
Correction series 2 : Pointers 1
Exercise 1: Exploring memory (level 2)
Here I present two variations of displaying the bits of a byte. There are of course many more! It is mainly to illustrate
from a practical point of view little-commented operations in progress (binary operations on memory).

One of the solutions also presents the ternary operator ?:: “A? B: C” is similar to “if (A) { B } else { C }”.

(file memory_view.c)

// C99
#include <stdio.h>

typedef unsigned char octet;

// ==
// version 1

static inline void affiche_bit(const octet c,
const octet position_pattern)

{
putchar(c & position_pattern ? '1' : '0');

}

void affiche_binaire(const octet c) {
for(octet mask = 0x80; mask; mask >>= 1)

affiche_bit(c, mask);
}

/* version 2 : moins bonne que ci-dessus :
* affiche les bits « à l'envers » et n'affiche
* pas les 0 de poids fort.
*/

void affiche_binaire_2(octet c) {
do {

if (c & 1) putchar('1');
else putchar('0');
c >>= 1; // ou c /= 2;

} while (c);
}

// ==
void affiche(size_t i, octet c) {

printf("%02zu : ", i);
affiche_binaire(c);
printf(" %3u ", (unsigned int) c);
if ((c >= 32) && (c <= 126)) {

printf("'%c'", c);
}
putchar('\n');

}

// ==
void dump_mem(const octet* ptr, size_t length)
{

/* solution simple qui pourra être améliorée
* lorsque nous aurons vu l'arithmétique des pointeurs
*/

printf("A partir de %p :\n", ptr);
for (size_t i = 0; i < length; ++i) {

affiche(i, ptr[i]);
}

}

1

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/memory_view.c

// ==
int main(void)
{

int a = 64 + 16;
int b = -a;
double x = 0.5;
double y = 0.1;

dump_mem((octet*) &a, sizeof(a));
dump_mem((octet*) &b, sizeof(b));
dump_mem((octet*) &x, sizeof(x));
dump_mem((octet*) &y, sizeof(y));

return 0;
}

Exercise 2: dynamic arrays
(file vector.c)

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h> // pour SIZE_MAX
#include <string.h> // pour memset

#define VECTOR_PADDING 32
#define TYPE int

typedef struct {
size_t size; // nombre d'éléments utilisés dans le tableau
size_t allocated; // nb élements déjà alloués
TYPE* content; // tableau de contenu (alloc. dyn.)

} vector;

// ==
vector* construct_vector(vector* v) {

vector* result = v;
if (result != NULL) {

result->size = 0;
result->content = calloc(VECTOR_PADDING, sizeof(TYPE));
if (result->content != NULL) {

result->allocated = VECTOR_PADDING;
} else {

result->allocated = 0;
result = NULL;

}
}
return result;

}

// ==
void destruct_vector(vector* v) {

if (v != NULL) {
if (v->content != NULL) {

free(v->content);
v->content = NULL;
v->size = v->allocated = 0;

}
}

}

// ==

2

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/vector.c

/* Notez bien la différence entre construct_vector(), qui prend un vector
* par référence et la construit (= l'initialise),
* et ici create_vector() qui alloue dynamiquement un vector, LUI-MÊME
* (et non pas que son contenu !).
* Exemples d'utilisation :
*
* vector v; // le vector existe
* if (construct_vector(&v) != NULL) // passage par référence
*
* vector* pv = NULL; // il n'y a ici aucun vector qui existe
* ...
* pv = create_vector();
* if (pv != NULL) ...
*/

vector* create_vector(void) {
vector* v = malloc(sizeof(vector));
if (v != NULL) {

if (construct_vector(v) == NULL) {
free(v);
v = NULL;

}
}
return v;

}

// ==
void delete_vector(vector** v) {

if (*v != NULL) {
destruct_vector(*v);
free(*v);
*v = NULL;

}
}

// ==
vector* empty_vector(vector* v) {

if (v != NULL) {
v->size = 0;
// réinitialisation à 0 de tout le contenu (évite des fuites d'information)
memset(v->content, 0, v->allocated * sizeof(TYPE));
/* Notez qu'ici la multiplication par sizeof(TYPE) NE peut PAS déborder
* car déjà vérifiée lors de enlarge_vector(). */

}
return v;

