Correction series 01: C Basics

Exercise 1: Ball bounces
(file rebond1.c)
#include <stdio.h>

#include <math.h>

/* On déclare g constante. Elle ne peut plus étre modifiée dans le *
* reste du code */
double const g = 9.81;

int main(void)

{
// Déclarations
double v = 0.0, vl = 0.0; // vitesses auant et aprés le rebond
double h = 0.0, hl = 0.0; // hauteur avant le rebond, hauteur de remontée
double HO = 1.0, eps = 0.1; // hauteur initiale, coefficient de rebond
int NBR = -1; // nombre de rebonds voulus

/*
* Entrée des waleurs par l'utilisateur,
* agvec test de walidtité

*/

do {
printf ("Coefficient de rebond (0 <= coeff < 1) :\n");
scanf ("/1f", &eps);

/* répétition tant que l'utilisateur n'entre pas une valeur
* correcte pour eps */
} while ( (eps < 0.0) || (eps >= 1.0) );

do {
printf ("Hauteur initiale (0 <= HO) \n");
scanf (")1f", &HO);

/* répétition tant que l'utilisateur n'entre pas une valeur
* positive pour HO */
} while ( HO < 0.0);

do {
printf ("Nombre de rebonds (0 <= N ) :\n");
scanf ("%d", &NBR);

/* répétition tant que l'utilisateur n'entre pas une valeur

* positive pour NBR */
} while (NBR < 0);

// Au départ (0 rebond), la hauteur de rebond wvaut HO
h = HO;

for (int nombre = 0; nombre < NBR; ++nombre) {

v = sqrt(2.0 * g *x h);

vl = eps * v; // vitesse aprés le rebond

hl =(vl * vl) / (2 *x g);  // hauteur da laquelle elle remonte..

h = hi; // ...laquelle devient la nouvelle hauteur initiale

printf ("rebond %d : %f\n", nombre+l, h);


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/rebond1.c

// Affichage du résultat
printf ("Au %déme rebond, la hauteur sera de %f m.\n", NBR, h);

return O;

Note:

in the for loop of this code, the nombre variable is initialized to 0. However, on the first pass through this loop, we're
already calculating the first (1) bounce. This is why we have:

printf ("rebond %d : %f\n", nombre+l, h);

where the number of bounces displayed is nombre+1 and not nombre. A solution to avoid this addition would be to
initialize nombre = 1 directly in the loop, but but warning!, this would mean modifying the loop’s condition as well.

Exercise 2: Prime numbers
(file premiers.c)

// C99, pour changer
#include <stdio.h>
#include <math.h>

int main(void)

{
// Saisie du mombre 4 tester
int n = 2;
do {
printf ("Entrez un nombre entier > 1 :\n");
scanf ("%d", &n);
} while (n <= 1);
int diviseur = 1; // Diviseur trouvé. Si c'est 1, alors le nombre est premier
if (0= (% 2)) {
// Le nombre est pair
if (n !'=2) {
diviseur = 2; // n n'est pas premier (2 est diviseur)
}
} else {
const double borne_max = sqrt((double) n);
for (int i = 3; (diviseur == 1) &% (i <= borme_max); i += 2) {
if (0 == (n % 1)) {
diviseur = i; // n n'est pas premier (i est diviseur)
}
}
}
printf ("%d", n);
if (diviseur == 1) {
printf (" est premier");
} else {
printf(" n'est pas premier, car il est divisible par 7d", diviseur);
}
printf ("\n");
return O;
}


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/premiers.c

A few explanations:

The value n entered by the user must be an integer. However, if we want to calculate the square root of this number, it
is necessary to temporarily transform it into a double. This operation is performed as shown on the line:

const double borne_max = sqrt((double) n);
by specifying the desired type in parentheses before the variable.
In the for loop at the end of the program, there is a double condition:

1. we check that we did not find a divisor in the previous iteration by testing the value of diviseur. We could
avoid this test by inserting a break in the last line of the if condition, but the use of break and continue is
strongly discouraged.

2. we check that we have not yet exceeded the borne_max.

Results:

2 est premier

16 n'est pas premier, car il est divisible par 2

17 est premier

91 n'est pas premier, car il est divisible par 7

589 n'est pas premier, car il est divisible par 19

1001 n'est pas premier, car il est divisible par 7

1009 est premier

1299827 est premier

2146654199 n'est pas premier, car il est divisible par 46327

Remarks:

If you want to test numbers larger than 2147483647 (i.e. 23! — 1, which by the way is prime!), replace int n; with
unsigned long n; You also need to change the declaration of i: unsigned long ij;

You can then test up to 4294967295 (Try for example 4292870399).

For those who would like to test even larger numbers, you can replace the previous integers (int, then unsigned long)
with: unsigned long long n; (don’t forget to do this for n and for i; note that this extended type is only available
since C99).

