f”${getName} has counter ${i}”); i += 1
Thread.sleep(3)
result = k

def testThread: Unit =
val t1 = MyThread(@); val t2 = MyThread(1)
t1.start; t2.start
Thread.sleep(4)
t1.join; t2.join
println(f”result = ${result}”)

Imperative vs Functional Parallel Programs
Race condition is when a thread writes to a variable while another thread reads or
writes to it.

» result changes from run to run
> result can even be ill-defined (one thread reads half-old half-new value)

To avoid race conditions, threads often use synchronization constructs (waiting on a
lock), but this can lead to deadlocks, where program freezes.

Imperative vs Functional Parallel Programs

Race condition is when a thread writes to a variable while another thread reads or
writes to it.

» result changes from run to run
> result can even be ill-defined (one thread reads half-old half-new value)

To avoid race conditions, threads often use synchronization constructs (waiting on a
lock), but this can lead to deadlocks, where program freezes.

Functional programming as a solution:

P functions compute values instead of writing to variables
» in f(g(x), h(x)) we can compute f(x) and g(x) in parallel (in different threads)
» this would not be true if f writes to a var that g reads

Implicit vs Explicit Parallelism

Implicit parallelism: programming language compiler and runtime decide what to run
in parallel.

» example: parallel Haskell (pH), various past research projects
> it would be wonderful, but so far not efficient

Explicit parallelism: programmer indicates which parts to run in parallel

Implicit vs Explicit Parallelism

Implicit parallelism: programming language compiler and runtime decide what to run
in parallel.

» example: parallel Haskell (pH), various past research projects
> it would be wonderful, but so far not efficient

Explicit parallelism: programmer indicates which parts to run in parallel

Two important requirements for parallel programs make it hard:

» result should be correct: e.g. same as some sequential program
» computation should be faster (otherwise we worked for nothing)

Implicit vs Explicit Parallelism

Implicit parallelism: programming language compiler and runtime decide what to run
in parallel.

» example: parallel Haskell (pH), various past research projects
> it would be wonderful, but so far not efficient

Explicit parallelism: programmer indicates which parts to run in parallel

Two important requirements for parallel programs make it hard:

» result should be correct: e.g. same as some sequential program
» computation should be faster (otherwise we worked for nothing)

Our approach is explicit but high-level: parallel collections

» manipulate high-level collections (e.g. vectors)
> write program using higher order operations (map, reduce)
> to make them parallel, request a collection to be parallel (using .par)

=PrL

Maps on Parallel Collections

CS-214 Software Construction

Map on a Collection Can Run in Parallel

Sequential: Vector(a0, al, a2, a3).map(f)

ap ai an as
LfLf
flao)

Map on a Collection Can Run in Parallel

Sequential: Vector(a0, al, a2, a3).map(f)

d0 a1 a2 a3
LfLf
flao)

Parallel: Vector(a0, al, a2, a3).par.map(f)
d0 a1 a2 a3

CPUy CPU; CPUy CPU3

LfF LF Lf Lf

Map on a Collection Can Run in Parallel

Sequential: Vector(a0, al, a2, a3).map(f)

ap di as as
LfLf
flao)

Parallel: Vector(a0, al, a2, a3).par.map(f)
d0 a1 a2 a3

CPU, CPU4 CPU, CPU;5
LF Lf Lf Lf
fla) | fla1) | flae) | flas)

Map on a Collection Can Run in Parallel

Sequential: Vector(a0, al, a2, a3).map(f)

ao a as as
Lf Lf
flao)
Parallel: Vector(a0, al, a2, a3).par.map(f)
ao a as as
CPUqg CPU; CPU, CPUg
LF Lf Lf Lf
flao) | flay) | flaz) | fas)

or

ao a a as
CPU, CPU,

Lf Lf

flay) flay)

Scala Parallel Collections Library

Hosted at
https://github.com/scala/scala-parallel-collections

To use it, in your build.sbt file add:

libraryDependencies ++=
Seq(”org.scala-lang.modules” %% ”scala-parallel-collections” % ”1.0.3”)

To enable easy conversion of collections to parallel collections, use
import scala.collection.parallel.CollectionConverters.*

Parallel collections support the same operations, but try to do them in parallel, using
multiple CPU cores!