}

// ==
vector* enlarge_vector(vector* v) {

if (v != NULL) {
vector result = *v;
result.allocated += VECTOR_PADDING;
if ((result.allocated > SIZE_MAX / sizeof(TYPE)) ||

((result.content = realloc(result.content,
result.allocated * sizeof(TYPE)))

== NULL)) {
return NULL; /* retourne NULL en cas d'échec ;

* v n'a pas été modifié.
*/

}

// initialisation à 0 de la nouvelle partie allouée
memset(&(result.content[v->allocated]), 0, VECTOR_PADDING * sizeof(TYPE));

3

// plus tard, on écrira « result.content + v->allocated » au lieu de « &(result.content[v->allocated]) »

// affectation finale, tout d'un coup (opération atomique)
*v = result;

}
return v;}

// ==
int ensure_capacity(vector* vect) {

if (vect != NULL) {
while (vect->size >= vect->allocated) {

if (enlarge_vector(vect) == NULL) {
return 0;

}
}
return 1;

}
return 0;

}

// ==
size_t vector_push(vector* vect, TYPE val) {

if ((vect != NULL) && ensure_capacity(vect)) {
vect->content[vect->size] = val;
++(vect->size);
return vect->size;

}
return 0;

}

// ==
int vector_set(vector* vect, size_t pos, TYPE val) {

if (vect != NULL) {
if (pos >= vect->size) vect->size = pos+1;
if (ensure_capacity(vect)) {

vect->content[pos] = val;
return 1;

}
}
return 0;

}

// ==
TYPE vector_get(vector const * vect, size_t pos) {

TYPE result = (TYPE) 0;
if (vect != NULL) {

if (pos < vect->size) {
result = vect->content[pos];

}
}
return result;

}

// ==
void print_vector(vector const * v, size_t line_length) {

printf("size: %zu\n", v->size);
printf("allocated: %zu\n", v->allocated);
puts("elements:");
if (v->size > 0) {

for (size_t i = 0, j = 1; i < v->size; ++i, ++j) {
printf("%d ", vector_get(v, i));
if (j >= line_length) {

putchar('\n');

4

j = 0;
}

}
putchar('\n');

} else {
puts("<aucun>");

}
}

// ==
int main(void)
{

vector v;
construct_vector(&v);

vector_push(&v, 2);
vector_set(&v, 3, -12);
print_vector(&v, 10);
putchar('\n');

empty_vector(&v);
print_vector(&v, 10);
putchar('\n');

vector_set(&v, 3 * VECTOR_PADDING + 5, -42);
print_vector(&v, VECTOR_PADDING);

destruct_vector(&v);
return 0;

}

Exercise 3: Matrix multiplications revisited (level 2)
Part 1: first improvement: exercise on pointers

(file matrices2.c)

#include <stdio.h>
#include <stdlib.h>

#define N 10

typedef struct {
double m[N][N];
size_t lignes;
size_t colonnes;

} Matrice;

Matrice* lire_matrice(void);
void affiche_matrice(Matrice const *);
Matrice* multiplication(Matrice const * a, Matrice const * b);

/* -- */
int main(void)
{

Matrice* M1 = NULL;
Matrice* M2 = NULL;
Matrice* M = NULL;

M1 = lire_matrice();
if (M1 != NULL) {

M2 = lire_matrice();
if (M2 != NULL) {

5

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/matrices2.c

if (M1->colonnes != M2->lignes) {
printf("Multiplication de matrices impossible !\n");

} else {
printf("Résultat :\n");
M = multiplication(M1, M2);
if (M != NULL) {

affiche_matrice(M);
free(M); M = NULL;

}
}
free(M2); M2 = NULL;

}
free(M1); M1 = NULL;

}
return 0;

}

/* -- */
Matrice* lire_matrice(void)
{

Matrice* resultat = NULL;

/* On alloue la place mémoire pour la matrice de résultat */
resultat = malloc(sizeof(Matrice));

if (resultat != NULL) {
size_t lignes;
size_t colonnes;

printf("Saisie d'une matrice :\n");

do {
printf(" Nombre de lignes (< %d) : ", N+1);
scanf("%zu", &lignes);

} while ((lignes < 1) || (lignes > N));

do {
printf(" Nombre de colonnes (< %d) : ", N+1);
scanf("%zu", &colonnes);