This allows you to go up to 18446744073709551615 (Try for example 18446744073709551577 or 18446744073709551557
(you have to wait for a little while though)).

The printf () format for long unsigned is "%1u" and for long long unsigned, "%11lu".

Exercise 3: Solving a third-degree equation
(file deg3.c)

/* C89 */
#include <stdio.h>

/* ligne pour avoir M_PI (= pi). A mettre AVANT le include de math.h. */
#define _USE_MATH_DEFINES

#include <math.h>

/* St vraiment le compilateur respecte strictement le standard, méme *

* _USE_MATH_DEFINES ne fera pas l'affatre. On fait alors le travail *
* nous méme : */
#ifndef M_PI

#define M_PI 3.14159265358979323846

#endif

int main(void)

{

z1 =0.0, z2 =0.0, z3 =0.0,
0


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/deg3.c

printf ("Entrez a2, puis al, puis a0 :\n");
scanf ("%1f %1f %1f", &a2, &al, &a0);

Q = (3.0 x a1l - a2*a2) / 9.0;

R= (9.0 %*a2 *x al - 27.0 * a0 - 2.0 * a2+*a2*a2) / 54.0;
D = Q*Q*Q + R#R;

printf (" (pour info D = %f)\n", D);

if (D < 0.0) { /* test du déterminant */
/* cas de trois racines réelles */

T = acos( R / sqrt(-Q*Q*Q) );

z1 = 2.0 * sqrt(-Q) * cos(T/3.0) - a2/3.0;

z2 = 2.0 * sqrt(-Q) * cos( (T+2xM_PI) / 3.0 ) - a2/3.0;

z3 = 2.0 * sqrt(-Q) * cos( (T+4xM_PI) / 3.0 ) - a2/3.0;

printf("Trois racines ( %f , %f , %f )\n", zl, z2, z3);
} else {

/* cas de moins de trois racines réelles */

/* calcul de S */

double s = R+sqrt(D);

const double un_tiers = 1.0/3.0;

if (0.0 == 8) {S =0.0; }
else if (s < 0.0) { S -pow(-s, un_tiers); }
else if (s > 0.0) { S pow( s, un_tiers); }

/* calcul de T */

s = R-sqrt(D);

if (0.0 == s8) {7 0.0; }
else if (s < 0.0) { T = -pow(-s, un_tiers); 7}
else if (s > 0.0) { T pow( s, un_tiers); }

printf (" (pour info S = %f, T = %f, S+T= Jf)\n", S, T, S+T);

/* calcul des solutions */

zl = -a2 / 3.0 + 8 + T;

if ((0.0 == D) & (S+T != 0.0)) {
z2 =-a2 / 3.0- (8 +T)/ 2.0;
printf ("Deux racines...\n");

printf (" 1l'une simple : Af\n", z1);
printf (" 1l'autre double : %f\n", z2);
} else {
printf ("Une seule racine : %f\n", zl);
}
}
return O;
}

Note: the proposed version is not numerically “clean”. You certainly already know that we should newver make
equality test (==) with double (it doesn’t make sense numerically because of lack of precision on the values). It would
be better to define a function (e.g. double_eq or double_cmp) that takes three doubles (the two numbers to compare
and a precision) and returns 0 if the absolute value of the difference between the two numbers is greater than the
precision, and non-zero otherwise.

I suggest you implement this improvement as a complementary exercise.

Exercise 4: Approximate calculation of an integral
(file integrale.c)

#include <stdio.h>
#include <math.h>


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/integrale.c

double f(double x) {
return sin(x);

}

double demander_nombre (void)
{
double res = 0;
printf ("Entrez un nombre réel : ");
scanf ("%1f", &res);
return res;

double integre(double a, double b)
{
double res =
41.0 * ( f(a) + £(b) )
+ 216.0 * ( £f((5*%a+b)/6.0) + f((5*%b+a)/6.0) )
+ 27.0 * ( £((2*%a+b)/3.0) + £((2*b+a)/3.0) )
+ 272.0 * £((a+b)/2.0) ;

res *= (b-a)/840.0;

return res,;

3

int main(void)
{
double
a = demander_nombre(),
b = demander_nombre() ;
printf("Integrale de sin(x) entre Jf et %f : %.12f\n", a, b, integre(a, b));
return O;

3

Exercise 5: Exchange
(file swap.c)

void echange(int* a, int* b)

{
/* on sauvegarde la wvaleur pointée par a pour ne pas la perdre */
int const copie = *a;

/* la valeur pointée par a prend la valeur pointée par b */
*a = xb;
/* la valeur pointée par b prend la wvaleur de copie */
*b = copie;

X

Exercise 6: Date stories
1. The bug:

When days is 366 and year is a leap year (i.e. the last day of a leap year, such as the famous December 31, 2008),
the code stays in the while (days > 365): it passes the first if (IsLeapYear(year)) but does not satisfy if
(days > 366). So, we exit the first if and start another round in the (infinite) loop.

