Correction series 2 : Pointers 1

Exercise 1: Exploring memory (level 2)

Here I present two variations of displaying the bits of a byte. There are of course many more! It is mainly to illustrate
from a practical point of view little-commented operations in progress (binary operations on memory).

One of the solutions also presents the ternary operator 7:: “A? B: C” is similar to “if (A) { B } else { C }”
(file memory_ view.c)
// C99

#include <stdio.h>

typedef unsigned char octet;

/[===s=s=s=s=sms=sms=s=s=s=s=s=s=s=sssssses=s—smsms—s—s—smsmsmsmsms=s=es

// version 1

static inline void affiche_bit(const octet c,
const octet position_pattern)
{
putchar(c & position_pattern 7 '1' : '0');
}

void affiche_binaire(const octet c) {
for(octet mask = 0x80; mask; mask >>= 1)
affiche_bit(c, mask);

/* version 2 : moins bonne que ci-dessus :
* affiche les bits « d l'envers » et n'affiche
* pas les O de poids fort.

*/
void affiche_binaire_2(octet c) {
do {
if (c & 1) putchar('1');
else putchar('0');
c>>=1; // ou c /= 2;
} while (c);
}

[/ ===========
void affiche(size_t i, octet c) {
printf("%02zu : ", i);
affiche_binaire(c);
printf (" %3u ", (unsigned int) c);
if ((c >= 32) && (c <= 126)) {
printf("'Jc'", c);

}
putchar('\n');
}
[/ ===========
void dump_mem(const octet* ptr, size_t length)
{

/* solution simple qui pourra étre améliorée
* lorsque nous aurons vu l'arithmétique des pointeurs
*/

printf("A partir de %p :\n", ptr);

for (size_t i = 0; i < length; ++i) {
affiche(i, ptrl[il);

}

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/memory_view.c

[/ ======= ====
int main(void)

{

int a 64 + 16;
int b -a;
double x =
double y =

0.5;
0.1

dump_mem((octet*) &a, sizeof(a));
dump_mem((octet*) &b, sizeof(b));
dump_mem((octet*) &x, sizeof(x));
dump_mem((octet*) &y, sizeof(y));

return O;

Exercise 2: dynamic arrays
(file vector.c)

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h> // pour SIZE MAX
#include <string.h> // pour memset

#define VECTOR_PADDING 32
#define TYPE int

typedef struct {

size_t size; // mombre d'éléments utilisés dans le tableau
size_t allocated; // nb élements déja alloués
TYPE* content; // tableau de contenu (alloc. dyn.)

} vector;

// ==== ====

vector* construct_vector(vector* v) {
vector* result = v;
if (result != NULL) {
result->size = 0;

result->content = calloc(VECTOR_PADDING, sizeof (TYPE));

if (result->content != NULL) {
result->allocated = VECTOR_PADDING;
} else {
result->allocated = 0O;
result = NULL;
}
}
return result;

}

// ======= ===

void destruct_vector(vector* v) {
if (v != NULL) {
if (v->content != NULL) {
free(v->content) ;
v->content = NULL;
v->size = v->allocated = 0;

/) ======= ===

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/vector.c

/* Notez bien la différence entre construct_vector(), qui prend un vector
* par référence et la construit (= l'initialise),
* et ici create_vector() qui alloue dynamiquement un vector, LUI-MEME
* (et non pas que son contenu !).
* Ezemples d'utilisation :

*

* vector v; // le vector existe

* if (construct_vector(&v) != NULL) // passage par référence
*

* vector* pv = NULL; // 4l n'y a ici aucun vector qui exziste
* pv = create_vector();

* if (pv != NULL)

*/

vector* create_vector(void) {
vector* v = malloc(sizeof (vector));
if (v '= NULL) {
if (construct_vector(v) == NULL) {
free(v);
v = NULL,;
¥
}
return v;

3

//
void delete_vector(vector** v) {
if (kv != NULL) {
destruct_vector (*v) ;
free(*v);
*y = NULL;
}

}

//
vector* empty_vector (vector* v) {
if (v != NULL) {
v->size = 0;
// réinitialisation d 0 de tout le contenu (évite des fuites d'information)
memset (v->content, 0, v->allocated * sizeof (TYPE));
/* Notez qu'ici la multiplication par sizeof (TYPE) NE peut PAS déborder

* car déjd vérifiée lors de enlarge_vector(). */
}
return v;
}
/7

vector* enlarge_vector (vector* v) {
if (v '= NULL) {
vector result = *v;
result.allocated += VECTOR_PADDING;
if ((result.allocated > SIZE_MAX / sizeof (TYPE)) ||
((result.content = realloc(result.content,
result.allocated * sizeof (TYPE)))
== NULL)) {
return NULL; /* retourne NULL en cas d'échec ;
* v n'a pas été modifié.
*/
}