Selected Parallel Collections with Examples

val r = (1 until 10) : Range ‘ r.par : ParRange

val

Selected Parallel Collections with Examples

r

a

Array (0.0,

(1 until 10)

0.5,

Range

Array.tabulate(3)(i => i.toDouble*0.5)

1.0)

‘ r.par : ParRange
‘ a.par : ParArray[Double]

‘ === ParArray(0.0,0.5,1.0)

Selected Parallel Collections with Examples

val r = (1 until 10) : Range ‘r.par : ParRange
val a = Array.tabulate(3)(i => i.toDouble*0.5) ‘ a.par : ParArray[Double]
=== Array(0.0, 0.5, 1.0) | === ParArray(0.0,0.5,1.0)

val v = a.toVector: Vector[Double] ‘ v.par : ParVector[Double]

val
val

val

Selected Parallel Collections with Examples

r (1 until 10) : Range

a
Array (0.0, 0.5, 1.0)

v = a.toVector: Vector[Double]

Array of arrays (matrix):

Array.tabulate(3)(i => i.toDouble*0.5)

‘ r.par : ParRange
‘ a.par : ParArray[Double]
‘ === ParArray(0.0,0.5,1.0)

‘ v.par : ParVector[Doublel]

val m = Array.tabulate(5)(i => Array.tabulate(3)(j => i + j))
val m: Array[Array[Int]] = Array(Array(e, 1,

Array(1, 2,
Array(2, 3,
Array(3, 4,
Array(4, 5,

2),
3),
4),
5),
6))

Example: Matrix Multiply

type Matrix[A] = Array[Array[A]]
def prod(ml: Matrix[T], m2: Matrix[T1)(i: Int, j: Int): T =

2k (i) (k) + ma(K)(j)

Example: Matrix Multiply

type Matrix[A] = Array[Array[A]]
def prod(ml: Matrix[T], m2: Matrix[T1)(i: Int, j: Int): T =

2k (i) (k) + ma(K)(j)
Sequential matrix multiply:

def segMultiply(ml: Matrix[T]1, m2: Matrix[T]): Matrix[T] =
(0 until ml.length).map(i =>
Array.tabulate(m2(@).length)(j => prod(ml, m2)(i, j))).toArray

Example: Matrix Multiply

type Matrix[A] = Array[Array[A]]
def prod(ml: Matrix[T], m2: Matrix[T1)(i: Int, j: Int): T =

2k (i) (k) + ma(K)(j)
Sequential matrix multiply:

def segMultiply(ml: Matrix[T]1, m2: Matrix[T]): Matrix[T] =
(0 until ml.length).map(i =>
Array.tabulate(m2(@).length)(j => prod(ml, m2)(i, j))).toArray

Parallel matrix multiply (spot the difference!):

def parMultiply(ml: Matrix[T], m2: Matrix[T]): Matrix[T] =
(0 until mi1.length).par.map(i =>
Array.tabulate(m2(0).length)(j => prod(m1, m2)(i, j))).toArray

Parallel Matrix Multiply Performance

Now, spot the difference in running time. Which one is which?

On a Xeon server with 20 cores:

First version:
Time: 27.30 ms average.

Second version:
Time: 3.90 ms average.

=PrL

Divide and conquer using “parallel”. Array norm

CS-214 Software Construction

Simplest construct for parallel computation

Given expressions el and e2, compute them in parallel and return the pair of results

parallel(el, e2)

el

e2

Implementation of parallel using collections

def parallel[Al(el: => A, e2: => A): (A,A) =
val both = ParArray(1,2).map(i => if i == 1 then el else e2)
(both(@), both(1))

Implementation of parallel using collections

def parallel[Al(el: => A, e2: => A): (A,A) =
val both = ParArray(1,2).map(i => if i == 1 then el else e2)
(both(@), both(1))

Alternative:

def parallel1[AJ(el: => A, e2: => A): (A,A) =
val both = ParArray(() => el, () => e2).map(f => f())
(both(@), both(1))

Implementation of parallel using collections

def parallel[Al(el: => A, e2: => A): (A,A) =
val both = ParArray(1,2).map(i => if i == 1 then el else e2)
(both(@), both(1))

Alternative:

def parallel1[AJ(el: => A, e2: => A): (A,A) =
val both = ParArray(() => el, () => e2).map(f => f())
(both(@), both(1))

We can also implement parallel using (virtual) threads; we do not discuss that.