2. A solution:


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/swap.c

The problem comes from mixing the loop for calculating the number of years and the number of days in the year
(365 or 366). The solution is to clearly separate the two. Here’s one possible solution:

(file zune.c)

/%
* zune.c
* ANSI C89
*/

#include <stdio.h>

#define MICROSOFT_EPOCH_YEAR 1980
#define december_31_2008 10593

typedef enum {
JANUARY = 1,
FEBRUARY,
MARCH,
APRIL,
MAY,
JUNE,
JULY,
AUGUST,
SEPTEMBER,
OCTOBER,
NOVEMBER,
DECEMBER

} Month;

int IsLeapYear(int y)
{

return (((y % 4 == 0) && (y % 100 !'= 0)) || (y % 400 == 0));

/* on a besoin de l'année (year) pour le cas spécial (Février) */
int DaysForMonth(int year, Month month)
{

int days = 31;

switch (month) {
case FEBRUARY: /* cas spécial */
if (IsLeapYear(year))
days = 29;
else
days = 28;
break;
case APRIL:
case JUNE:
case SEPTEMBER:
case NOVEMBER:
days = 30;
break;
default:
days = 31;

return days;

int main(void)

{
int year = MICROSOFT_EPOCH_YEAR;


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/zune.c

int days = 1, d = 31;
Month month JANUARY ;

printf ("Entrez le nombre de jours écoulés depuis le 31/12/1979 : ");
scanf ("/d", &days);

/* calcul de year */
while (days > 0) {
if (IsLeapYear (year))

days -= 366;
else
days -= 365;
++year;
}
--year;
if (IsLeapYear(year))
days += 366;
else
days += 365;

/* calcul de month */
month = JANUARY;
d = DaysForMonth(year, month) ;
while (days > d) {
days -= d;
d = DaysForMonth(year, ++month) ;
}

printf ("%,02d/%02d/%d\n", days, month, year);

return O;

3. Based on what has been done above:
(file unix-time.c)

/%
* uniz—time.c
* ANSI C89
*/

#include <stdio.h>
#include <time.h>

#define UNIX_EPOCH_YEAR 1970

/* copié de zune.c */

typedef enum {
JANUARY = 1,
FEBRUARY,
MARCH,
APRIL,
MAY,
JUNE,
JULY,
AUGUST,
SEPTEMBER,
OCTOBER,
NOVEMBER,
DECEMBER

} Month;

int IsLeapYear(int y)


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/unix-time.c

return (((y % 4 == 0) & (y % 100 !'=0)) [l (y % 400 == 0));

/* on a besoin de l'année (year) pour le cas spécial (Féurier) */
int DaysForMonth(int year, Month month)
{

int days = 31;

switch (month) {
case FEBRUARY: /* cas spécial */
if (IsLeapYear(year))
days = 29;
else
days = 28;
break;
case APRIL:
case JUNE:
case SEPTEMBER:
case NOVEMBER:
days = 30;
break;
default:
days = 31;

return days;

int main(void)

time_t now = time(NULL) ;

time_t seconds, minutes, hours;
int year = UNIX_EPOCH_YEAR;
time_t days = 1, d = 31;

Month month = JANUARY;

printf ("%u secondes se sont ecoulees depuis le 1.1.1970 a minuit.\n", now);

seconds = now 7 60;

now /= 60;

minutes = now % 60;
now /= 60;

hours = now % 24;
now /= 24;

/* copié de zune.c */
/* calcul de year */
days = now;
year = UNIX_EPOCH_YEAR;
while (days > 0) {

if (IsLeapYear(year))

days -= 366;
else
days -= 365;
++year;
}
--year;
if (IsLeapYear(year))
days += 366;
else
days += 365;



/* calcul de month */
month = JANUARY;
d = DaysForMonth(year, month);
while (days > d) {
days -= d;
d = DaysForMonth(year, ++month);
}

++days; /* 0 corespond au ler Janvier 1970, il faut faire +1 */

printf ("Nous sommes donc le %02d/%02d/%d a %02d:%02d:%02d\n",
days, month, year, hours, minutes, seconds);

return O;

}

Yes, there is a one hour delay. The time(2) function returns the UTC (Coordinated Universal Time) time while in
Switzerland the time zone is GMT+1 (in winter), which explains why the unix-time program displays a time delayed
compared to Swiss time.