// initialisation 4 O de la nouvelle partie allouée
memset (&(result.content[v->allocated]), O, VECTOR_PADDING * sizeof (TYPE));

// plus tard, on écrira « result.content + v->allocated » au lieu de <« &(result.content[v->allocated],

// affectation finale, tout d'un coup (opération atomique)
*v = result;
}

return v;}

/7
int ensure_capacity(vector* vect) {
if (vect != NULL) {
while (vect->size >= vect->allocated) {
if (enlarge_vector(vect) == NULL) {
return O;
}
}
return 1;
¥
return O;

}

// S===================s=sssSssssssSsSsSsSssSsSsSssSsSsSsSssssssssssss=s===
size_t vector_push(vector* vect, TYPE val) {
if ((vect != NULL) && ensure_capacity(vect)) {
vect->content [vect->size] = val;
++(vect->size) ;
return vect->size;
}

return O;

}

/7
int vector_set(vector* vect, size_t pos, TYPE val) {
if (vect != NULL) {
if (pos >= vect->size) vect->size = pos+l;
if (ensure_capacity(vect)) {
vect->content [pos] = val;
return 1;
}
}
return O;

3

/7
TYPE vector_get(vector const * vect, size_t pos) {
TYPE result = (TYPE) 0;
if (vect != NULL) {
if (pos < vect->size) {
result = vect->content [pos];
}
}

return result;

3

//
void print_vector(vector const * v, size_t line_length) {
printf("size: %zu\n", v->size);
printf("allocated: %zu\n", v->allocated);
puts("elements:");
if (v->size > 0) {
for (size_t i =0, j = 1; i < v->size; ++i, ++j) {
printf("%d ", vector_get(v, i));
if (j >= line_length) {
putchar('\n');

putchar('\n');
} else {
puts("<aucun>") ;

}

//
int main(void)
{
vector v;
construct_vector (&v) ;

vector_push(&v, 2);
vector_set(&v, 3, -12);
print_vector (&v, 10);
putchar('\n');

empty_vector (&v) ;
print_vector (&v, 10);
putchar('\n');

vector_set(&v, 3 * VECTOR_PADDING + 5, -42);
print_vector (&v, VECTOR_PADDING);

destruct_vector (&v) ;
return O;

Exercise 3: Matrix multiplications revisited (level 2)
Part 1: first improvement: exercise on pointers
(file matrices2.c)

#include <stdio.h>
#include <stdlib.h>

#define N 10

typedef struct {
double m[N] [N];
size_t lignes;
size_t colonnes;
} Matrice;

Matrice* lire_matrice(void);
void affiche_matrice(Matrice const *);
Matrice* multiplication(Matrice const * a, Matrice const * b);

K *x/
int main(void)
{

Matrice* M1 = NULL;

Matrice* M2 = NULL;

Matricex M = NULL;

M1 = lire_matrice();
if (M1 !'= NULL) {
M2 = lire_matrice();
if (M2 !'= NULL) {

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/matrices2.c

if (Ml1->colonnes != M2->lignes) {
printf("Multiplication de matrices impossible !\n");
} else {
printf ("Résultat :\n");
M = multiplication(M1, M2);
if (M != NULL) {
affiche_matrice(M);
free(M); M = NULL;
}
}
free(M2); M2 = NULL;
}
free(M1); M1 = NULL;
+
return O;

}

K *x/
Matrice* lire_matrice(void)
{

Matrice* resultat = NULL;

/* On alloue la place mémoire pour la matrice de résultat */
resultat = malloc(sizeof (Matrice));

if (resultat != NULL) {
size_t lignes;
size_t colonnes;

printf("Saisie d'une matrice :\n");

do {
printf (" Nombre de lignes (< %d) : ", N+1);
scanf ("%zu", &lignes);

} while ((lignes < 1) || (lignes > N));

do {
printf (" Nombre de colonnes (< %d) : ", N+1);
scanf ("%zu", &colonnes);

} while ((colonnes < 1) || (colonnes > N));

resultat->lignes = lignes;
resultat->colonnes = colonnes;
{ size_t i, j;
for (i = 0; i < lignes; ++i)
for (j = 0; j < colonnes; ++j) {
printf (" M[V%zu,%zul=", i+l, j+1);
scanf ("%1f", &resultat->m[i] [j1);
}
}
}

return resultat;

}

K *x/
Matrice* multiplication(Matrice const * a, Matrice const * b)
{

Matrice* resultat = NULL;

/* On alloue la place mémoire pour la matrice de résultat */
resultat = malloc(sizeof (Matrice));

if (resultat != NULL) {
size_t i, j, k;

resultat->lignes
resultat->colonnes

a->lignes;
b->colonnes;

if (a->colonnes == b->lignes) {
for (i = 0; 1 < a->lignes; ++i)
for (j = 0; j < b->colonnes; ++j) {
resultat->m[i] [j] = 0.0;
for (k = 0; k < b->lignes; ++k)
resultat->m[i] [j] += a->m[i] [k] * b->m[k] [j];
}
}
else {
resultat = NULL;
}
}
return resultat;

