ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
EIDGENOSSISCHE TECHNISCHE HOCHSCHULE — LAUSANNE
POLITECNICO FEDERALE — LOSANNA

I SWISS FEDERAL INSTITUTE OF TECHNOLOGY — LAUSANNE

Faculté Informatique et Communications
CS—-202 Computer Systems
Argyraki K., Bugnion E. & Chappelier J.-C.

CS—202 COMPUTER SYSTEMS

Midterm solution

March 20%", 2024

INSTRUCTIONS (please read carefully)

IMPORTANT! Please strictly follow these instructions, otherwise your exam may be
canceled.

1.
2.
3.

You have one hour and forty-five minutes to complete this examination (1:15-3:00pm).
You must use black or dark blue ink, neither pencil nor any other color.

This is closed book exam.
Personal notes, two times dual-sided A4 sheets (4 sides in total), allowed.

On the other hand, you may not use any personal computer, mobile phone or any other electronic
equipment.

Answer the questions directly on the exam sheet; do not attach any any additional sheets; only
this document will be graded.

Two additional blank pages are provided at the end of the handout. If you use them, please
clearly state the question number you are answering.

Carefully and completely read each question so as to do only what we actually ask for. If the
statement seems unclear, or if you are in any doubt, ask one of the assistants for clarification.

The exam consists of five independent exercises, which can be addressed in any order, but which
do not score the same (points are indicated, the total is 90 points); all exercises count for the
final grade.

LEAVE THIS EMPTY
Question 1 | Question 2 | Question 3 | Question 4 | Question 5 | TOTAL
11 15 12 12 40 90

Question 1 Parents and children [11 points]

Assume that the current directory has a single file named myfork.c containing the following program.
The program is compiled using the following command: gcc myfork.c -o myfork

The program compiles without any error. Background: The library call execvp(cmd, arglist)
calls the exec system call to execute cmd with the argument list arglist. As is with the convention,
myargs [0] below corresponds to cmd. arglist is passed as argv to the main () function of the executed
program.

Analyze the following program and answer the following questions:

1 #include<stdio.h>

2 #include<unistd.h>

3 #include<sys/wait.h>

4 #include<string.h>

5

6 int main(int argc, char *argv[])
7 A

8 int pid = fork();

9 if (pid == 0) {

10 if (strcmp(argv([1], "0") == 0) {
11 char *myargs[3];

12 myargs [0] = strdup("./myfork");
13 myargs[1] = strdup("1");
14 myargs[2] = NULL;

15 execvp(myargs [0], myargs);
16 } else {

17 char *myargs[2];

18 myargs[0] = strdup("1ls");
19 myargs[1] = NULL;

20 execvp(myargs [0], myargs);
21 }

22 printf ("Child started\n");
23 } else {

24 wait (NULL);

25 printf("Child finished\n");
26 }

27 return O;

28}

On the terminal, you launch the following command: ./myfork 0

@ [6 points] Draw a process diagram that includes parent-child relationship and the program name
and argument in each node (after exec, when applicable)

@ [1 point] How many processes will be created during the execution (including the original in-
stance of myfork)?

® [4 points] What is the output of the above command? Is the output deterministic?

CS-202, Midterm — IN & SC
L Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

m
1
1

Answers:

@) @3

®

myfork myfork.c
Child finished
Child finished

Note: any order/layout of myfork and myfork.c is acceptable
Note: alternative: mentioning <content of directory> rather than
myfork myfork.c

CS-202, Midterm — IN & SC
E PFL Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

Question 2 Fibonacci [15 points]

Assume a 64-bit architecture with sizeof (long long) = 8. Assume a calling convention where all
arguments are pushed on the stack, and no compiler optimizations such as use of registers to store
temporary variables. Everything that logically belongs on the stack is on the stack.