Example: computing p-norm

Given a vector as an array (of integer type T), compute its p-norm
A p-norm is a generalization of the notion of /ength from geometry

2-norm (p=2) of a two-dimentional vector (ar, a2) is (a} + ag)l/2

n 1/p
The p-norm of a vector (a1,...,a,) is <Z \a;\p>
i=1

Main step: sum of powers of array segment

First, solve sequentially the following sumSegment problem: given

P an integer array a, representing our vector
» a positive double floating point number p

» two valid indices s <= t into the array a

t—1
compute Y [|ajP] where |y| rounds down to an integer
i=s

S t

!

Sum of powers of array segment: solution

The main function is

def sumSegment(a: Array[T], p: Double, s: Int, t: Int): Int =
var i=s; var sum: Int = 0
while i < t do
sum= sum + power(a(i), p)
i= i +1

sum
Here power computes ||x|P]:

def power(x: T, p: Double): Int = math.exp(p * math.log(abs(x))).tolnt

Given sumSegment(a,p,s,t), how to compute p-norm?

lallp = (Nfuc—aim)l/p

i=0

where N = a.length

Given sumSegment(a,p,s,t), how to compute p-norm?

lallp = (Nfu‘aim)l/p

i=0

where N = a.length

def pNorm(a: Array[T], p: Double): Int =
power(sumSegment(a, p, 0, a.length), 1/p)

Observe that we can split this sum into two

Using sumSegment twice

The resulting function is:

def pNormTwoPart(a: Array[T], p: Double): Int =
val m = a.length / 2
val (suml, sum2) = (sumSegment(a, p, 0, m),
sumSegment(a, p, m, a.length))
power(suml + sum2, 1/p)

Making two sumSegment invocations parallel

The resulting function is:

def pNormTwoPart(a: Array[T], p: Double): Int = {
val m = a.length / 2
val (suml, sum2) = parallel(sumSegment(a, p, 0, m),
sumSegment(a, p, m, a.length))
power(suml + sum2, 1/p) }

Comparing execution of two versions

val (suml, sum2) = (sumSegment(a, p, @, m),
sumSegment(a, p, m, a.length))

TiTiy

el e2

TiTig
S S

!
* i

S
EEE

val (suml, sum2) = parallel(sumSegment(a, p, 0, m),
sumSegment(a, p, m, a.length))

Pt
I —
-+l

How to process four array segments in parallel?

el

e2

e3

e4

How to process four array segments in parallel?

el

e2

e3

e4

val m1 = a.length/4; val m2 = a.length/2; val m3 = 3*a.length/4
val ((suml, sum2),(sum3,sum4)) =
parallel(parallel (sumSegment(a, p, @, ml1), sumSegment(a, p, ml, m2)),
parallel (sumSegment(a, p, m2, m3), sumSegment(a, p, m3, a.length)))

Is there a recursive algorithm for an unbounded number of threads?

Is there a recursive algorithm for an unbounded number of threads?

def pNormRec(a: Array[T], p: Double): Int =
power(segmentPar(a, p, 0, a.length), 1/p)

// like sumSegment but parallel
def segmentPar(a: Array[T], p: Double, s: Int, t: Int) =
if (t - s < threshold)
sumSegment(a, p, s, t) // small segment: do it sequentially
else
val m=s + (t - s)/2
val (sumLeft, sumRight) = parallel(segmentPar(a, p, s, m),
segmentPar(a, p, m, t))
sumLeft + sumRight

=PrL

Reduce. Associativity

CS-214 Software Construction

Map and Fold

We have seen operation:

map: apply function to each element
> Array(1,3,8).map(x => x*x) == Array(1, 9, 64)
We now consider:

fold: combine elements with a given operation

» Array(1,3,8).fold(100)((s,x) => s + x) == 112

Fold: meaning and properties

Fold takes among others a binary operation, but variants differ:

» whether they take an initial element or assume non-empty list
» in which order they combine operations of collection

Array(1,3,8).foldLeft(100)((s,x) => s - x) == ((100 - 1) - 3) - 8 == 88
Array(1,3,8).foldRight(100)((s,x) => s - x) == 1 - (3 - (8-100)) == -94
Array(1,3,8).reduceLeft((s,x) => s - x) == (1 - 3) - 8 == -10
Array(1,3,8).reduceRight((s,x) => s - x) == 1 - (3 - 8) ==