}

K
void affiche_matrice(Matrice const * matrice)
{
size_t i, j;
for (i = 0; i < matrice->lignes; ++i) {
for (j = 0; j < matrice->colomnes; ++j) {
printf("%g ", matrice->m[i] [j1);
}
putchar('\n');
}
}

Part 2 (level 3, optional): second improvement
(file matrices3.c)

#include <stdio.h>
#include <stdlib.h>

#define N 10

typedef struct {
double m[N] [N];
size_t lignes;
size_t colonnes;
} Matrice;

Matrice* lire_matrice(Matricex);
void affiche_matrice(Matrice const *);
Matrice* multiplication(Matrice const * a, Matrice const * D,

/* pas de const ici, la waleur pointée par resultat *

* sera modifiée.
Matrice* resultat);

e
int main(void)
{

Matrice M1, M2, M3;

lire_matrice (&M1);

if (multiplication(&M1, lire_matrice(&M2), &M3) == NULL) {
printf("Multiplication de matrices impossible !\n");

} else {

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/matrices3.c

printf ("Résultat :\n");
affiche_matrice(&M3);
}

return O;

Matrice* lire_matrice(Matrice* resultat)
{
if (resultat != NULL) {
size_t lignes;
size_t colonnes;

printf("Saisie d'une matrice :\n");

do {
printf (" Nombre de lignes (< %d) : ", N+1);
scanf ("%zu", &lignes);

} while ((lignes < 1) || (lignes > N));

do {
printf(" Nombre de colonnes (< %d) : ", N+1);
scanf ("%zu", &colonnes);

} while ((colonnes < 1) || (colonnes > N));

resultat->lignes = lignes;
resultat->colonnes = colonnes;
{ size_t i, j;
for (i = 0; i < lignes; ++i)
for (j = 0; j < colonnes; ++j) {
printf (" M[Y%zu,%zul=", i+l, j+1);
scanf ("%1f", &resultat->m[i] [j1);
}
}
}

return resultat;

}

K *x/
Matrice* multiplication(Matrice const * a, Matrice const * b,
Matrice* resultat)
{
if (resultat != NULL) {
size_t i, j, k;

resultat->lignes
resultat->colonnes

a->lignes;
b->colonnes;

if (a->colonnes == b->lignes) {
for (i = 0; 1 < a->lignes; ++i)
for (j = 0; j < b->colonnes; ++j) {
resultat->m[i] [j] = 0.0;
for (k = 0; k < b->lignes; ++k)
resultat->m[i] [j]1 += a->m[i] [k] * b->m[k] [j];
}
} else {
resultat = NULL;
}
}
return resultat;

3

/%

void affiche_matrice(Matrice const * matrice)

{

}

size_t i, j;
for (i = 0; i < matrice->lignes; ++i) {
for (j = 0; j < matrice->colonnes; ++j) {
printf("%g ", matrice->m[i] [j1);
}
putchar('\n');
}

Part 3 (level 2): third improvement

(file matrices4.c)

#include <stdio.h>
#include <stdlib.h>

#ifndef SIZE_MAX
#define SIZE_MAX (~(size_t)O0)
#endif

typedef struct {

}

double* m;

/* Attention ict : on stocke le tableau en continu donc PAS DE doublex*.
Ceuxr qut préférent doublex* auront une indirection de plus et un
tableau de pointeurs en plus en mémoire: perte de place !

*
*
* Sans compter que, comme ce sera présenté dans le cours 9, de telles
*

données ne seraiennt pas continues en mémoire.

size_t lignes;
size_t colonnes;
Matrice;

Matrice* empty(Matricex*);
void libere(Matricex*) ;

Matrice* redimensionne (Matrice*, size_t lignes, size_t colonnes) ;

Matrice* lire_matrice(Matricex);
void affiche_matrice(Matrice const *);

Matrice* multiplication(Matrice const * a, Matrice const * D,

Matrice* resultat);

int main(void)

{

Matrice M1, M2, M3;

(void) lire_matrice(&M1);

/* On met cet appel & lire_matrice ict et non pas dans l'appel de
* multiplication() car on ne peut garantir l'ordre d'évaluation des
* arguments de l'appel (d multiplication)) et donc on ne peut
* garantir que la lecture de M1 sera faite avant celle de M2.

