ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
EIDGENOSSISCHE TECHNISCHE HOCHSCHULE — LAUSANNE
POLITECNICO FEDERALE — LOSANNA

I SWISS FEDERAL INSTITUTE OF TECHNOLOGY — LAUSANNE

NOM

(000000) #0000

Seat

Faculté Informatique et Communications
CS—-202 Computer Systems
Argyraki K., Bugnion E. & Chappelier J.-C.

Hanon Ymous

#: 0

CS—202 COMPUTER SYSTEMS
Midterm

March 20%", 2024

INSTRUCTIONS (please read carefully)

IMPORTANT! Please strictly follow these instructions, otherwise your exam may be
canceled.

1.
2.
3.

You have one hour and forty-five minutes to complete this examination (1:15-3:00pm).
You must use black or dark blue ink, neither pencil nor any other color.

This is closed book exam.
Personal notes, two times dual-sided A4 sheets (4 sides in total), allowed.

On the other hand, you may not use any personal computer, mobile phone or any other electronic
equipment.

. Answer the questions directly on the exam sheet; do not attach any any additional sheets; only

this document will be graded.

Two additional blank pages are provided at the end of the handout. If you use them, please
clearly state the question number you are answering.

Carefully and completely read each question so as to do only what we actually ask for. If the
statement seems unclear, or if you are in any doubt, ask one of the assistants for clarification.

The exam consists of five independent exercises, which can be addressed in any order, but which
do not score the same (points are indicated, the total is 90 points); all exercises count for the
final grade.

LEAVE THIS EMPTY
Question 1 | Question 2 | Question 3 | Question 4 | Question 5 | TOTAL
11 15 12 12 40 90

Anonymisation : #0000

b, 2 question 1.0

Question 1 Parents and children [11 points]

Assume that the current directory has a single file named myfork.c containing the following program.
The program is compiled using the following command: gcc myfork.c -o myfork

The program compiles without any error. Background: The library call execvp(cmd, arglist)
calls the exec system call to execute cmd with the argument list arglist. As is with the convention,
myargs [0] below corresponds to cmd. arglist is passed as argv to the main () function of the executed
program.

Analyze the following program and answer the following questions:

0 O Uik Wi

Ne

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#include<stdio.h>
#include<unistd.h>
#include<sys/wait.h>
#include<string.h>

int main(int argc, char *argv[])
{
int pid = fork();
if (pid == 0) {
if (strcmp(argv([1], "0") == 0) {
char *myargs[3];
myargs [0] = strdup("./myfork");
myargs[1] = strdup("1");
myargs[2] = NULL;
execvp(myargs [0], myargs);
} else {
char *myargs[2];
myargs[0] = strdup("1ls");
myargs[1] = NULL;
execvp(myargs [0], myargs);
}
printf ("Child started\n");
} else {
wait (NULL);
printf("Child finished\n");
}

return O;

)

On the terminal, you launch the following command: ./myfork 0

@ [6 points] Draw a process diagram that includes parent-child relationship and the program name

and argument in each node (after exec, when applicable)

@ [1 point] How many processes will be created during the execution (including the original in-

stance of myfork)?

® [4 points] What is the output of the above command? Is the output deterministic?

m
1
1

CS-202, Midterm — IN & SC
L Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

NOT write anything here!

Oleai
I
Ok=in

March 20", 2024

Anonymisation : #0000
p
CS-202, Midterm — IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C.

question 1.0
Answers:

jodoy Suryjdue ajram TON o

Anonymisation : #0000

b 4 question 2.0

Question 2 Fibonacci [15 points]

Assume a 64-bit architecture with sizeof (long long) = 8. Assume a calling convention where all
arguments are pushed on the stack, and no compiler optimizations such as use of registers to store
temporary variables. Everything that logically belongs on the stack is on the stack.

