
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE – LAUSANNE
POLITECNICO FEDERALE – LOSANNA
SWISS FEDERAL INSTITUTE OF TECHNOLOGY – LAUSANNE

Faculté Informatique et Communications
CS–202 Computer Systems
Argyraki K., Bugnion E. & Chappelier J.-C.

CS–202 COMPUTER SYSTEMS

Final Exam solution

June 17th, 2024

INSTRUCTIONS (please read carefully)

IMPORTANT! Please strictly follow these instructions, otherwise your exam may be
canceled.

1. You have three hours to complete this examination (3:15–6:15pm).

2. You must use black or dark blue ink, neither pencil nor any other color.

3. This is closed book exam.
Personal notes, two times dual-sided A4 sheets (4 sides in total), allowed.

On the other hand, you may not use any personal computer, mobile phone or any other electronic
equipment.

4. Answer the questions directly on the exam sheet; do not attach any any additional sheets; only
this document will be graded.

5. Carefully and completely read each question so as to do only what we actually ask for. If the
statement seems unclear, or if you are in any doubt, ask one of the assistants for clarification.

6. The exam consists of six exercises, which can be addressed in any order, except Question 2 which
is a continuation of Question 1. These exercises do not score the same; points are indicated; the
total is 125 points. All exercises count for the final grade.

LEAVE THIS EMPTY
Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 TOTAL

25 30 19 12 14 25 125

2

Question 1 – Subnets, prefixes, and packets [25 points]

Consider the topology in Figure 1, which shows a single Autonomous System (AS), AS0.

(For convenience, a copy is also provided on draft paper.)

Figure 1: Network topology for Questions 4 and 5.

• There are 4 routers, RA, RB, RC , and RD. Router RD is the only border router of AS0.

• There are 4 Ethernet switches, SA, SB, SC , and SD. These switches do not have IP addresses.

• There are 120 end-systems A1 to A120; 100 end-systems B1 to B100; 100 end-systems C1 to C100;
and 10 end-systems D1 to D10.

• The pink numbers represent the costs of links between the routers.

• The green numbers represent the transmission rates of links.

• A2 and D2 are DNS servers. D2 is both a root DNS server, and an authoritative DNS server for
epfl.ch. A2 is neither root, nor authoritative DNS server for any domain.

• A1 uses A2 as its local DNS server.

• Whenever A2 needs to contact a root DNS server, it contacts D2.

• D1 is a web server with DNS name d1.epfl.ch.

• The small orange boxes are network interfaces. E.g., router RA has network interfaces e, f, and g.

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

3

À [1 point] Identify all the IP subnets inside AS0 by marking them on Figure 1 on the left (not
on the provided extra colored sheet).

Á [10 points] The administrator of this AS owns the following IP prefixes:

• 5.0.0.0/24

• 5.0.1.0/24

From these two IP prefixes, assign an IP prefix to each IP subnet that contains end-systems. Each IP
prefix you assign must have the smallest possible size. Justify your answer.

Answer and justification:

IP subnet A:

• 122 IP addresses: 120 end-systems, 1 router interface, 1 broadcast IP address.

• We need 7 bits.

• 5.0.0.0 = 00000101.00000000.00000000.00000000.

• We can assign IP prefix 00000101.00000000.00000000.0xxxxxxx = 5.0.0.0/25.

IP subnet B:

• 102 IP addresses: 100 end-systems, 1 router interface, 1 broadcast IP address.

• We need 7 bits.

• We flip one bit from the previously allocated prefix: 00000101.00000000.00000000.1xxxxxxx =
5.0.0.127/25.

At this point, we have exhausted IP prefix 5.0.0.0/24, and we need to start allocating from the other
one.

IP subnet C:

• 102 IP addresses: 100 end-systems, 1 router interface, 1 broadcast IP address.

• We need 7 bits.

• 5.0.1.0 = 00000101.00000000.00000001.00000000.

• We can assign IP prefix 00000101.00000000.00000001.0xxxxxxx = 5.0.1.0/25.