} while ((colonnes < 1) || (colonnes > N));

resultat->lignes = lignes;
resultat->colonnes = colonnes;
{ size_t i, j;
for (i = 0; i < lignes; ++i)

for (j = 0; j < colonnes; ++j) {
printf(" M[%zu,%zu]=", i+1, j+1);
scanf("%lf", &resultat->m[i][j]);

}
}

}

return resultat;
}

/* -- */
Matrice* multiplication(Matrice const * a, Matrice const * b)
{

Matrice* resultat = NULL;

/* On alloue la place mémoire pour la matrice de résultat */
resultat = malloc(sizeof(Matrice));

6

if (resultat != NULL) {
size_t i, j, k;

resultat->lignes = a->lignes;
resultat->colonnes = b->colonnes;

if (a->colonnes == b->lignes) {
for (i = 0; i < a->lignes; ++i)

for (j = 0; j < b->colonnes; ++j) {
resultat->m[i][j] = 0.0;
for (k = 0; k < b->lignes; ++k)

resultat->m[i][j] += a->m[i][k] * b->m[k][j];
}

}
else {
resultat = NULL;

}
}
return resultat;

}

/* -- */
void affiche_matrice(Matrice const * matrice)
{

size_t i, j;
for (i = 0; i < matrice->lignes; ++i) {

for (j = 0; j < matrice->colonnes; ++j) {
printf("%g ", matrice->m[i][j]);

}
putchar('\n');

}
}

Part 2 (level 3, optional): second improvement

(file matrices3.c)

#include <stdio.h>
#include <stdlib.h>

#define N 10

typedef struct {
double m[N][N];
size_t lignes;
size_t colonnes;

} Matrice;

Matrice* lire_matrice(Matrice*);
void affiche_matrice(Matrice const *);
Matrice* multiplication(Matrice const * a, Matrice const * b,

/* pas de const ici, la valeur pointée par resultat *
* sera modifiée. */
Matrice* resultat);

/* -- */
int main(void)
{

Matrice M1, M2, M3;

lire_matrice(&M1);
if (multiplication(&M1, lire_matrice(&M2), &M3) == NULL) {

printf("Multiplication de matrices impossible !\n");
} else {

7

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/matrices3.c

printf("Résultat :\n");
affiche_matrice(&M3);

}
return 0;

}

/* -- */
Matrice* lire_matrice(Matrice* resultat)
{

if (resultat != NULL) {
size_t lignes;
size_t colonnes;

printf("Saisie d'une matrice :\n");

do {
printf(" Nombre de lignes (< %d) : ", N+1);
scanf("%zu", &lignes);

} while ((lignes < 1) || (lignes > N));

do {
printf(" Nombre de colonnes (< %d) : ", N+1);
scanf("%zu", &colonnes);

} while ((colonnes < 1) || (colonnes > N));

resultat->lignes = lignes;
resultat->colonnes = colonnes;
{ size_t i, j;
for (i = 0; i < lignes; ++i)

for (j = 0; j < colonnes; ++j) {
printf(" M[%zu,%zu]=", i+1, j+1);
scanf("%lf", &resultat->m[i][j]);

}
}

}

return resultat;
}

/* -- */
Matrice* multiplication(Matrice const * a, Matrice const * b,

Matrice* resultat)
{

if (resultat != NULL) {
size_t i, j, k;

resultat->lignes = a->lignes;
resultat->colonnes = b->colonnes;

if (a->colonnes == b->lignes) {
for (i = 0; i < a->lignes; ++i)

for (j = 0; j < b->colonnes; ++j) {
resultat->m[i][j] = 0.0;
for (k = 0; k < b->lignes; ++k)

resultat->m[i][j] += a->m[i][k] * b->m[k][j];
}

} else {
resultat = NULL;

}
}
return resultat;

}

8

/* -- */
void affiche_matrice(Matrice const * matrice)
{

size_t i, j;
for (i = 0; i < matrice->lignes; ++i) {

for (j = 0; j < matrice->colonnes; ++j) {
printf("%g ", matrice->m[i][j]);

}
putchar('\n');

}
}

Part 3 (level 2): third improvement

(file matrices4.c)