Considered the following code, compiled to ./fibo:

#include <stdio.h>
#include <stdlib.h>

long long fibonacci(long long n, long long *steps)
{

*steps += 1;

if (n < 2) return 1;

long long x = fibonacci(n-1, steps);

long long y = fibonacci(n-2, steps);

return x + y;

}
int main(int argc, char *argv[])
{
long long n = atoi(argv([1]);
if (n > 0) {
long long steps = 0;
long long f = fibonacci(n, &steps);
printf ("Fibonacci of n=%11d is %11ld and requires %11ld invocations\n",
n, f, steps);
}
return O;
}

@ [1.5 points] What is the output of ./fibo 37?

@ [6 points] Assume a constrained machine so that the stack can only be 8 KiB (8 x 1024 bytes)
in size. For which approximate value of n is there a likely stack overflow (stack pointer exceeds
stack size)? State your assumptions clearly.

® [5 points] Currently the program only uses the stack. Modify the above program to additionally
use the data segment (without changing the algorithmic complexity of the program).
Put your modifications directly on the above provided code.

@ [2.5 points] For your modified program, does your answer to the subquestion @ above change?
State your assumptions clearly.

Answers:

m

CS-202, Midterm — IN & SC
P::L Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

NOT write anything here!

Do

E.Wﬂ
i

March 20", 2024

Anonymisation : #0000
p
CS-202, Midterm — IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C.

question 2.0

jodoy Suryjdue ajram TON o

llI Anonymisation : #0000

b 6 question 3.0

[=] %,

Question 3 A few pages [12 points]

Consider a system with 32-bit virtual and physical addresses, with pages of 4 KiB size and the MMU
uses a linear page table. Recall that in hexadecimal notation, 0x1000 equals 4 KiB.

A process in this system require 4 virtual pages, out of which only 3 virtual pages are mapped to
physical pages in the following manner:

e virtual page 1, containing the text section of the process, maps to physical page 6;
e virtual page 2, containing the data section of the process, maps to physical page 3;
e virtual page 3, containing the stack section of the process, maps to physical page 11;

e virtual page 5, containing the heap, is not currently mapped as the content has been swapped
out on disk;

e all the other pages in the virtual address space of the process are invalid.
The MMU is given a pointer to the base address of this page table for address translation. Further,

the MMU has a small TLB that stores two translations. At times t = T, the TLB holds translations
for virtual pages 1 and 3.

Assume that each virtual address given below is accessed independently and the state of the system
(page table, MMU, TLB) is reset to the state given above.

For each virtual address given below, describe what happens when that address is accessed by the
CPU. Specifically, you must answer:

e Will it result in a TLB hit or miss?
e Will it result in a trap or not?
— If there is no trap, which physical address is accessed?

— If there is a trap, what does the operating system do?

@ at t =T, Virtual address 0x00001011;
@ or at t =T, Virtual address 0x00002F1E;
® or at t =T, Virtual address 0x000052AB;
@ or at t =T, Virtual address 0x00004C79.

Justify your answers.

Answers:

CS-202, Midterm — IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

m
1
1
r

NOT write anything here!

(=]
E
March 20", 2024

Anonymisation : #0000
p- 7
CS-202, Midterm — IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C.

question 3.0

jodoy Suryjdue ajram TON o

Anonymisation : #0000

p. 8 question 4.0

Question 4

Disk access [12 points]

Consider the following program:

1 #include
2 #include
3 #include
4 #include
5 #include
6
7
8

<stdio.h>
<stdlib.h>
<string.h>
<unistd.h>
<fcntl.h>

int main(void)

{
9 int fd = open("/home/cs202/out.txt", O_CREAT | O_RDWR | O_TRUNC, S_IRWXU);
10 if (fd > 0) {
11 char buffer[20] = { 0 };
12 write(fd, "hello world", 11);
13 lseek(fd, 2, SEEK_SET);
14 read(fd, buffer, 5);
15 printf("read data: %s\n", buffer);
16 close(fd);
17 }
18 return 0;
19

The file system is mounted at the root directory "/" and the user has full access to it. Assume the
following about the file system and its content:

e the inode structure has only the following:

a length field indicating the length of the file;

— a modification time field;

10 entries for direct blocks;

entries for indirect blocks (unused in the question);

a single directory entry resides in a single data block;

the root directory "/" consists of a single directory called "home";
the "home" directory consists of a single directory called "cs202";
the file "out.txt" does not exist in the "cs202" directory;

the OS has a very large file system buffer cache, initially empty, which is used to cache inode

and data blocks.