Considered the following code, compiled to ./fibo:

#include <stdio.h>
#include <stdlib.h>

long long steps;

long long fibonacci(long long n)
{
steps += 1;
if (n < 2) return 1;
long long x = fibonacci(n-1);
long long y = fibonacci(n-2);
return x + y;

}

int main(int argc, char *argv[])
{
steps = 0;
long long n = atoi(argv[1]);
if (> 0) {
long long f = fibonacci(n);
printf ("Fibonacci of n=%11d is J%11d"
"and requires %11ld invocations\n",
n, f, steps);

}

return O;

@ [1.5 points] What is the output of ./fibo 37

@ [6 points] Assume a constrained machine so that the stack can only be 8 KiB (8 x 1024 bytes)
in size. For which approximate value of n is there a likely stack overflow (stack pointer exceeds
stack size)? State your assumptions clearly.

® [5 points] Currently the program only uses the stack. Modify the above program to additionally
use the data segment (without changing the algorithmic complexity of the program).
Put your modifications directly on the above provided code.

@ [2.5 points] For your modified program, does your answer to the subquestion @ above change?
State your assumptions clearly.

Answers:
@® Fibonacci of n=3 is 3 and requires 5 invocations

@ Each call as two arguments, the RIP and two local variable, thus five times 8 bytes.

CS-202, Midterm — IN & SC
E P:: L Argyraki K., Bugnion E. & Chappelier J.-C. March 20", 2024

Stack will thus be exhausted after roughly 8 x 1024/(5 x 8) ~ 204 calls.

Notice that the calls are depth-first, thus the first branch (fibonacci(n-1, steps)) exhausts
the stack before anything else.

® see above

@ Not a big change: step is no longer on the stack, thus the above 5 turns into a 4: 1024/4 ~ 256
calls.

CS-202, Midterm — IN & SC
E PFL Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

Question 3 A few pages [12 points]

Consider a system with 32-bit virtual and physical addresses, with pages of 4 KiB size and the MMU
uses a linear page table. Recall that in hexadecimal notation, 0x1000 equals 4 KiB.

A process in this system require 4 virtual pages, out of which only 3 virtual pages are mapped to
physical pages in the following manner:

e virtual page 1, containing the text section of the process, maps to physical page 6;
e virtual page 2, containing the data section of the process, maps to physical page 3;
e virtual page 3, containing the stack section of the process, maps to physical page 11;

e virtual page 5, containing the heap, is not currently mapped as the content has been swapped
out on disk;

e all the other pages in the virtual address space of the process are invalid.

The MMU is given a pointer to the base address of this page table for address translation. Further,
the MMU has a small TLB that stores two translations. At times ¢t = T, the TLB holds translations
for virtual pages 1 and 3.

Assume that each virtual address given below is accessed independently and the state of the system
(page table, MMU, TLB) is reset to the state given above.

For each virtual address given below, describe what happens when that address is accessed by the
CPU. Specifically, you must answer:

o Will it result in a TLB hit or miss?
e Will it result in a trap or not?
— If there is no trap, which physical address is accessed?

— If there is a trap, what does the operating system do?

@® att=1T, Virtual address 0x00001011;
@ or at t =T, Virtual address 0x00002F1E;
® or at t =T, Virtual address 0x000052AB;
@ or at t =T, Virtual address 0x00004C79.

Justify your answers.

Answers:
@ Virtual page 1 (or text)
e TLB hit
e No trap, physical address: 0x00006011
@ Virtual page 2 (or data)
e TLB miss
e No trap, physical address: 0x00003F1E

CS-202, Midterm — IN & SC
E P:: L Argyraki K., Bugnion E. & Chappelier J.-C. March 20", 2024

@ Virtual page 5 (or heap)

e TLB miss

e Trap. OS will swap in the page from disk. (swap in = bring page from disk).
@ Virtual page 4 (Invalid)

e TLB miss

e Trap. OS will kill the process (process doesn’t run etc.) using SegFault.