* Mettre cet appel ict permet de le garantir.

if (multiplication(&M1, lire_matrice(&M2), empty(&M3))
/* Attention d ne pas oublier d'inttialiser M3 !! */

== NULL) {

printf ("Multiplication de matrices impossible !\n");

} else {
printf ("Résultat :\n");
affiche_matrice (&M3);

}

* ¥ ¥ x

* ¥ ¥ X%

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/matrices4.c

libere(&M1) ;
libere (&M2) ;
libere(&M3) ;
return O;

Matrice* empty(Matrice* resultat)
{
if (resultat != NULL) {
resultat->lignes =0 ;
resultat->colonnes = 0 ;

resultat->m = NULL ;
}
return resultat;
}
K
void libere(Matrice* resultat)
{

if (resultat != NULL) {
if (resultat->m !'= NULL) free(resultat->m);
(void) empty(resultat);
}
+

K
Matrice* lire_matrice(Matricex resultat)
{
if (resultat != NULL) {
size_t lignes;
size_t colonnes;

do {
printf("Saisie d'une matrice :\n");

do {
printf (" Nombre de lignes : ");
scanf ("%zu", &lignes);

} while (lignes < 1);

do {
printf(" Nombre de colonnes : ");
scanf ("%zu", &colonnes) ;

} while (colonnes < 1);

resultat->lignes lignes;
resultat->colonnes = colonnes;

if (SIZE_MAX / lignes < colonnes) {
resultat->m = NULL;
} else {
resultat->m = calloc(lignes*colonnes, sizeof (*(resultat->m)));
}
if (NULL == resultat->m) {
printf("Matrice trop grande pour &tre allouée :-(\n");

}
} while (NULL == resultat->m);
{ size_t i, j;

for (i = 0; i < lignes; ++i)
for (j = 0; j < colonmes; ++j) {

10

printf (" M[%zu,%zul=", i+l, j+1);
scanf ("}1f", &resultat->m[i*resultat->colonnes+jl);
}
}
}
return resultat;

}

K *x/
Matrice* redimensionne(Matrice* resultat, size_t lignes, size_t colonnes)
{
if (resultat != NULL) {
if (SIZE_MAX / lignes < colonnes) return NULL;
if (resultat->lignes*resultat->colonnes < lignes*colonnes) {
if ((lignes*colonnes) > SIZE_MAX / sizeof (*(resultat->m))) return NULL;
double* const tmp = realloc(resultat->m, lignes*colonnes*sizeof (*(resultat->m)));
if (NULL == tmp) {
// don't change anything in case of failure
return NULL;
} else {
// success => update
resultat->m = tmp;

resultat->lignes = lignes;
resultat->colonnes = colonnes;
}
}
}
return resultat;
}
K *x/

Matrice* multiplication(Matrice const * a, Matrice const * D,
Matrice* resultat)

{
if (resultat != NULL) {
size_t i, j, k;
if ((a->colonnes == b->lignes)
&& (redimensionne(resultat, a->lignes, b->colonnes) != NULL)) {
for (i = 0; 1 < a->lignes; ++i)
for (j = 0; j < b->colonnes; ++j) {
resultat->m[i*resultat->colonnes+j] = 0.0;
for (k = 0; k < b->lignes; ++k)
resultat->m[i*resultat->colonnes+j] += a->m[i*a->colonnes+k]
* b->m[k*b->colonnes+jl;
}
} else {
resultat = NULL;
}
}
return resultat;
}
K */
void affiche_matrice(Matrice const * matrice)
{

size_t i, j;
const size_t imax = matrice->lignes*matrice->colonnes;
for (i = 0; i < imax; i += matrice->colonnes) {
for (j = 0; j < matrice->colomnes; ++j) {
printf("%g ", matrice->m[i+jl);
+
putchar('\n');

11

Exercise 4: IP network

(file reseau.c)

// C99

#include <stdio.h> // pour les entrées/sorties
#include <stdlib.h> // pour les allocations mémoire

#ifndef SIZE_MAX
#define SIZE_MAX (~(size_t)0)

#endif

et T *
* Types de données *
K o *x/

typedef unsigned char IP_Addr[4]; // ou wint32_t de <stdint.h>

typedef struct _node {

IP_Addr adresse;

const struct _nodex* voisins; // Attention aux DEUX étoiles ici !

// const optionnel (mais on ne modifie pas ses voisins ;=))

size_t nb_voisins;

/*
Note : on pourrait ausst ajouter un nb_allocated_voisins et faire
de l'allocation de voisins page par page (au lieu de 1 par 1).

*/

} Noeud;

K *
* Prototypes (optionnel) *
K o *x/

Noeud* creation(const unsigned char adri,
const unsigned char adr2,
const unsigned char adr3,
const unsigned char adr4);

void sont_voisins(Noeud* pl, Noeud* p2);
// Pointeurs car les deuxz vont étre modifiés (ajout de voisins).
// Autre type de retour possible (e.g. code d'erreur).

int ajoute_voisin(Noeud* pl, const Noeud* p2);

// Pensez MODULAIRE !

// const pointeur pour le second, mon modifié ict.