To enable parallel operations, today we look at associative operations

» addition, string concatenation (but not minus)
P instead of reducelLeft or reduceRight we will have simply reduce

|dea of parallel reduce

We would like to obtain the following:

> allow parallel sequence implementation to decide how to split the sequence into
parts that it will do in parallel
P ensure that no matter how this splitting happens, the result is the same

We will

» define associativity
> reduce for trees: here, the result is obviously unique
P> how associativity allows us to imagine any tree within a sequence

Associative operation

Operation f: (A,A) => A is associative iff for every x, y, z:
fix, fly, 2)) = fifix y),2)
If we write f{a, b) in infix form as a ® b, associativity becomes

x@(y®z)=(x®@y)®z

Consequence: consider two expressions with same list of operands connected with ®,
but different parentheses. Then these expressions evaluate to the same result, for
example:

xRy)@((zeow) = (x® (y®2)dw=(xRy) ®2) Qw

Trees for expressions

Each expression built from values connected with ® can be represented as a tree

» leaves are the values
» nodes are ®

xX® (y® 2): ®
X/ \®
y'/ \‘z
(x®y) @ (z@ w):
®/®\®
7 \y / \W

Folding (reducing) trees

How do we compute the value of such an expression tree?

sealed abstract class Tree[A]
case class Leaf[A](value: A) extends Tree[A]
case class Node[AJ(left: Tree[A], right: Tree[A]) extends Tree[A]

Result of evaluating the expression is given by a reduce of this tree.

What is its (sequential) definition?

Folding (reducing) trees

How do we compute the value of such an expression tree?

sealed abstract class Tree[A]
case class Leaf[A](value: A) extends Tree[A]
case class Node[AJ(left: Tree[A], right: Tree[A]) extends Tree[A]

Result of evaluating the expression is given by a reduce of this tree.
What is its (sequential) definition?

def reduce[A](t: Tree[A]l, f: (A,A) => A): A =
t match
case Leaf(v) => v
case Node(l, r) => f(reduce(l, f), reduce(r, f)) // Node -> f

We can think of reduce as replacing the constructor Node with given f

Running reduce

For non-associative operation, the result depends on structure of the tree:

def treel = Node(Leaf(1), Node(Leaf(3), Leaf(8)))
def fMinus = (x:Int,y:Int) => x -y
val resl = reduce(treel, fMinus)

What is res1?

Running reduce

For non-associative operation, the result depends on structure of the tree:

def treel = Node(Leaf(1), Node(Leaf(3), Leaf(8)))
def fMinus = (x:Int,y:Int) => x -y
val resl = reduce(treel, fMinus)

What is res1? 6

On the other hand:

def tree2 = Node(Node(Leaf(1), Leaf(3)), Leaf(8)))
def res = reduce(tree2, fMinus)

What is res2?

Running reduce

For non-associative operation, the result depends on structure of the tree:

def treel = Node(Leaf(1), Node(Leaf(3), Leaf(8)))
def fMinus = (x:Int,y:Int) => x -y
val resl = reduce(treel, fMinus)

What is res1? 6

On the other hand:

def tree2 = Node(Node(Leaf(1), Leaf(3)), Leaf(8)))
def res = reduce(tree2, fMinus)

What is res2? -10

Parallel reduce of a tree

How to make that tree reduce parallel?

Parallel reduce of a tree

How to make that tree reduce parallel?

def reduce[AJ(t: Tree[Al, f : (A,A) => A): A =
t match
case Leaf(v) => v
case Node(l, r) =>
val (1V, rV) = parallel(reduce[A](1l, f), reducel[Al(r, f))
f(1v, rv)

Associativity stated as tree reduction

How can we restate associativity of such trees?

x®(y®z)=x®y) ®z

Associativity stated as tree reduction

How can we restate associativity of such trees?
x@(y®z)=(xQy) @z

N, O,
/\ - /\

If fdenotes @, in Scala we can write this also as:

reduce(Node(Leaf(x), Node(Leaf(y), Leaf(z))), f
reduce(Node(Node(Leaf(x), Leaf(y)), Leaf(z)), f)

Order of elements in a tree

Observe: we can use a list to describe the ordering of elements of a tree

def toList[AJ(t: Tree[A]): List[A] = t match
case Leaf(v) => List(v)
case Node(l, r) => toList[AJ(1l) ++ toList[AI(r)