Based on the above program and assumptions about the file system, answer the following questions:

@ [2 points] What is the output of this program? State your assumptions.

@ [10 points] In the tables on the next page, enter the number of blocks associated with each
inode (inode blocks, indirect blocks, data blocks) which are read or written from disk for each

syscall.

Mark read/write accesses to inode in table 1 and read/write accesses to data blocks in table 2.
Creating a new inode/data block or updating an existing block is counted as a write.

In these tables, all blank answers will be interpreted as "not answered" rather than 0.
State your assumptions, if any.

=PrL

CS-202, Midterm — IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

NOT write anything here!

Do NOT write anything here!

question 4.0

Anonymisation : #0000

p- 9

Answers:

Table 1: inode blocks

ll/ll

Hhome n

"cs202"

"out.txt"

Read

Write

Read

Write

Read

Write

Read

Write

open

write

lseek

read

close

Table 2: data blocks

H/ll

Hhome n

"cs202"

"out.txt"

Read

Write

Read

Write

Read

Write

Read

Write

open

write

lseek

read

close

M
1
"1

—

CS-202, Midterm — IN & SC

Argyraki K., Bugnion E. & Chappelier J.-C.

March 20", 2024

Anonymisation : #0000

p. 10 question 5.2

Question 5 Small value set [40 points]

In this exercise, we are interested in a simulation program for a (small) value set. We start by providing
an quick overview of the desired program, although, for the sake of simplicity, we do not ask you to
write the whole program, only some specific parts of it.

5.1 General description [nothing to do]

The simulated value set can simply be seen as a "black box" into which unique values (int here for
simplicity) can be added (function "set()") or retreived (function "get()"). But the set capacity is
limited, thus some overwriting occurs. The main question is then, which value should be overwriten
when the set is full and a new value shall be added. This "value overwritting" (by the set () function
when there is no more space) depends on the chosen management policy: it can be the last value
entered (set()), the last value read (get()), the first value entered, etc.

For the sake of simplicity, we here consider only two possible management policies:

e "Most Recently Get" (MRG): the overwritten value is the last value read (get (), independently
of any set()); see example below;

o "Last Recently Get" (LRG) the overwritten value is the value read the least recently (longest
ago, independently of any set()).

For example, let’s assume that we can only enter four values in the set and we enter the values 1, 2, 3,
4; then read out (get()) the values 4 then 1; and that we finally insert the value 5. Where does this
5 go?

In other words, after the instruction sequence:

set(1) set(2) set(3) set(4) get(4) get(l) set(5)
what are the values still in the set?

In the case of MRG management, 5 overwrites 1 ; and the set contains therefore the values
2, 3, 4, 5 (we don’t bother the order here).

In the case of LRG management, 5 overwrites 4; and the set contains therefore the values
1, 2, 3, 5 (order doesn’t matter).

5.2 Set data structure [23 points]

The implemented set data structure will be organized by "lines" containing data (int here for simplic-
ity). For example:

line 0: 4 8 50
line 1: 0 0 0 O
line 2: 121 7 3

Although all lines have the same size, MAX_PER_LINE, your program will dynamically allocate them.
The array of lines is also dynamic: it’s empty at the beginning and dynamically fills up necessary lines,
all initialized to 0, without leaving any "hole" in the array of lines.

CS-202, Midterm — IN & SC
P::L Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

m

NOT write anything here!

Do

Do NOT write anything here!

question 5.2 b 11

Anonymisation : #0000 [.

For example, if, from an empty array of lines, we require line number 2 to store the value 12, the array
of lines will then change from empty to:

line 0: 00 0 O

line 1: 0000

line 2: 12 0 0 O
i.e. the lines 0 and 1 will also be added (to avoid any "hole").