IP subnet D:

• 12 IP addresses: 10 end-systems, 1 router interface, 1 broadcast IP address.

• We need 4 bits.

• We flip one bit from the previously allocated prefix: 00000101.00000000.00000001.1xxxxxxx.

• We keep only 4 bits: 00000101.00000000.00000001.1000xxxx = 5.0.1.127/28.

Â [2 points] For each of the 4 routers, state how many routing protocol it participates in. Justify
your answer.

Answer and justification:

Routers RA, RB, RC , and RD participate in AS0’s intra-AS routing protocol, through which they
exchange routes to the AS’s local IP subnets.

Moreover, router RD participates in the inter-AS routing protocol (BGP), through which it learns
routes to foreign ASes and also advertizes to foreign ASes a route to AS0.

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

4

Ã [2 points] How many and which IP prefix(es) do you expect border router RD to advertize to other
ASes? Justify your answer.

Answer and justification:

Router RD should advertize one or more IP prefixes that contain exactly its entire address space (the
two IP prefixes it owns): no less and no more.

The smallest IP prefix that contains exactly 5.0.0.0/24 and 5.0.1.0/24 is 5.0.0.0/23, so we expect RD

to advertize this IP prefix.

Ä [10 points] All end-systems and packet switches have been rebooted. All caches (of all kinds) are
empty. The user of end-system A1 types in their web browser http://d1.epfl.ch/image.png. This
is a large image (it does not reference any other object).

List the sequence of packets that are received or forwarded (sent) by network interface e of router RA

as a result of the end-user’s action, up to and including the first packet that carries D1’s HTTP
response. You do not need to list the packets received or forwarded by other network interfaces of
router RA.

Answer by completing Table 1 on the next page. The first row shows an example (which is not part
of the correct answer). You may not need to fill all the rows of the table. If you need to make any
assumptions, state them.

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

5

Answer:

Source
MAC

Dest
MAC

Source
IP

Dst
IP

Transp.
prot.

Src
Port

Dst
Port Application & Purpose

Example x y x y UDP 5000 6000 Request for file ...

1 a1 broadcast - - - - - ARP request
for a2’s MAC address

2 a2 broadcast - - - - - ARP request
for e’s MAC address

3 e a2 - - - - - ARP response
with e’s MAC address

4 a2 e a2 d2 UDP 1000 53 DNS request
for d1’s IP address

5 e a2 d2 a2 UDP 53 1000 DNS response
with d1’s IP address

6 a1 broadcast - - - - - ARP request
for e’s MAC address

7 e a1 - - - - - ARP response
with e’s MAC address

8 a1 e a1 d1 TCP 2000 80 Connection setup
request (SYN)

9 e a1 d1 a1 TCP 80 2000 Connection setup
response (SYN ACK)

10 a1 e a1 d1 TCP 2000 80 HTTP GET request
for image.png

11 e a1 d1 a1 TCP 80 2000 HTTP OK response,
first segment

Table 1: Packets received or sent by network interface e of router RA.

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

6

Question 2 – TCP and delay computation [30 points]

Consider the same network topology as in Question 1 (Figure 1, page 2) and the events of Question 1Ä.

Assume that:

• Transport-layer, network-layer, and link-layer headers have insignificant size.

• A1’s receiver window is always 5 000 bytes.

• The links between the 4 routers have transmission rate R, in both directions.

• All the other links have transmission rate 10R, in both directions.

• All links have propagation delay D, in both directions.

• All network devices are store-and-forward (as we saw in class) and have infinite queues.

Recall that, in Question 1Ä, A1 makes an HTTP request to D1 and receives an HTTP response. A1

sends no data to D1 other than this HTTP request. No segment is lost or reordered during the entire
exchange.

À [5 points] Assume the following sizes:

• Maximum Segment Size (MSS): 1 byte.

• HTTP request: 1 byte.

• HTTP response, including HTTP header and image.png: 12 bytes.

The diagram in Figure 2 shows the beginning of the communication between A1 and D1. The next
sequence number (SEQ) that A1 is expecting after the 3-way handshake is SEQ 1. Complete the
diagram by showing:

• All the segments (including the segments that carry only ACKs) exchanged until A1 receives the
entire image.