#include <stdio.h>
#include <stdlib.h>

#ifndef SIZE_MAX
#define SIZE_MAX (~(size_t)0)
#endif

typedef struct {
double* m;

/* Attention ici : on stocke le tableau en continu donc PAS DE double**. *
* Ceux qui préfèrent double** auront une indirection de plus et un *
* tableau de pointeurs en plus en mémoire: perte de place ! *
* Sans compter que, comme ce sera présenté dans le cours 9, de telles *
* données ne seraiennt pas continues en mémoire. */

size_t lignes;
size_t colonnes;

} Matrice;

Matrice* empty(Matrice*);
void libere(Matrice*);
Matrice* redimensionne(Matrice*, size_t lignes, size_t colonnes);
Matrice* lire_matrice(Matrice*);
void affiche_matrice(Matrice const *);
Matrice* multiplication(Matrice const * a, Matrice const * b,

Matrice* resultat);

/* -- */
int main(void)
{

Matrice M1, M2, M3;

(void) lire_matrice(&M1);
/* On met cet appel à lire_matrice ici et non pas dans l'appel de *
* multiplication() car on ne peut garantir l'ordre d'évaluation des *
* arguments de l'appel (à multiplication)) et donc on ne peut *
* garantir que la lecture de M1 sera faite avant celle de M2. *
* Mettre cet appel ici permet de le garantir. */

if (multiplication(&M1, lire_matrice(&M2), empty(&M3))
/* Attention à ne pas oublier d'initialiser M3 !! */
== NULL) {

printf("Multiplication de matrices impossible !\n");
} else {

printf("Résultat :\n");
affiche_matrice(&M3);

}

9

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/matrices4.c

libere(&M1);
libere(&M2);
libere(&M3);
return 0;

}

/* -- */
Matrice* empty(Matrice* resultat)
{

if (resultat != NULL) {
resultat->lignes = 0 ;
resultat->colonnes = 0 ;
resultat->m = NULL ;

}
return resultat;

}

/* -- */
void libere(Matrice* resultat)
{

if (resultat != NULL) {
if (resultat->m != NULL) free(resultat->m);
(void) empty(resultat);

}
}

/* -- */
Matrice* lire_matrice(Matrice* resultat)
{

if (resultat != NULL) {
size_t lignes;
size_t colonnes;

do {
printf("Saisie d'une matrice :\n");

do {
printf(" Nombre de lignes : ");
scanf("%zu", &lignes);

} while (lignes < 1);

do {
printf(" Nombre de colonnes : ");
scanf("%zu", &colonnes);

} while (colonnes < 1);

resultat->lignes = lignes;
resultat->colonnes = colonnes;

if (SIZE_MAX / lignes < colonnes) {
resultat->m = NULL;

} else {
resultat->m = calloc(lignes*colonnes, sizeof(*(resultat->m)));

}
if (NULL == resultat->m) {

printf("Matrice trop grande pour être allouée :-(\n");
}

} while (NULL == resultat->m);

{ size_t i, j;
for (i = 0; i < lignes; ++i)

for (j = 0; j < colonnes; ++j) {

10

printf(" M[%zu,%zu]=", i+1, j+1);
scanf("%lf", &resultat->m[i*resultat->colonnes+j]);

}
}

}
return resultat;

}

/* -- */
Matrice* redimensionne(Matrice* resultat, size_t lignes, size_t colonnes)
{

if (resultat != NULL) {
if (SIZE_MAX / lignes < colonnes) return NULL;
if (resultat->lignes*resultat->colonnes < lignes*colonnes) {

if ((lignes*colonnes) > SIZE_MAX / sizeof(*(resultat->m))) return NULL;
double* const tmp = realloc(resultat->m, lignes*colonnes*sizeof(*(resultat->m)));
if (NULL == tmp) {

// don't change anything in case of failure
return NULL;

} else {
// success => update
resultat->m = tmp;
resultat->lignes = lignes;
resultat->colonnes = colonnes;

}
}

}
return resultat;

}

/* -- */
Matrice* multiplication(Matrice const * a, Matrice const * b,

Matrice* resultat)
{

if (resultat != NULL) {
size_t i, j, k;

if ((a->colonnes == b->lignes)
&& (redimensionne(resultat, a->lignes, b->colonnes) != NULL)) {

for (i = 0; i < a->lignes; ++i)
for (j = 0; j < b->colonnes; ++j) {

resultat->m[i*resultat->colonnes+j] = 0.0;
for (k = 0; k < b->lignes; ++k)

resultat->m[i*resultat->colonnes+j] += a->m[i*a->colonnes+k]
* b->m[k*b->colonnes+j];