Exercise 7: Multiplication of matrices
(file matrices.c)

/* C89 */
#include <stdio.h>

#define N 10

typedef struct {
double m[N] [N];
size_t lignes;
size_t colonnes;
} Matrice;

Matrice lire matrice(void);
void affiche_matrice(const Matrice);
Matrice multiplication(const Matrice a, const Matrice b);

K o */
int main(void)

{

Matrice M1 = lire_matrice();
Matrice M2 = lire_matrice();

if (Ml.colonnes != M2.lignes)
printf("Multiplication de matrices impossible !\n");
else {
printf ("Résultat :\n");
affiche_matrice(multiplication(M1, M2));

}
return O;
}
K e *x/
Matrice lire_matrice(void)
{

Matrice resultat;
size_t lignes = 2;
size_t colonnes = 2;

printf("Saisie d'une matrice :\n");


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/matrices.c

do {

printf(" Nombre de lignes (< %d) : ", N+1);

scanf ("}1u", &lignes); /* "Jzu" en C99 ; c'est mieux. */
} while ((lignes < 1) || (lignes > N));

do {
printf(" Nombre de colonnes (< %d) : ", N+1);
scanf ("%1u", &colonnes) ;

} while ((colonnes < 1) || (colonnes > N));

resultat.lignes = lignes;
resultat.colonnes = colonnes;
{ size_t i, j;
for (i = 0; i < lignes; ++i)
for (j = 0; j < colonmnes; ++j) {
printf (" M[/1lu, %lul=", i+1, j+1);
scanf ("%1f", &resultat.m[i] [j]);
}
}

return resultat;

}

K *x/
Matrice multiplication(const Matrice a, const Matrice b)
{
Matrice resultat = a; /* Disons que par convention on retourne a si la
* multiplication ne peut pas se faire.
*/

size_t i, j, k; /* variables de boucle */

if (a.colonnes == b.lignes) {
resultat.lignes = a.lignes;
resultat.colonnes = b.colonnes;

for (1 = 0; i < a.lignes; ++i)
for (j = 0; j < b.colonnes; ++j) {
resultat.m[i] [j] = 0.0;
for (k = 0; k < b.lignes; ++k)
resultat.m[i] [j] += a.m[i] [k] * b.m[k] [j];
¥

return resultat;

}

K *x/
void affiche_matrice(const Matrice matrice)
{
size_t i, j;
for (i = 0; i < matrice.lignes; ++i) {
for (j = 0; j < matrice.colonnes; ++j)
printf("%g ", matrice.m[i] [j]1);
putchar('\n');
¥
}

Note

The Matrix type is defined as an array of size N x N (with N = 10). This implies that as soon as we create a Matrix,
we allocate memory space for 10 x 10 numbers, even if the user then decides that its size will be lower. However, we
cannot do otherwise at the moment, since in C, we are not allowed to declare an array without specifying its size.
To do better, you have to wait for the pointers...

10



Note: we could have used VLAs, but

1. we could not make it a global type (like Matrix here), which is still the primary spirit of this exercise;
2. as mentioned in class, VLAs are very open to criticism (and criticized) for cases like this (uncontrolled size),
because they are allocated on the stack without any verification.

Exercise 8: Complex numbers (Level 1)
(file complexe.c)

#include <stdio.h>

typedef struct {
double x;
double y;

} Complexe;

/* Solution simple */
void affiche(const Complexe z)
{

printf (" (Yg,%g)", z.x, z.y);

/* autre solution : printf("A9+)gi", z.x, z.y); */
}

/* Solution plus complexe mats plus élégante */
void affiche2(const Complexe z)
{

double y_affiche = z.y;

if ((z.x == 0.0) && (z.y == 0.0)) {
printf ("0");
return;

}

if (z.x '= 0.0) {
printf("/g", z.x);
if (z.y > 0.0)
printf ("+"); /* ou putchar('+'); */
else if (z.y < 0.0) {
putchar('-');
y_affiche = -z.y;

b
}
if (y_affiche != 0.0) {
if ((z.x == 0.0) && (y_affiche == -1.0))
putchar('-");
else if (y_affiche != 1.0)
printf ("7%g", y_affiche);
putchar('i');
X
b
St */
Complexe addition(const Complexe zl, const Complexe z2)
{

Complexe z;

z.x = zl.x + z22.%;
z.y = zl.y + z2.y;
return z;

11


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/complexe.c

Complexe soustraction(const Complexe zl, const Complexe z2)
{

Complexe z;

z.x = zl.x - z22.x;

z.y =zl.y - z2.y;

return z;

}

[k mmm *x/
Complexe multiplication(const Complexe zl, const Complexe z2)
{

Complexe z;

z.x = z2l.x * z22.x - zl.y * z2.y;

z.y = zl.x *x z2.y + zl.y * z2.x;

return z;

Complexe division(const Complexe zl, const Complexe z2)
{
const double r = z2.x*z2.x + z2.y*z2.y;
Complexe z;
z.x = (zl.x *x z22.x + zl.y * 22.y) / r;
z.y = (zl.y * 22.x - zl.x * 22.y) / r
return z;

)

int main(void)
{
Complexe un
Complexe i
Complexe j;
Complexe z;
Complexe z2;