// Retour : code d'erreur (optionnel, nmon utilisé d'atlleurs !)

unsigned int voisins_communs(const Noeud* pl, const Noeud* p2);
// const pointeurs pour éviter des copies tnutiles.
// int ou size_t sont ausst valables commes type de retour.

void affiche(const Noeud* p);

void affiche_simple(const Noeud* p);
// Pensez MODULAIRE !

void libere(Noeud* p);
// NE PAS 1'oublier !!

12

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/reseau.c

int main()

{

Noeud* rezol[] = {
creation(192, 168, 1, 1),
creation(192, 168, 1, 2),
creation(192, 168, 1, 3),
creation(192, 168, 10, 1),
creation(192, 168, 10, 2),
creation(192, 168, 20, 1),
creation(192, 168, 20, 2)

}s

for (size_t i = 0 ; i < sizeof(rezo) / sizeof(rezo[0]); ++i) {
if (NULL == rezol[il]) {
fprintf (stderr, "pas assez de mémoire\n");
exit(-1);
}
}

sont_voisins(rezo[0], rezol[1]);
sont_voisins(rezo[0], rezol2]);

sont_voisins(rezo[1], rezo[2]);
sont_voisins(rezo[1], rezol[3]);
sont_voisins(rezo[1], rezo[5]);

sont_voisins(rezo[2], rezol[3]);
sont_voisins(rezo[2], rezol[5]);

sont_voisins(rezo[3], rezol[4]);
sont_voisins(rezo[3], rezol5]);

sont_voisins(rezo[5], rezol6]);
affiche(rezo[3]);

affiche_simple(rezo[0]);

printf(" et ");

affiche_simple(rezo[5]);

printf (" ont %u voisins communs.\n", voisins_communs(rezo[0], rezo[5]));

affiche_simple(rezol[1]);

printf(" et ");

affiche_simple(rezo[2]);

printf (" ont %u voisins communs.\n", voisins_communs(rezo[1], rezo[2]));

/* garbage collecting */
for (size_t i = 0 ; i < sizeof(rezo) / sizeof(rezol[0]); ++i) {
libere(rezol[il);

}
return O;

}

K e *
* Définitions *
K */

// m=mmmmmmmmmmmmm e omomosssossososooooooooes

Noeud* creation(const unsigned char adril,
const unsigned char adr2,
const unsigned char adr3,

13

const unsigned char adr4)

Noeud* bebe = malloc(sizeof (Noeud)) ;
if (NULL == bebe) {
fprintf (stderr, "Erreur (creation) : impossible d'allouer de la mémoire
"pour un nouveau Noeud (%u.%u.%u.%u).\n", adrl, adr2, adr3, adr4);
return NULL;

¥

bebe->adresse[0] = adrl;
bebe->adresse[1] = adr2;
bebe->adresse[2] = adr3;
bebe->adresse[3] = adr4;

bebe->voisins = NULL;
bebe->nb_voisins = 0;

return bebe;

}
/7
int ajoute_voisin(Noeud* pl, const Noeud* p2)
{
if (p1l != NULL) {
if (NULL == p2) {
fprintf (stderr, "Erreur (ajoute_voisin) : impossible d'ajouter un NULL-voisin\n");
return 1;
}
++(pl->nb_voisins);
Noeud const ** const old_content = pl->voisins; // save, in case of error
if ((pl->nb_voisins > SIZE_MAX / sizeof (Noeud*)) ||
// NE PAS oublier de tester l'overflow !
((p1->voisins = realloc(pl->voisins, pl->nb_voisins * sizeof (Noeud*))) == NULL)
) {
// echec
pl->voisins = old_content;
--(pl->nb_voisins);
fprintf (stderr, "Erreur (ajoute_voisin) : %u.%u.%u.%u a déja trop de voisins.\n",
pl->adresse[0] , pl->adresse[l], pl->adresse[2], pl->adresse[3]);
return 2;
}
pl->voisins[pl->nb_voisins-1] = p2;
return O;
}
return 3;
}
/7
void sont_voisins(Noeud* pl, Noeud* p2)
{
if (0 == ajoute_voisin(pl, p2)) {
(void)ajoute_voisin(p2, pl);
}
}
ved
unsigned int voisins_communs (const Noeud* pl, const Noeud* p2)
{

unsigned int voisins_commun = O;

14

if ((pl '= NULL) && (p2 != NULL)) {
for (size_t i = 0; i < pl->nb_voisins; ++i) {
for (size_t j = 0; j < p2->nb_voisins; ++j) {
if (pl->voisins[i] == p2->voisins[j]) {
++voisins_commun;
}
}
}
}

return voisins_commun;