}
} else {

resultat = NULL;
}

}
return resultat;

}

/* -- */
void affiche_matrice(Matrice const * matrice)
{

size_t i, j;
const size_t imax = matrice->lignes*matrice->colonnes;
for (i = 0; i < imax; i += matrice->colonnes) {

for (j = 0; j < matrice->colonnes; ++j) {
printf("%g ", matrice->m[i+j]);

}
putchar('\n');

11

}
}

Exercise 4: IP network
(file reseau.c)

// C99

#include <stdio.h> // pour les entrées/sorties
#include <stdlib.h> // pour les allocations mémoire

#ifndef SIZE_MAX
#define SIZE_MAX (~(size_t)0)
#endif

/* -- *
* Types de données *
* -- */

typedef unsigned char IP_Addr[4]; // ou uint32_t de <stdint.h>

typedef struct _node {
IP_Addr adresse;
const struct _node** voisins; // Attention aux DEUX étoiles ici !
// const optionnel (mais on ne modifie pas ses voisins ;-))
size_t nb_voisins;
/*

Note : on pourrait aussi ajouter un nb_allocated_voisins et faire
de l'allocation de voisins page par page (au lieu de 1 par 1).

*/
} Noeud;

/* -- *
* Prototypes (optionnel) *
* -- */

Noeud* creation(const unsigned char adr1,
const unsigned char adr2,
const unsigned char adr3,
const unsigned char adr4);

void sont_voisins(Noeud* p1, Noeud* p2);
// Pointeurs car les deux vont être modifiés (ajout de voisins).
// Autre type de retour possible (e.g. code d'erreur).

int ajoute_voisin(Noeud* p1, const Noeud* p2);
// Pensez MODULAIRE !
// const pointeur pour le second, non modifié ici.
// Retour : code d'erreur (optionnel, non utilisé d'ailleurs !)

unsigned int voisins_communs(const Noeud* p1, const Noeud* p2);
// const pointeurs pour éviter des copies inutiles.
// int ou size_t sont aussi valables commes type de retour.

void affiche(const Noeud* p);

void affiche_simple(const Noeud* p);
// Pensez MODULAIRE !

void libere(Noeud* p);
// NE PAS l'oublier !!

12

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/reseau.c

/* -- */
int main()
{

Noeud* rezo[] = {
creation(192, 168, 1, 1),
creation(192, 168, 1, 2),
creation(192, 168, 1, 3),
creation(192, 168, 10, 1),
creation(192, 168, 10, 2),
creation(192, 168, 20, 1),
creation(192, 168, 20, 2)

};

for (size_t i = 0 ; i < sizeof(rezo) / sizeof(rezo[0]); ++i) {
if (NULL == rezo[i]) {

fprintf(stderr, "pas assez de mémoire\n");
exit(-1);

}
}

sont_voisins(rezo[0], rezo[1]);
sont_voisins(rezo[0], rezo[2]);

sont_voisins(rezo[1], rezo[2]);
sont_voisins(rezo[1], rezo[3]);
sont_voisins(rezo[1], rezo[5]);

sont_voisins(rezo[2], rezo[3]);
sont_voisins(rezo[2], rezo[5]);

sont_voisins(rezo[3], rezo[4]);
sont_voisins(rezo[3], rezo[5]);

sont_voisins(rezo[5], rezo[6]);

affiche(rezo[3]);

affiche_simple(rezo[0]);
printf(" et ");
affiche_simple(rezo[5]);
printf(" ont %u voisins communs.\n", voisins_communs(rezo[0], rezo[5]));

affiche_simple(rezo[1]);
printf(" et ");
affiche_simple(rezo[2]);
printf(" ont %u voisins communs.\n", voisins_communs(rezo[1], rezo[2]));

/* garbage collecting */
for (size_t i = 0 ; i < sizeof(rezo) / sizeof(rezo[0]); ++i) {

libere(rezo[i]);
}
return 0;