CS-202, Midterm — IN & SC
E PFL Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

Question 4 Disk access [12 points]

Consider the following program:

1

0 J O Ui W N

Ne}

10
11
12
13
14
15
16
17
18
19

#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<string.h>
<unistd.h>
<fcntl.h>

int main(void)

{
int fd = open("/home/cs202/out.txt", O_CREAT | O_RDWR | O_TRUNC, S_IRWXU);
if (fd > 0) {
char buffer[20] = { 0 };
write(fd, "hello world", 11);
lseek(fd, 2, SEEK_SET);
read(fd, buffer, 5);
printf("read data: %s\n", buffer);
close(fd);
}
return O;
}

The file system is mounted at the root directory "/" and the user has full access to it. Assume the
following about the file system and its content:

e the inode structure has only the following:

— a length field indicating the length of the file;

— a modification time field;

10 entries for direct blocks;

— entries for indirect blocks (unused in the question);

a single directory entry resides in a single data block;

the root directory "/" consists of a single directory called "home";

the "home" directory consists of a single directory called "cs202";

the file "out.txt" does not exist in the "cs202" directory;

the OS has a very large file system buffer cache, initially empty, which is used to cache inode
and data blocks.

Based on the above program and assumptions about the file system, answer the following questions:

® [2 points] What is the output of this program? State your assumptions.

@ [10 points] In the tables on the next page, enter the number of blocks associated with each
inode (inode blocks, indirect blocks, data blocks) which are read or written from disk for each

syscall.

Mark read/write accesses to inode in table 1 and read/write accesses to data blocks in table 2.
Creating a new inode/data block or updating an existing block is counted as a write.

In these tables, all blank answers will be interpreted as "not answered" rather than 0.
State your assumptions, if any.

=PrL

CS-202, Midterm — IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

Answers:

Table 1: inode blocks

"/ "home" "cs202" "out.txt"
Read | Write || Read | Write || Read | Write | Read | Write
open 1 0 1 0 1 1 0 1
write 0 0 0 0 0 0 0 1
lseek 0 0 0 0 0 0 0 0
read 0 0 0 0 0 0 0 0
close 0 0 0 0 0 0 0 0

Table 2: data blocks

A "home" "cs202" "out.txt"
Read | Write | Read | Write | Read | Write || Read | Write
open 1 0 1 0 1 1 0 0
write 0 0 0 0 0 0 0 1
lseek 0 0 0 0 0 0 0 0
read 0 0 0 0 0 0 0 0
close 0 0 0 0 0 0 0 0

® read data: 1llo w

Explain: reads 5 bytes (thus 5 char) from position index 2 (thus third byte/char).

® see above.

Explain:

Note
back

nothing is written but the file out.txt and its parent directory;

the open() syscall creates a new file which requires a write operation on both inode (to increase
the len) and data-block of the parent directory (to add the mapping of "out.txt" to its inode);

during open(), the whole path is read;

the write () syscall writes to the disk: to the datablock for the content and to the inode to set
the length of the file;

1seek () and close() do not perform any disk access;
the subsequent read operation does not access the disk itself because of the cache;

: this answers assumes that all operations are synchronous; a filesystem with asynchronous write-
could delay some disk write operations at a later point (this was not covered in class, but could

be an acceptable answer)

M
v
"1
—

CS-202, Midterm — IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

Question 5 Small value set [40 points]

In this exercise, we are interested in a simulation program for a (small) value set. We start by providing
an quick overview of the desired program, although, for the sake of simplicity, we do not ask you to
write the whole program, only some specific parts of it.

5.1 General description [nothing to do]

The simulated value set can simply be seen as a "black box" into which unique values (int here for
simplicity) can be added (function "set()") or retreived (function "get()"). But the set capacity is
limited, thus some overwriting occurs. The main question is then, which value should be overwriten
when the set is full and a new value shall be added. This "value overwritting" (by the set () function
when there is no more space) depends on the chosen management policy: it can be the last value
entered (set()), the last value read (get()), the first value entered, etc.

For the sake of simplicity, we here consider only two possible management policies:

e "Most Recently Get" (MRG): the overwritten value is the last value read (get (), independently
of any set()); see example below;

o "Last Recently Get" (LRG) the overwritten value is the value read the least recently (longest
ago, independently of any set()).