}

/7
void affiche(const Noeud* p)
{
affiche_simple(p);
printf (" a %zu voisins", p->nb_voisins);
if (p~>nb_voisins >= 1) {
printf(" : ");
if (p->nb_voisins >= 2) {
for (size_t i = 0; i < p->nb_voisins - 1; ++i) {
affiche_simple(p->voisins[il);

printf (", ");
}
}
affiche_simple(p->voisins[p->nb_voisins - 1]);
printf(".");
}
putchar('\n');
}
[/ ======= SesssssssssssssssssssssssssssssssssssssS
void affiche_simple(const Noeud* p)
{

if (p !'= NULL) {
printf ("Ju.%u. %u. ju"
, p—>adresse[0]
, p~—>adressel[1]
, p—>adresse[2]
, p—>adresse[3]
);
} else {
puts("(affiche_simple :) NULL");
}
}

// ====
void libere(Noeud* p)
{
free(p->voisins);
free(p);
}

Exercise 5 : Snake Game
(file snake-sol.c)

J/*

*

* Exercice snake.c du cours
* Programmation Orientee Systeme de M. Chappelier (Sections IN et SC).

15

https://moodle.epfl.ch/pluginfile.php/3315951/mod_folder/content/0/snake-sol.c

*

* Si vwous avez ncurses (libcurses-dev), compilez avec
* -DUSE_CURSES et -lncurses ; par exemple :
* gcc —anst —pedantic -Wall —-DUSE_CURSES snake.c —o snake —lncurses

*/
#include <stdio.h>
#include <stdlib.h>

#ifdef USE_CURSES
#include <curses.h>
#define printf printw
#else

#define printw printf
#endif

/e e e e e e A A A A A A A A A e e e e e He A A A A A A A A A e e e KA A A A A A A A e e e e KK
* Here come the data definitions
e A A A AAAA A A A KKK AAAAAA A KKK KKAAAAA KKK KKK KK)
typedef struct {
int dx;
int dy;
} direction_t;

typedef enum {
EMPTY, WALL, FOOD, SNAKE
} map_cell_t;

typedef struct snake_segment_t_ {
unsigned int x;
unsigned int y;
int size;
direction_t direction;
struct snake_segment_t_ *prev;
} snake_segment_t;

typedef struct {
snake_segment_t* head;
snake_segment_t* tail;
} snake_t;

typedef struct {
snake_t snake;
unsigned int width;
unsigned int height;
map_cell_t* map;

} game_t;

/K e e e e e A A A A A A A A e e e e HH A A A A A A A A e e e e K KA A A A A A A A e e KKK
* This 1s the given game map.
AR A A KK AAAAAAAAA KKK A AAAAAAAA KK H KKK AAAA KKK KKK KKK)
#define MAP_WIDTH 80
#define MAP_HEIGHT 25

static map_cell_t const header_datal] = {
WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL,
WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL,
WALL ,WALL,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL,
WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL,
WALL ,WALL,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL,
WALL ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,

16

EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL,EMPTY,EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL ,EMPTY,EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY ,EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL ,EMPTY ,EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , FOOD,
FOOD, FOOD, FOOD , FOOD , FOOD, FOOD , FOOD , FOOD , FOOD , FOOD , FOOD , FOOD , EMPTY , EMPTY , EMPTY , EMPTY ,

EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL,EMPTY ,EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY , EMPTY , EMPTY, FOOD , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY, EMPTY, EMPTY , EMPTY, FOOD, FOOD , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY,FOOD, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL ,EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY, EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY,FOOD, EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL ,EMPTY ,EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY , EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , FOOD, EMPTY,,
EMPTY ,EMPTY,FOOD, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL ,EMPTY ,EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY, EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , FOOD, EMPTY,
EMPTY ,EMPTY, EMPTY, FOOD , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL ,EMPTY ,EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL , WALL , WALL , WALL , WALL,
WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL , WALL.,

WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,

EMPTY ,EMPTY, EMPTY, FOOD , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL ,EMPTY, EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , FOOD , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY,FOOD, EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL , WALL , WALL , WALL , WALL,
WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL , WALL,

WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,

EMPTY ,EMPTY, EMPTY, FOOD , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL ,EMPTY , EMPTY, EMPTY ,EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL ,WALL , WALL , WALL , WALL,
WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL , WALL.,

WALL ,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,

EMPTY , EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL,EMPTY,EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL ,WALL , WALL , WALL , WALL,
WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL ,WALL ,WALL , WALL , WALL.,

WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,

EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL,EMPTY, EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL ,WALL , WALL , WALL , WALL,
WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL , WALL.,

WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY ,

17

FOOD, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL ,EMPTY,EMPTY, EMPTY ,EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL , WALL , WALL , WALL , WALL,
WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL ,WALL ,WALL , WALL , WALL,,

WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,

EMPTY ,EMPTY, EMPTY, EMPTY , EMPTY , EMPTY , EMPTY, FOOD, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL ,EMPTY,EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL , WALL , WALL , WALL , WALL,
WALL,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL ,WALL ,WALL , WALL , WALL.,

WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,

EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL,EMPTY,EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY, EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL ,WALL , WALL , WALL , WALL,
WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL , WALL ,WALL , WALL , WALL.,

WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY,

EMPTY ,EMPTY, EMPTY, FOOD , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL ,EMPTY,EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL , WALL , WALL , WALL , WALL,
WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL ,WALL ,WALL , WALL , WALL.,

WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY ,

EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL,EMPTY, EMPTY, EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL ,WALL , WALL , WALL , WALL,
WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL ,WALL ,WALL , WALL , WALL,,

WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY ,

EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL ,EMPTY, EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , FOOD,
EMPTY ,EMPTY, EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL ,WALL , WALL , WALL , WALL,
WALL,WALL,WALL,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL , WALL , WALL,
WALL,WALL,WALL,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY ,

EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL,EMPTY,EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL,EMPTY,EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY, EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY, EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY,EMPTY, EMPTY, FOOD , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL ,EMPTY ,EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY,FOOD, EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY, FOOD , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY,EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL,EMPTY ,EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY, EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY, EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY,
EMPTY ,EMPTY , EMPTY , EMPTY ,EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , EMPTY , WALL,
WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL , WALL.,

WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL , WALL,
WALL,WALL,WALL,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL ,WALL , WALL , WALL , WALL,

WALL,WALL,WALL ,WALL ,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL , WALL , WALL,

WALL,WALL,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL ,WALL , WALL , WALL , WALL , WALL , WALL

void snake_info(snake_t const* snake) {
snake_segment_t const* seg;

18

for (seg = snake->tail; seg; seg = seg->prev) {
printf (" (%02d,%02d) %d /%-d:%-d\n", seg->x, seg->y, seg->size,
seg->direction.dx, seg->direction.dy);

}
}
void snake_erase_tail (snake_t* snake)
{
if (snake->tail != NULL) {
snake_segment_t* const newtail = snake->tail->prev;
free(snake->tail);
snake->tail = newtail;
}
}
void snake_destroy(snake_t* snake)
{
while (snake->tail '= NULL) snake_erase_tail (snake);
}

int snake_add_segment (snake_t* snake, direction_t dir)
{
snake_segment_t* const seg = malloc(sizeof (snake_segment_t)) ;
if ('seg) {
return -2;

}

seg->direction = dir;
seg->prev = NULL;

if (!snake->head) {
snake->tail = seg;
seg->size = 1;

} else {
seg->size = 0;
seg->x = snake->head->x + dir.dx;
seg->y = snake->head->y + dir.dy;
snake->head->prev = seg;

b

snake->head = seg;

return O;

int snake_move(snake_ t* snake, direction_t direction)

if (snake->head->direction.dx == direction.dx &&
snake->head->direction.dy == direction.dy) {
snake->head->x += direction.dx;
snake->head->y += direction.dy;

} else {
if (snake_add_segment (snake, direction) != 0) {
return -1;
}
}
if (snake->head == snake->tail) {
return O;
}

++snake—->head->size;
-—-snake->tail->size;

19

if (snake->tail->size == 0) {
snake_erase_tail (snake) ;

3

return 0;

map_cell_t* cell(game_t* game, unsigned int x, unsigned int y) {
return &(game->map[y* game->width + x]);

}

int game_update(game_t* game, direction_t direction)
{

snake_t* const snake = &game->snake;

unsigned int const tail_x = snake->tail->x - (snake->tail->size-1) * snake->tail->direction.dx;
unsigned int const tail_y = snake->tail->y - (snake->tail->size-1) * snake->tail->direction.dy;

if (snake_move(snake, direction) != 0) {
return -1;

}

switch (*cell(game, snake->head->x, snake->head->y)) {
case WALL:
case SNAKE:

return -1;

case FOOD:
++snake->tail->size;
break;

default:
xcell(game, tail_x, tail_y) = EMPTY;
break;

}

xcell(game, snake->head->x, snake->head->y) = SNAKE;

return O;

int game_init_snake(game_t* game, unsigned int orig_x, unsigned int orig_y)

direction_t dir = {0,0};
game->snake.head = NULL;
game->snake.tail NULL;

if (snake_add_segment (4game->snake, dir) != 0) {
return -1;

}

game->snake.head->x = orig_x;

game->snake.head->y = orig_y;

*cell(game, game->snake.head->x, game->snake.head->y) = SNAKE;
return O;
/****>/<****************************>/<******************************/
int game_init_map(game_t* game, const map_cell_t* map, unsigned int width, unsigned int height)

{

unsigned int x, y;

20

game->width = width;
game->height = height;
game->map = calloc(game->width * game->height, sizeof (map_cell_t));

if (game->map == NULL) {
game->width = game->height = O;
return -1;