}

/* -- *
* Définitions *
* -- */

// ==
Noeud* creation(const unsigned char adr1,

const unsigned char adr2,
const unsigned char adr3,

13

const unsigned char adr4)
{

Noeud* bebe = malloc(sizeof(Noeud));
if (NULL == bebe) {

fprintf(stderr, "Erreur (creation) : impossible d'allouer de la mémoire "
"pour un nouveau Noeud (%u.%u.%u.%u).\n", adr1, adr2, adr3, adr4);

return NULL;
}

bebe->adresse[0] = adr1;
bebe->adresse[1] = adr2;
bebe->adresse[2] = adr3;
bebe->adresse[3] = adr4;

bebe->voisins = NULL;
bebe->nb_voisins = 0;

return bebe;
}

// ==
int ajoute_voisin(Noeud* p1, const Noeud* p2)
{

if (p1 != NULL) {
if (NULL == p2) {

fprintf(stderr, "Erreur (ajoute_voisin) : impossible d'ajouter un NULL-voisin\n");
return 1;

}

++(p1->nb_voisins);
Noeud const ** const old_content = p1->voisins; // save, in case of error
if ((p1->nb_voisins > SIZE_MAX / sizeof(Noeud*)) ||

// NE PAS oublier de tester l'overflow !

((p1->voisins = realloc(p1->voisins, p1->nb_voisins * sizeof(Noeud*))) == NULL)
) {

// echec
p1->voisins = old_content;
--(p1->nb_voisins);
fprintf(stderr, "Erreur (ajoute_voisin) : %u.%u.%u.%u a déjà trop de voisins.\n",

p1->adresse[0] , p1->adresse[1], p1->adresse[2], p1->adresse[3]);
return 2;

}

p1->voisins[p1->nb_voisins-1] = p2;
return 0;

}
return 3;

}

// ==
void sont_voisins(Noeud* p1, Noeud* p2)
{

if (0 == ajoute_voisin(p1, p2)) {
(void)ajoute_voisin(p2, p1);

}
}

// ==
unsigned int voisins_communs(const Noeud* p1, const Noeud* p2)
{

unsigned int voisins_commun = 0;

14

if ((p1 != NULL) && (p2 != NULL)) {
for (size_t i = 0; i < p1->nb_voisins; ++i) {

for (size_t j = 0; j < p2->nb_voisins; ++j) {
if (p1->voisins[i] == p2->voisins[j]) {

++voisins_commun;
}

}
}

}

return voisins_commun;
}

// ==
void affiche(const Noeud* p)
{

affiche_simple(p);
printf(" a %zu voisins", p->nb_voisins);
if (p->nb_voisins >= 1) {

printf(" : ");
if (p->nb_voisins >= 2) {

for (size_t i = 0; i < p->nb_voisins - 1; ++i) {
affiche_simple(p->voisins[i]);
printf(", ");

}
}
affiche_simple(p->voisins[p->nb_voisins - 1]);
printf(".");

}
putchar('\n');

}

// ==
void affiche_simple(const Noeud* p)
{

if (p != NULL) {
printf("%u.%u.%u.%u"

, p->adresse[0]
, p->adresse[1]
, p->adresse[2]
, p->adresse[3]
);

} else {
puts("(affiche_simple :) NULL");

}
}

// ==
void libere(Noeud* p)
{

free(p->voisins);
free(p);

}

Exercise 5 : Snake Game
(file snake-sol.c)

/* ==
*
* Exercice snake.c du cours
* Programmation Orientee Systeme de M. Chappelier (Sections IN et SC).

15

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/snake-sol.c

*
* Si vous avez ncurses (libcurses-dev), compilez avec
* -DUSE_CURSES et -lncurses ; par exemple :
* gcc -ansi -pedantic -Wall -DUSE_CURSES snake.c -o snake -lncurses
*
* ==
*/

#include <stdio.h>
#include <stdlib.h>

#ifdef USE_CURSES
#include <curses.h>
#define printf printw
#else
#define printw printf
#endif

/***
* Here come the data definitions
***/

typedef struct {
int dx;
int dy;

} direction_t;

typedef enum {
EMPTY, WALL, FOOD, SNAKE

} map_cell_t;

typedef struct snake_segment_t_ {
unsigned int x;
unsigned int y;
int size;
direction_t direction;
struct snake_segment_t_ *prev;