For example, let’s assume that we can only enter four values in the set and we enter the values 1, 2, 3,
4; then read out (get()) the values 4 then 1; and that we finally insert the value 5. Where does this
5 go?

In other words, after the instruction sequence:

set(1) set(2) set(3) set(4) get(4) get(1) set(5)

what are the values still in the set?

In the case of MRG management, 5 overwrites 1 ; and the set contains therefore the values
2, 3, 4, 5 (we don’t bother the order here).

In the case of LRG management, 5 overwrites 4; and the set contains therefore the values
1, 2, 3, 5 (order doesn’t matter).

5.2 Set data structure [23 points]

The implemented set data structure will be organized by "lines" containing data (int here for simplic-
ity). For example:

line 0: 4 8 50
line 1: 0 0 0 O
line 2: 121 7 3

Although all lines have the same size, MAX_PER_LINE, your program will dynamically allocate them.
The array of lines is also dynamic: it’s empty at the beginning and dynamically fills up necessary lines,
all initialized to 0, without leaving any "hole" in the array of lines.

CS-202, Midterm — IN & SC
P::L Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

m

For example, if, from an empty array of lines, we require line number 2 to store the value 12, the array

of lines will then change from empty to:
line 0: 0 0 0 O

line 1: 0 0 0 O

line 2: 12000
i.e. the lines 0 and 1 will also be added (to avoid any "hole").

In addition, the set data structure will store an array (say "used") containing the number of values
present in each line. In the above example, this array used would contain 0 0 1 because we haven’t
yet put any value in the first two lines and that we’ve put one value (12) in the third line.

5.2.1 Data structure [6 points]

Propose here a data structure to represent a set of values as explained above:

Answer:

typedef int data_t;
typedef struct {

data_t** lines; // array of arrays of data
size_t*x used; // array of size_t
size_t nlines; // size of the arrays

} set_t;

The typedef for data_t is a good practice, optional here.
The typedef of set_t is itself optional for those who like to write struct everywhere.

We could do even better by grouping a line and its used in the same substructure to ensure that they
have the same number:

typedef int data_t;

typedef struct {
data_t* row_elements;
size_t nb_used;

} row_t;

typedef struct {
row_t* lines; // array of lines
size_t nlines;

} set_t;

As a result, with such a substructure, we could implement the flexible-array-member trick:
typedef int data_t;

typedef struct {
data_t* row_elements;
size_t nb_used;

} row_t;

typedef struct {
size_t nlines;
row_t lines[1];
} set_t;

which is not possible with the first s since we have two arrays.

CS-202, Midterm — IN & SC
E PFL Argyraki K., Bugnion E. & Chappelier J.-C. March 20", 2024

5.2.2 Add a line [11 points]

Now define the function new_line_at() which creates and initializes a new line, respecting all the
above conditions. For example, starting from an empty set a call to
new_line_at (&set, 2);
will create the following value set (assuming MAX_PER_LINE is equal to 4):
line 0: 000 O
line 1: 000 O
line 2: 0 00 0

Answer:

void new_line_at(set_t *set, size_t index) {
if (set == NULL) return; // optionnel
// Bonus: do overflow check for multiplications

data_t** templ = realloc(set->lines, (index+1) * sizeof (data_t*));
if (templ == NULL) return;

size_t* temp2 = realloc(set->used, (index+1) * sizeof(size_t));
if (temp2 == NULL) return;

set->lines = templ;

temp2;

set->used

for (size_t i = set->nlines; i <= index; ++i) {
set->lines[i] = calloc(MAX_PER_LINE, sizeof(data_t));
if (set->lines[i] == NULL); // could do some error handling
set->used[i] = 0;

}

set->nlines = index + 1;

Notes:

e Protection against a bad index (such as "if (index < set->nlines)") may well have been
made on call and is not strictly necessary here, but it’s good to think to think about it.
Notice, BTW, that the above code is perfectly safe if index is smaller than set->nlines.

e It’s also worth thinking about the protection against the risk of overflow in the multiplication
in the arguments of realloc() (but it’s also conceivable, especially in an examination context,
different from producing a complete stand-alone library, that the context of use of this function
is protected against this (index not too big)).

e We could have int as a return type (e.g. error code), or even int* (the new line).