In addition, the set data structure will store an array (say "used") containing the number of values
present in each line. In the above example, this array used would contain 0 0 1 because we haven’t
yet put any value in the first two lines and that we’ve put one value (12) in the third line.

5.2.1 Data structure [6 points]

Propose here a data structure to represent a set of values as explained above:

Answer:

5.2.2 Add a line [11 points]

Now define the function new_line_at() which creates and initializes a new line, respecting all the
above conditions. For example, starting from an empty set a call to
new_line_at(&set, 2);
will create the following value set (assuming MAX_PER_LINE is equal to 4):
line 0: 00 0 O
line 1: 000 O
line 2: 0 0 0 O

Answer:

continues on back =

CS-202, Midterm — IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

M
1
"1
—

Anonymisation : #0000

. p. 12 question 5.2

-
g
<
b0
5.2.3 Free memory [6 points] <
>
g
Define here the function free_set () which frees all the memory allocated by a set (but not the set 2
itself). H
B
Answer: =
o
4
Q
]

CS-202, Midterm — IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

m
1
1
r

Do NOT write anything here!

Anonymisation : #0000

question 5.3 b. 13

5.3 Management policies [9 points]

The different management policies ("MRG", "LRG"; see introduction) can each be described by two
specific actions: one to be performed during a get() and the other to be performed during a set ().
The chosen implementation is to use function pointers to represent each of the possible management
policies. This is what this subquestion is about.

5.3.1 Policy types [2 points]

Define an enum type, named Policy, to indicate the possible management policies (MRG and LRG in our
case):

5.3.2 Actions [3 points]

The actions to be made in get () and in set() by the various management policies all have the same
format: they receive as arguments a value set, which can be modified, a line number and a position in
the line, and don’t return anything.

Define here the type policy_function which is a pointer to such a function:

5.3.3 Description of the different management policies [4 points]

We can therefore summarize the various management policies (MRG or LRG for us) by a two-dimensional
array of policy_functions. Assuming that respectively

the action to be performed in ... with management ... is implemented in a function® ...
get) MRG move_to_front (),
set() MRG front_to_back(),
get) LRG move_to_back(),
set() LRG do_nothing(),

define here (and initialize/fill) a (two-dimensional) array named policies representing the above
information (hint: maybe read also the next question):

continues on back =

"We will not bother with their definitions; you do not have to write any of these functions.

CS-202, Midterm — IN & SC
E PFL Argyraki K., Bugnion E. & Chappelier J.-C. March 20", 2024

Anonymisation : #0000

p. 14 question 5.4

5.4 Function get () [8 points]

Assume the existence of:
e the "management policies" table, policies, as defined in 5.3.3;

e a function? hash() giving the line number in the set for a given value (for example hash(12)
will give 2 in the example subquestion 5.2, page 10),

e a function? search() which receives (at least) a value and an array, and returns:
— the index of the value in the array, if that value is in the array;
— or "(size_t) -1"if it isn’t.

Define the get () function for the set.
This function receives as arguments a set, a management policy and a value, and returns 1 if the value
you’re looking for is present in the set and 0 otherwise.

Answer:

2We will not bother with its definition; you do not have to write this function.

CS-202, Midterm — IN & SC
E PF L Argyraki K., Bugnion E. & Chappelier J.-C. March 20", 2024

NOT write anything here!

Do NOT write anything here!

Anonymisation : #0000 E.!.II

question 5.4 b. 15 "

Empty page to answer whatever question if more space is needed.
PLEASE INDICATE THE QUESTION NUMBER YOU ARE ANSWERING.

CS-202, Midterm — IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. March 20th7 2024

M
1
"1
—

Anonymisation : #0000
p- 16

question 5.4

Empty page to answer whatever question if more space is needed.
PLEASE INDICATE THE QUESTION NUMBER YOU ARE ANSWERING.

NOT write anything here!

Do

m
1

CS-202, Midterm — IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C.

March 20", 2024