} snake_segment_t;

typedef struct {
snake_segment_t* head;
snake_segment_t* tail;

} snake_t;

typedef struct {
snake_t snake;
unsigned int width;
unsigned int height;
map_cell_t* map;

} game_t;

/**
* This is the given game map.
**/

#define MAP_WIDTH 80
#define MAP_HEIGHT 25

static map_cell_t const header_data[] = {
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,

16

EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,FOOD,
FOOD,FOOD,FOOD,FOOD,FOOD,FOOD,FOOD,FOOD,FOOD,FOOD,FOOD,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,FOOD,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,FOOD,EMPTY,
EMPTY,EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,FOOD,EMPTY,
EMPTY,EMPTY,EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,

17

FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,FOOD,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,FOOD,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,
EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,EMPTY,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,
WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL,WALL

};

/**
* Here come the function definitions
**/

void snake_info(snake_t const* snake) {
snake_segment_t const* seg;

18

for (seg = snake->tail; seg; seg = seg->prev) {
printf("(%02d,%02d) %d /%-d:%-d\n", seg->x, seg->y, seg->size,

seg->direction.dx, seg->direction.dy);
}

}

void snake_erase_tail(snake_t* snake)
{

if (snake->tail != NULL) {
snake_segment_t* const newtail = snake->tail->prev;
free(snake->tail);
snake->tail = newtail;

}
}

void snake_destroy(snake_t* snake)
{

while (snake->tail != NULL) snake_erase_tail(snake);
}

int snake_add_segment(snake_t* snake, direction_t dir)
{

snake_segment_t* const seg = malloc(sizeof(snake_segment_t));
if (!seg) {

return -2;
}

seg->direction = dir;
seg->prev = NULL;

if (!snake->head) {
snake->tail = seg;
seg->size = 1;

} else {
seg->size = 0;
seg->x = snake->head->x + dir.dx;
seg->y = snake->head->y + dir.dy;
snake->head->prev = seg;

}
snake->head = seg;

return 0;
}

int snake_move(snake_t* snake, direction_t direction)
{

if (snake->head->direction.dx == direction.dx &&
snake->head->direction.dy == direction.dy) {
snake->head->x += direction.dx;
snake->head->y += direction.dy;

} else {
if (snake_add_segment(snake, direction) != 0) {

return -1;
}

}

if (snake->head == snake->tail) {
return 0;

}

++snake->head->size;
--snake->tail->size;

19

if (snake->tail->size == 0) {
snake_erase_tail(snake);

}

return 0;
}

map_cell_t* cell(game_t* game, unsigned int x, unsigned int y) {
return &(game->map[y* game->width + x]);

}

int game_update(game_t* game, direction_t direction)
{

snake_t* const snake = &game->snake;

unsigned int const tail_x = snake->tail->x - (snake->tail->size-1) * snake->tail->direction.dx;
unsigned int const tail_y = snake->tail->y - (snake->tail->size-1) * snake->tail->direction.dy;

if (snake_move(snake, direction) != 0) {
return -1;

}

switch (*cell(game, snake->head->x, snake->head->y)) {
case WALL:
case SNAKE:

return -1;

case FOOD:
++snake->tail->size;
break;

default:
*cell(game, tail_x, tail_y) = EMPTY;
break;

}

*cell(game, snake->head->x, snake->head->y) = SNAKE;

return 0;
}

int game_init_snake(game_t* game, unsigned int orig_x, unsigned int orig_y)
{

direction_t dir = {0,0};
game->snake.head = NULL;
game->snake.tail = NULL;

if (snake_add_segment(&game->snake, dir) != 0) {
return -1;

}

game->snake.head->x = orig_x;
game->snake.head->y = orig_y;

*cell(game, game->snake.head->x, game->snake.head->y) = SNAKE;

return 0;
}

/**/
int game_init_map(game_t* game, const map_cell_t* map, unsigned int width, unsigned int height)
{

unsigned int x, y;

20

game->width = width;
game->height = height;
game->map = calloc(game->width * game->height, sizeof(map_cell_t));

if (game->map == NULL) {
game->width = game->height = 0;
return -1;