CS-202, Midterm — IN & SC
L Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

m
1
"1

5.2.3 Free memory [6 points]

Define here the function free_set () which frees all the memory allocated by a set (but not the set
itself).

Answer:

void free_set(set_t *set) {
if (set == NULL) return; // Nothing to do
for (size_t i = 0; i < set->nlines; ++i) {

free(set->lines[i]);

}

free(set->lines);
free(set->used) ;
memset(set, 0, sizeof (*set));

Note: free() is protected against NULL (it’s in the standard).

CS-202, Midterm — IN & SC
L Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

M
v
"1

5.3 Management policies [9 points]

The different management policies ("MRG", "LRG"; see introduction) can each be described by two
specific actions: one to be performed during a get () and the other to be performed during a set().
The chosen implementation is to use function pointers to represent each of the possible management
policies. This is what this subquestion is about.

5.3.1 Policy types [2 points]
Define an enum type, named Policy, to indicate the possible management policies (MRG and LRG in our

case):
enum Policy { MRG = O, LRG, LAST }; I

LAST and "= 0" are not needed here at all: it’s just a useful trick for browsing or marking the end of
a enum.

We can also use typedef here.

5.3.2 Actions [3 points]

The actions to be made in get() and in set() by the various management policies all have the same
format: they receive as arguments a value set, which can be modified, a line number and a position in
the line, and don’t return anything.

Define here the type policy_function which is a pointer to such a function:

typedef void (*policy_function)(set_t *set, size_t line, size_t index);

5.3.3 Description of the different management policies [4 points]

We can therefore summarize the various management policies (MRG or LRG for us) by a two-dimensional
array of policy_functions. Assuming that respectively

the action to be performed in ... with management ... is implemented in a function! ...
get () MRG move_to_front (),
set () MRG front_to_back(),
get) LRG move_to_back(),
set () LRG do_nothing(),

define here (and initialize/fill) a (two-dimensional) array named policies representing the above
information (hint: maybe read also the next question):

static const policy_function policies[LAST][2] = {
{ move_to_front, front_to_back }, // MRG
{ move_to_back , do_nothing } // LRG

};

static and const (as well as the use of LAST) are optional here.

The array could be transposed.

CS-202, Midterm — IN & SC
E P:: L Argyraki K., Bugnion E. & Chappelier J.-C. March 20", 2024

5.4 Function get () [8 points]

Assume the existence of:
e the "management policies" table, policies, as defined in 5.3.3;

e a function? hash() giving the line number in the set for a given value (for example hash(12)
will give 2 in the example subquestion 5.2, page 10),

e a function? search() which receives (at least) a value and an array, and returns:
— the index of the value in the array, if that value is in the array;
— or "(size_t) -1"if it isn’t.

Define the get () function for the set.
This function receives as arguments a set, a management policy and a value, and returns 1 if the value
you’re looking for is present in the set and 0 otherwise.

Answer:

int get(const set_t* set, const enum Policy pol, const data_t val) {
if (set == NULL) return O; // optionnel

const size_t 1ln = hash(val);
if (1n >= set->nlines) return O;
const size_t index = search(set->lines[1n], val);

if (index < set->used[1n]) { // notice this includes proper handling of -1
policies[pol] [GET] (set, 1ln, index);
return 1;

}

return O;

Notes:

e even if it is a very good practice, in the context of an exam, the assert or any other equivalent
check is optional (it could very well be assumed that this is an internal function and that all
checks have been made beforehand)

e the first three (real) lines could still be better modularized, e.g. by a set_search(set, val),
which makes get () even more concise (call in the last if).

2We will not bother with its definition; you do not have to write this function.

CS-202, Midterm — IN & SC
E PFL Argyraki K., Bugnion E. & Chappelier J.-C. March 20", 2024