Il
- n

O
= O

o o
]

o O

j = addition(un, i);

affiche(un); printf(" + "); affiche(i); printf(" = ");
affiche(j); putchar('\n');

z = multiplication(i,i);
affiche(i); printf(" * "); affiche(i); printf(" = ");
affiche(z); putchar('\n');

z = multiplication(j,j);
affiche(j); printf(" * "); affiche(j); printf(" = ");
affiche(z); putchar('\n');

z2 = division(z,i);
affiche(z); printf(" / "); affiche(i); printf(" = ");
affiche(z2); putchar('\n');

z.x = 2.0; z.y = -3.0;

z2 = division(z,j);

affiche(z); printf(" / "); affiche(j); printf(" = ");
affiche(z2); putchar('\n');

return 0;

12



Exercise 9: Complex numbers revisited (Level 2)
(file complexe2.c)

// C99
#include <stdio.h>
#include <math.h>

Y R
typedef struct {

double x;

double y;
} Complexe;

typedef struct {
Complexe z1;
Complexe z2;

} Solutions;

)

void affiche(const Complexe z);

Complexe addition (const Complexe zl, const Complexe z2);
Complexe soustraction (const Complexe zl, const Complexe z2);
Complexe multiplication(const Complexe zl, const Complexe z2);
Complexe division (const Complexe zl, const Complexe z2);
Complexe racine (const Complexe z);

Solutions resoudre_second_degre(const Complexe b, const Complexe c);

//

int main(void)

{
Complexe b = { 3.0, -2.0 };
Complexe ¢ = { -5.0, 1.0 };

Solutions s = resoudre_second_degre(b, c);

printf ("Avec b="); affiche(b);

printf(" et c="); affiche(c);

printf(" on a :\n");

printf (" =z1="); affiche(s.zl); putchar('\n');
printf(" z2="); affiche(s.z2); putchar('\n');

return O;

//
void affiche(const Complexe z)

{
if ((z.x == 0.0) && (z.y == 0.0)) {
printf("0");
return;

}

double y_affiche = z.y;

if (z.x !'=0.0) {
printf ("%g", z.x);
if (z.y > 0.0)
putchar('+');
else if (z.y < 0.0) {
putchar('-");
y_affiche = -z.y;

13


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/complexe2.c

}
}
if (y_affiche != 0.0) {
if ((z.x == 0.0) && (y_affiche == -1.0))
putchar('-");
else if (y_affiche != 1.0)
printf("%g", y_affiche);
putchar('i');
}

/) ======= m==sms=s=s=s=s=s=ss=s=smsmsmsmsmsms=e=es

Complexe addition(const Complexe zl, const Complexe z2)

{

return (Complexe) { zl.x + z2.x, zl.y + z2.y };

// smmmmmmmmmmmmmmmmceemeoeoee-
Complexe soustraction(const Complexe zl, const Complexe z2)
{

return (Complexe) { zl.x - z2.x, zl.y - z2.y };

/7
Complexe multiplication(const Complexe zl, const Complexe z2)
{
return (Complexe) {
zl.x *» z22.x - zl.y * z2.y ,
zl.x * z2.y + zl.y * z2.x
+;
¥

// =====s==smsmmsmmsmsmeoss—oooceoooos
Complexe division(const Complexe zl, const Complexe z2)
{

const double r = z2.x*z2.x + z2.y*z2.y;

return (Complexe) {

(zl.x *» z22.x + zl.y * 22.y) / r ,
(zl.y *» 22.x - zl.x * 22.y) / r
+;
}
/7
Complexe racine(const Complexe z)
{

const double r = sqrt(z.x * z.x + z.y * z.y);
Complexe retour;

retour.x = sqrt((r + z.x) / 2.0);
if (z.y >= 0.0)

retour.y = sqrt((r - z.x) / 2.0);
else

retour.y = - sqrt((r - z.x) / 2.0);

return retour;

//
Solutions resoudre_second_degre(const Complexe b, const Complexe c)
{

// Pour faciliter l'écriture

const Complexe deux ={ 2.0, 0.0 };

const Complexe quatre 0, 0.0 }

]
pr
S

B . >

14



// delta™2 = b"2 - 4c
const Complexe sdelta = racine(soustraction(multiplication(b, b),
multiplication(quatre, c)));

// Calcule -b (ou alors faire une fonction "oppose")
const Complexe mb = { -b.x, -b.y };

// Réponse = -b +- delta / 2

return (Solutions) {
division( soustraction(mb, sdelta) , deux) ,
division( addition (mb, sdelta) , deux)

};

Exercise 10: Writing to a file

Here is a relatively complete code. The biggest difficulty is to correctly handle the various possible anomalies when
entering input. If you don’t do this, your code will obviously be much shorter (but much less robust). So look carefully
at the correction below.

The most subtle difficulty for correct processing is to remove the newline (\n) which is still hanging around in the
input buffer after the scanf () on the age.