}

for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {

*cell(game, x, y) = map[y*width + x];
}

}

return 0;
}

/**/
game_t* game_init(unsigned int orig_x, unsigned int orig_y)
{

game_t* game = malloc(sizeof(game_t));
if (game != NULL) {

if (game_init_map(game, header_data, MAP_WIDTH, MAP_HEIGHT) != 0) {
free(game); game = NULL;

} else if (game_init_snake(game, orig_x, orig_y) != 0) {
free(game->map);
free(game); game = NULL;

}
}
return game;

}

/**/
void game_destroy(game_t* game)
{

snake_destroy(&game->snake);
free(game->map);
free(game); game = NULL;

}

/***
* The following handles I/O and is not part of the game engine
**/

void game_print(game_t* game)
{

unsigned int x, y;
#ifdef USE_CURSES

const int color = has_colors();
clear();
if (color) {

start_color();
init_pair(WALL , COLOR_BLACK, COLOR_YELLOW);
init_pair(SNAKE, COLOR_BLACK, COLOR_GREEN);
init_pair(FOOD , COLOR_BLACK, COLOR_RED);

}
#endif

printw("\n");
for (y = 0; y < game->height; ++y) {

for (x = 0; x < game->width; ++x) {
switch(*cell(game, x, y)) {

21

case EMPTY:
printw(" ");
break;

case WALL:
#ifdef USE_CURSES

if (color) {
attron(COLOR_PAIR(WALL));
printw(" ");
attroff(COLOR_PAIR(WALL));

} else
#endif

printw("O");
break;

case FOOD:
#ifdef USE_CURSES

if (color) {
attron(COLOR_PAIR(FOOD));
printw(" ");
attroff(COLOR_PAIR(FOOD));

} else
#endif

printw("F");
break;

case SNAKE:
#ifdef USE_CURSES

if (color) {
attron(COLOR_PAIR(SNAKE));
printw(" ");
attroff(COLOR_PAIR(SNAKE));

} else
#endif

printw("S");
break;

default:
printw("?");
break;

}
}
printw("\n");

}
/* For debugging */
snake_info(&game->snake);

#ifdef USE_CURSES
refresh();

#else
getchar();

#endif
}

/* Transforms a keypress to dx and dy coordinates */
void handle_key_press(int key, direction_t* dir)
{
#ifndef USE_CURSES
#define KEY_DOWN 's'
#define KEY_UP 'w'
#define KEY_LEFT 'a'
#define KEY_RIGHT 'd'
#endif

switch (key) {

22

case KEY_DOWN:
dir->dx = 0; dir->dy = 1;
break;

case KEY_UP:
dir->dx = 0; dir->dy = -1;
break;

case KEY_RIGHT:
dir->dx = 1; dir->dy = 0;
break;

case KEY_LEFT:
dir->dx = -1; dir->dy = 0;
break;

default:
dir->dx = 0; dir->dy = 0;
break;

}
}

void game_loop(game_t* game)
{

direction_t dir;
#ifdef USE_CURSES

/* The user must move the snake manually, it does not move by itself */
#define getkey getch()
#else

/* Change this array to simulates moves.
* An x is a step where no keys are pressed */

char const keys[] = "xsxdxxxxxxxxxxxxxxxxwxxdxxwxxdxsxsxsx";
const char* key = keys;

#define getkey (*key)
#endif

do {
game_print(game);
handle_key_press(getkey, &dir);
if (dir.dx == 0 && dir.dy == 0) {

dir = game->snake.head->direction;
}

} while ((game_update(game, dir) == 0)
#ifndef USE_CURSES

&& (*++key)
#endif

);
printw("Game over\n");

}

int main(void)
{

game_t* game;

#ifdef USE_CURSES
initscr();
raw();
noecho();
keypad(stdscr, TRUE);

#endif

game = game_init(3,3);
if (game) {

game_loop(game);

23

game_destroy(game);
}

#ifdef USE_CURSES
endwin();

#endif
return 0;

}

24

	Correction series 2 : Pointers 1
	Exercise 1: Exploring memory (level 2)
	Exercise 2: dynamic arrays
	Exercise 3: Matrix multiplications revisited (level 2)
	Part 1: first improvement: exercise on pointers
	Part 2 (level 3, optional): second improvement
	Part 3 (level 2): third improvement

	Exercise 4: IP network
	Exercise 5 : Snake Game