}

for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {
xcell(game, x, y) = mapl[y*width + x];
}

return O;

/A KA A A KA A A KA KA KA KA A KA KA A A KA KA A A KA KA KA A KA KK A KK KKK KKK)
game_t* game_init(unsigned int orig_x, unsigned int orig_y)
{
game_t* game = malloc(sizeof (game_t));
if (game != NULL) {
if (game_init_map(game, header_data, MAP_WIDTH, MAP_HEIGHT) != 0) {
free(game); game = NULL;
} else if (game_init_snake(game, orig_x, orig_y) != 0) {
free(game->map) ;
free(game); game = NULL;
}
+

return game;

/**/
void game_destroy(game_t* game)

{
snake_destroy (&game->snake) ;
free(game->map) ;
free(game); game = NULL;

}

/KA A KA A KA KA A KA H KA A A K HH KA A A A A He A A FH KA A A K HH KA A K

* The following handles I/0 and is not part of the game engine
AR HHHHAAAAAAAA A A KKK HHFAAAAAAAAA A KKK FFAAAAAAAA KKK KKK K)

void game_print (game_t* game)
{
unsigned int x, y;
#ifdef USE_CURSES
const int color = has_colors();
clear();
if (color) {
start_color();
init_pair (WALL , COLOR_BLACK, COLOR_YELLOW);
init_pair (SNAKE, COLOR_BLACK, COLOR_GREEN);
init_pair(FOOD , COLOR_BLACK, COLOR_RED);
+
#endif
printw("\n");
for (y = 0; y < game—>height; ++y) {
for (x = 0; x < game—>width; ++x) {
switch(*cell(game, x, y)) {

21

case EMPTY:
printw(" ");
break;

case WALL:
#ifdef USE_CURSES
if (color) {
attron(COLOR_PAIR(WALL)) ;
printw(" ");
attroff (COLOR_PAIR(WALL));
} else
#endif
printw("0");
break;

case FQOOD:
#ifdef USE_CURSES
if (color) {
attron (COLOR_PAIR(FOOD)) ;
printw(" ");
attroff (COLOR_PAIR(FOOD)) ;
} else
#endif
printw("F");
break;

case SNAKE:
#ifdef USE_CURSES
if (color) {
attron (COLOR_PAIR(SNAKE)) ;
printw(" ");
attroff (COLOR_PAIR(SNAKE)) ;
} else
#endif
printw("S");
break;
default:
printw("?");
break;
}
}
printw("\n");
}
/* For debugging */
snake_info (&game->snake) ;
#ifdef USE_CURSES
refresh();
#else
getchar() ;
#endif
}

/* Transforms a keypress to dr and dy coordinates */
void handle_key_press(int key, direction_t* dir)

{

#ifndef USE_CURSES

#define KEY_DOWN 's'

#define KEY_UP 'w'

#define KEY_LEFT 'a'

#define KEY_RIGHT 'd'

#endif

switch (key) {

22

case KEY_DOWN:

dir->dx = 0; dir->dy = 1;
break;

case KEY_UP:
dir->dx = 0; dir->dy = -1;
break;

case KEY_RIGHT:
dir->dx = 1; dir->dy
break;

]
o

case KEY_LEFT:
dir->dx = -1; dir->dy
break;

]
o

default:
dir->dx = 0; dir->dy
break;

]
o

void game_loop(game_t* game)
{
direction_t dir;
#ifdef USE_CURSES
/* The user must move the snake manually, it does mot move by itself */
#define getkey getch()
#else
/* Change this array to simulates moves.
* An = is a step where no keys are pressed */
char const keys[] = "xsxdxxxxXxXXXXXXXXXxXWxxdxxwxxdxsxsxsx";
const char* key = keys;
#define getkey (*key)
#endif
do {
game_print (game) ;
handle_key_press(getkey, &dir);
if (dir.dx == 0 && dir.dy == 0) {
dir = game->snake.head->direction;

}
} while ((game_update(game, dir) == 0)
#ifndef USE_CURSES
&& (x++key)
#endif
);

printw("Game over\n");

int main(void)
{

game_t* game;

#ifdef USE_CURSES
initscr();
raw() ;
noecho() ;
keypad(stdscr, TRUE);
#endif

game = game_init(3,3);

if (game) {
game_loop (game) ;

23

game_destroy (game) ;

#ifdef USE_CURSES
endwin() ;
#tendif
return O;

24

	Correction series 2 : Pointers 1
	Exercise 1: Exploring memory (level 2)
	Exercise 2: dynamic arrays
	Exercise 3: Matrix multiplications revisited (level 2)
	Part 1: first improvement: exercise on pointers
	Part 2 (level 3, optional): second improvement
	Part 3 (level 2): third improvement

	Exercise 4: IP network
	Exercise 5 : Snake Game