(file ecriture.c)

#include <stdio.h>
#include <string.h>

/* taille mazimale pour un nom */
#define TAILLE_NOM 1024

int main(void)

{

char const nom_fichier[] = "data.dat"; /* le nom du fichier */

FILE*x sortie;

int taille_lue;

char nom[TAILLE_NOM+1]; /* pour stocker le "nom" d lire depuis le clavier */
unsigned int age; /* pour stocker l'"dge" d lire depuis le clavier */

/* Ouverture de data.dat en écriture (w=write) */
sortie = fopen(nom_fichier, "w");

/* on teste si l'ouverture du flot s'est bien réalisée */
if (sortie == NULL) {
fprintf (stderr,
"Erreur: le fichier %s ne peut etre ouvert en écriture !\n",
nom_fichier);
return 1; /* retourne un autre chiffre que 0 car il y a eu une erreur */

}

/* itération sur les demandes 4 entrer :
on continue tant que stdin est lisible */
while (! feof(stdin)) {

/* tant qu'un nom vide est entré */
do {
printf ("Entrez un nom (CTRL+D pour terminer) : "); fflush(stdout);
fgets(nom, TAILLE_NOM+1, stdin);
taille_lue = strlen(nom) - 1;
if ((taille_lue >= 0) && (nom[taille_lue] == '\n'))
nom[taille_lue] = '\0';

15


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/ecriture.c

} while (!feof(stdin) && (taille_lue < 1));

if (! feof(stdin)) {
/* L'utilisateur a bien satisti un nom, on peut donc lut demander
* de saisir l'age.
*/
printf("age : "); fflush(stdout);
taille_lue = scanf("/u", &age);

if (taille_lue != 1) {
printf("Je vous demande un age (nombre entier positif) pas
"n'importe quoi !\nCet enregistrement est annulé.\n");
while (getc(stdin) != '\n'); /* wide le tampon d'entrée */
} else {
getc(stdin); /* récupére le \n résiduel */
/* ecriture dans le fichier */
fprintf (sortie, "s %d\n", nom, age);

}
+
}

/* purisme : retour a la ligne pour finir proprement la question */
putchar('\n');

fclose(sortie); /* fermeture du fichier */

return 0;

Exercise 11: Reading from a file
No difficulty here.
(file lecture.c)

#include <stdio.h>
#include <string.h>

/* on affiche les moms sur 15 caractéres, comme spécifié dans la donnée */
#define TAILLE_NOM 15

int main(void)

{
char const nom_fichier[] = "data.dat"; /* le nom du fichier */
FILE* entree;
int taille_lue;

char nom[TAILLE_NOM+1]; /* la domnée "nom" d lire depuis le fichier */
unsigned int age; /* la donnée "age" 4 lire depuis le fichier */

/* variables nécessaires aux différents calculs */

unsigned int nb = 0;

unsigned int age_max = O;

unsigned int age_min = (unsigned int) -1; /* truc : -1 sera toujours le plus
grand nombre représentable */

double total = 0.0;

/* ouwverture du fichier en lecture (r=read) */
entree = fopen(nom_fichier, "r");

/* on teste si l'ouverture du flot s'est bien réalisée */

if (entree == NULL) {
fprintf (stderr,

16


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/lecture.c

"Erreur: le fichier %s ne peut etre ouvert en lecture !'\n",
nom_fichier);
return 1; /* retourne autre chose que 0 car ¢a s'est mal passé */

3

/* On commence par l'affichage du cadre */
printf ("+-—-———————mm— +-———= +\n");

/*
* Et on boucle directement sur la condition de lecture correcte
* du couple <nom,age> (en fait, sur la condition de lecture correcte
* de 'age', mais comme tl n'est pas possible de lire 'age' st la
lecture de 'mom' 4 échoué...)

*

*/

do {
taille_lue = fscanf (entree, "715s u", nom, &age);

if (taille_lue == 2) { /* la lecture s'est bien passée */
++nb; /* nombre de personnes + 1 */
total += age; /* pour faire la moyenne plus tard */
/* on vérifie st l'dge lu est le plus grand/petit lu jusqu'ici */
if (age_min > age) age_min = age; /* */
if (age_max < age) age_max = age; /**/

/* Affichage */
/* le signe "-" permet d'aligner d gauche */
printf("| %-15s | %3d |\n", nom, age);
}
} while (! feof(entree));

/* Partie finale */

fclose(entree); /* ne pas oublier de fermer le fichier ! */

printf ("+-————————m—m— = +\n") ;
printf (" &ge minimum ¢ %3d\n", age_min);
printf(" &ge maximal : %3d\n", age_max);

printf ("/d personnes, &dge moyen : %5.1f ans\n", nb, total/mb);
/* 1'dge moyen est sur 5 positions dont un chiffre aprés la virgule */

return 0;

Exercise 12: Binary files
1. Initial version:
(file encode-bin-1.c)