Order of elements in a tree

Observe: we can use a list to describe the ordering of elements of a tree

def toList[AJ(t: Tree[A]): List[A] = t match
case Leaf(v) => List(v)
case Node(l, r) => toList[AJ(1l) ++ toList[AI(r)

Suppose we also have tree map:

def map[A,BJ(t: Tree[A]l, f : A =>B): Tree[B] = t match
case Leaf(v) => Leaf(f(v))
case Node(l, r) => Node(map[A,BI1(1, f), map[A,BI(r, f))

Can you express tolList using map and reduce?

Order of elements in a tree

Observe: we can use a list to describe the ordering of elements of a tree

def toList[AJ(t: Tree[A]): List[A] = t match
case Leaf(v) => List(v)
case Node(l, r) => toList[AJ(1l) ++ toList[AI(r)

Suppose we also have tree map:

def map[A,BJ(t: Tree[A]l, f : A =>B): Tree[B] = t match
case Leaf(v) => Leaf(f(v))
case Node(l, r) => Node(map[A,BI1(1, f), map[A,BI(r, f))

Can you express tolList using map and reduce?

toList(t) == reduce(map(t, List(_)), _ ++ _)

Consequence stated as tree reduction

Consequence of associativity: consider two expressions with same list of operands
connected with ®, but different parentheses. Then these expressions evaluate to the

same result.

Express this consequence in Scala using functions we have defined so far.

Consequence stated as tree reduction

Consequence of associativity: consider two expressions with same list of operands
connected with ®, but different parentheses. Then these expressions evaluate to the
same result.

Express this consequence in Scala using functions we have defined so far.

Consequence: if f : (A,A)=>A is associative, t1:Tree[A] and t2:Tree[A] and if
toList(t1)==toList(t2), then:

reduce(tl, f)==reduce(t2, f)

Consequence stated as tree reduction

Consequence of associativity: consider two expressions with same list of operands
connected with ®, but different parentheses. Then these expressions evaluate to the
same result.

Express this consequence in Scala using functions we have defined so far.

Consequence: if f : (A,A)=>A is associative, t1:Tree[A] and t2:Tree[A] and if
toList(t1)==toList(t2), then:

reduce(tl, f)==reduce(t2, f)

Proof would be by induction. Some intuition follows.

Explanation of the consequence

Intuition: given a tree, use tree rotation until it becomes list-like.

Associativity law says tree rotation preserves the result:

S, O
/\ - /\

Example use:

/\ x/®\®\.
/\ /\ /\

Applying rotation to tree preserves toList as well as the value of reduce.
toList(t1)==toList(t2) = rotations can bring t1,t2 to same tree

Towards a reduction for arrays

We have seen reduction on trees.

Often we work with collections where we only know the ordering and not the tree
structure.

How can we do reduction in case of, e.g., arrays?

> treat array as a balanced tree (left half and right half)
» do tree reduction

Because of associativity, we can choose any tree that preserves the order of elements of
the original collection

Tree reduction replaces Node constructor with f, so we can just use f directly instead of
building tree nodes.

When the segment is small, it is faster to process it sequentially

Parallel array reduce: divide and conquer (compare to array norm)

def reduceSeg[AJ(inp: Array[A], left: Int, right: Int, f: (A,A) => A): A =
if right - left < threshold then
var res= inp(left); var i= left+1
while i < right do
res= f(res, inp(i)); i= i+l
res
else
val mid = left + (right - left)/2
val (al,a2) = parallel(reduceSeg(inp, left, mid, f),
reduceSeg(inp, mid, right, f))
f(al,a2)

def reduce[Al(inp: Array[A]l, f: (A,A) => A): A =
reduceSeg(inp, 0, inp.length, f)

Conclusion: why associativity

Parallel computation splits collection into pieces

Depending on the split, we obtain different computation trees

» depending on parallel collection implementation
» depending on the available parallel cores

To ensure that the result is predictable, we want all these trees to give the same result.
Associativity ensures that all these trees give the same result.
In practice, no need to implement your own parallel reduce.

Use parallel collections:

P you can do Array(1,3,8).par.reduce(_ + _)
» please do not do Array(1,3,8).par.reduce(_ - _)