#include <stdio.h>
#include <math.h>

int main(void) {
FILE* entree;
char nom_fichier[] = "./a_lire.bin";
int taille_lue;
int code;

/* Ouverture du fichier binaire en lecture */

entree = fopen(nom_fichier, "rb");
if (entree == NULL) {

17


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/encode-bin-1.c

fprintf (stderr,
"Erreur : je ne peux pas ouvrir le fichier %s en lecture.\n",
nom_fichier);

return 1;

}

while (!feof (entree)) {
/* Pour lire un fichier binaire, on utilise fread.
* Ici, on va lire un int et le sauver dans code.
*/

taille_lue = fread(&code, sizeof(int), 1, entree);

if (taille_lue == 1) {
printf("%d -> %c\n", code, (char) sqrt((double) code));
}
}

fclose(entree);
return O;

}

2. Full version:
(file decode-bin.c)

#include <stdio.h>
#include <string.h>
#include <math.h>

#define TAILLE 1025
int main(void) {

FILE* entree;

char nom_fichier [FILENAME_MAX+1] = "";
int taille_lue;

int code;

/* Le fichier 4 lire est donné par l'utilisateur */
do {
printf("Quel fichier voulez vous lire 7\n");
fgets(nom_fichier, FILENAME_MAX+1, stdin);
taille_lue = strlen(nom_fichier) - 1;
if ((taille_lue >= 0) && (nom_fichier[taille_lue] == '\n'))
nom_fichier[taille_lue] = '\0';
} while ((taille_lue < 1) && !'feof(stdin));

if (nom_fichier[0] == '\0') return 1;

entree = fopen(nom_fichier, "rb");
if (entree == NULL) {
fprintf (stderr,
"Erreur : je ne peux pas ouvrir le fichier %s en lecture.\n",
nom_fichier);
return 1;

}

while ( ! feof (entree) ){
taille_lue = fread(&code, sizeof(int), 1, entree);

if (taille_lue == 1) {
/* on transforme code en double avant de prendre sa racine carrée,
* puts on transforme la racine carrée en char avant de l'afficher */
printf ("%c", (char) sqrt((double) code));

18


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/decode-bin.c

}
}
printf("\n");
fclose(entree) ;

return 0O;

3. Encoder:
(file encode-bin.c)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#define TAILLE 1024

void demander_chaine(char* reponse, int taille)

{

int taille_lue;

do {
fgets(reponse, taille+l, stdin);
taille_lue = strlen(reponse) - 1;
if ((taille_lue >= 0) && (reponse[taille_lue]l == '\n'))
reponse[taille_lue] = '\0';
} while ((taille_lue < 1) && !'feof(stdin));
}

int main(void) {

char nom_fichier [FILENAME _MAX+1];
char phrase[TAILLE+1];

puts("Dans quel fichier voulez vous écrire ?\n");
demander_chaine(nom_fichier, FILENAME_MAX) ;
if (nom_fichier[0] == '\0') return 1;

printf ("Entrez une phrase (<= Jd caractéres) :\n", TAILLE);
demander_chaine (phrase, TAILLE);

if (phrase[0] != '\0") {
/* écriture et codage */
int i;
int taille;

FILE* sortie;
int ecrits;
unsigned int code;

/* On va écrire du binaire */
sortie = fopen(nom_fichier, "wb");
if (sortie == NULL) {
fprintf (stderr,
"Erreur : je ne peux pas ouvrir le fichier ’%s en écriture.\n",
nom_fichier);
return 1;

}

taille = strlen(phrase);

for (i 0; i < taille; ++i) {
code = (unsigned char) phrasel[i];
code *= code;

19


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/encode-bin.c

printf("%c -> %u -> %d\n", phrase[i], (unsigned char) phrase[i], code);
ecrits = fwrite(&code, sizeof(int), 1, sortie);

if (ecrits '= 1) {
fprintf (stderr,
"Erreur : je n'ai pas pu écrire plus que %d entiers (sur %d) !'\n",
i, taille);
return 3;
}
}

fclose(sortie);

return O;

}

Exercise 13: Statistics on a file

This correction contains several “practical” aspects and should therefore be studied more specifically and well understood.

(file stat.c)

#include <stdio.h>
#include <string.h>

/* nombre mazimum de demandes en cas d'erreur */
#define NB_DEMANDES 3

/* taille mazimum d'une Statistique : au plus 256 car il n'y a pas plus

que 256 char. */

#define TAILLE 256

/* bornes sur les caractéres d prendre en compte */
#define start 32
#define stop 253

typedef unsigned long int Statistique[TAILLE];

/%

===== FONCTIONS ====== x/

FILE* demander_ fichier(void);

void initialise_statistique(Statistique a_initialiser);
/* Rappel : les tableaux sont toujours passés par référence. Pas

besoin de pointeur supplémentaire ici */

unsigned long int collecte_statistique(Statistique a_remplir,

FILE* fichier_a_lire);

void affiche(Statistique a_afficher, unsigned long int total,

J/*

unsigned short int taille);

int main(void)

{

FILE* fichier = demander_fichier();

if (fichier == NULL) {

20


https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/stat.c

printf ("=> j'abandonne !\n");
return 1;
} else {
Statistique stat;
initialise_statistique(stat);
affiche(stat, collecte_statistique(stat, fichier), stop - start + 1);
fclose(fichier);

return O;

}

/%

*

Fonction demander_fichier

*

In:  Un fichier (par référence) d ouvrir.
Out: Ouvert ou mon ?
What: Demande ¢ l'utilisateur (au plus NB_DEMANDES fots) un nmom de fichier
et essaye de l'ouvrir en lecture.
* *x/
FILE* demander_fichier(void)
{

* % X %

FILEx £ = NULL;

char nom_fichier [FILENAME_MAX+1];
size_t taille_lue = O;

unsigned short int nb = 0;

do {
++nb;

/* demande le nom du fichier */
do {
printf ("Nom du fichier a lire : "); fflush(stdout);
fgets(nom_fichier, FILENAME_MAX+1, stdin);
taille_lue = strlen(nom_fichier);
if ((taille_lue >= 1) && (nom_fichier[taille_lue-1] == '\n'))
nom_fichier[--taille_lue] = '\0';
} while ((taille_lue == 0) && !feof(stdin));

if (nom_fichier[0] == '\0') {
return NULL;
}

/* essaye d'ouvrir le fichier */
f = fopen(nom_fichier, "r");

/* est-ce que ca a marché ? */
if (£ == NULL) {
printf ("-> ERREUR, je ne peux pas lire le fichier \"%s\"\n",
nom_fichier);
} else {
printf("-> 0K, fichier \"Y%s\" ouvert pour lecture.",
nom_fichier) ;
}
} while ((f == NULL) && (nb < NB_DEMANDES));

/* la valeur de retour est le résultat du test entre (): 0 ou 1 */
return f;

}

/¥

* Fonction initialiser_statistique

21



* In: Une Statistique a initialiser.
* What: Inttialiser tous les éléments d'une Statistique d zéro.
* */
void initialise_statistique(Statistique stat)
{
int i;
for (i = 0; i < TAILLE; ++i) {
stat[i] = 0;
}
3
/*
* Fonction collecte_statistique
e
* In: Une Statistique a remplir et le fichier a lire.
* Out: Le mombre d'éléments comptés dans la Statistique.
* What: Lit tous les caractéres dans le fichier et compte dans la Statistique
* combien de fois chaque caractére apparait dans le fichier.
* */

unsigned long int collecte_statistique(Statistique stat, FILE*x f)

{

int c; /* le caractére lu */
unsigned long int nb = 0; /* le nombre d'éléments comptés */

while ((c = getc(f)) != EOF) {
/* est-ce que le caractére lu est dans l'intervalle qu'on étudie ? */
if (( ((unsigned char) c) >= start) &&
( ((unsigned char) c) <= stop ) ) {
++(stat[c - start]); /* on incrément la statistique pour ce caractére */
++nb; /* on incrémente le nmombre total d'éléments comptés */
}
}

return nb;

*

Fonction affiche

*

In: La Statistique a afficher, le nmombre par rapport auquel on affiche
les pourcentages (st O recalcule ce nombre comme la somme des
éléments) et la tatlle du tableau.

What: Affiche tous les éléments d'une Statistique (valeurs absolue et
relative).

* */

* * ¥ * %

void affiche(Statistique stat, unsigned long int nb, unsigned short int taille)

{

unsigned short int i;

if (mb == 0) { /* on doit calculer la somme si nb == 0 */
for (i = 0; i < taille; ++i)
nb += stat[i];
}

printf ("STATISTIQUES :\n");
for (i = 0; i < taille; ++i) {
/* on n'affiche que les résultats pour des statistiques supérieures 4 0 */
if (statl[i] !'= 0) {
printf("%c : %101u - %6.2f%%\n", (char) (i+start), statl[i],
100.0 * stat[i] / (double) nb);

22



23



	Correction series 01: C Basics
	Exercise 1: Ball bounces
	Note:

	Exercise 2: Prime numbers
	A few explanations:
	Results:
	Remarks:

	Exercise 3: Solving a third-degree equation
	Exercise 4: Approximate calculation of an integral
	Exercise 5: Exchange
	Exercise 6: Date stories
	Exercise 7: Multiplication of matrices
	Note

	Exercise 8: Complex numbers (Level 1)
	Exercise 9: Complex numbers revisited (Level 2)
	Exercise 10: Writing to a file
	Exercise 11: Reading from a file
	Exercise 12: Binary files
	Exercise 13: Statistics on a file