• The SEQ numbers of D1’s segments.

• The ACK numbers of A1’s segments.

• The status of D1’s congestion-control algorithm.

• The values of D1’s congestion window and ssthresh.

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

7

Answer here: (do NOT answer on the provided DRAFT copy)

Acknowledgement

 number

Sequence

number

￼ (web server)D1 ￼A1

state of
congestion

control algorithm
for ￼D1

TCP diagram

SYN

SYN ACK

HTTP GET

￼ ’s
receiver
window

A1 ￼ ’s
ssthresh

D1
￼ ’s

congestion
window

D1

5 Kbytes 1 MSS ∞

ACK

5, 6, 7, 8

ACK 3, 4

SEQ

8, 9, 10, 11, 12

SEQ

4, 5, 6, 7

SEQ 2, 3

ACK 2

SEQ 1

2 MSS ∞ Slow Start

4 MSS ∞ Slow Start

8 MSS ∞ Slow Start

Fill below this line

Figure 2: TCP diagram for Question 5.

continues on back +

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

8

Á [6 points] Now assume the following sizes:

• MSS: 1000 bytes.

• HTTP request: 1000 bytes.

• HTTP response, including HTTP header and image.png: 12 000 bytes.

Does the TCP diagram change? If yes, in what way(s)? (You don’t have to redraw the entire diagram
from scratch, just state or sketch the changes, if any.) Is it flow control, or congestion control that
determines the rate at which D1 sends in this particular scenario? Justify your answer.

Answer and justification:

The first thing that changes is the sequence and acknowledgment numbers: they both increase by 1000
instead of 1. E.g., D1 sends SEQ 1, then SEQ 1001, SEQ 2001, etc; while A1 sends ACK 1001, ACK
2001, ACK 3001, etc.

The second thing that changes is D1’s sender window: When D1 receives ACK 5001, it sets its
congestion window to 5000, which is equal to the receiver window. From that point on, the congestion
window continues to increase normally (by 1 MSS with every new ACK), however, the sender window
remains at 5000 bytes.

However, this does not effectively change the diagram, because a sender window of 5000 bytes is enough
for D1 to send all the remaining bytes of the HTTP response during the fourth round.

At first it is congestion control that determines the rate at which D1 sends, because D1’s congestion
window is smaller than A1’s receiver window. As soon as D1’s congestion window reaches 5000 bytes,
from that point on, it is flow control, because the receiver window is smaller. However, in practice,
that does not make any difference, because the receiver window is large enough for D1 to send all the
remaining bytes during the fourth round.

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

9

Â [4 points] Assume the same parameters as in sub-question Á.

ConsiderD1’s second segment, i.e., the first segment that carries (the first part of)D1’s HTTP response
to A1. How long does it take from the moment D1 transmits the first bit of this segment until A1

receives the last bit of this segment? Justify your answer.

Answer and justification:

• One transmission-delay component per link: 1000
10R + 1000

10R + 1000
R + 1000

R + 1000
10R + 1000

10R = 2400
R .

• One propagation-delay component per link: 6D.

• Total: 2400
R + 6D.

Ã [10 points] Assume the same parameters as in sub-question Á.

Now consider the entire sequence of D1’s segments that carry D1’s HTTP response to A1. How long
does it take from the moment D1 transmits the first bit of the first segment until A1 receives the last
bit of the last segment? Justify your answer.

Be careful: D1 and A1 are not connected by a single link (as was the case in some of the practice
exercises).

Answer and justification:

Looking at the TCP diagram, the total delay consists of:

• Three times the time for one data segment to go from D1 to A1 plus one ACK segment to go
from A1 to D1.

• The time for the last 5 segments to go from D1 to A1.

First component:

• Data segment from D1 to A1: 2400
R + 6D.

• ACK segment from A1 to D1: 6D.

• Total: 3×
(
2400
R + 12D

)
= 7200

R + 36D.

Second component:

• Delay of first packet to bottleneck: 1000
10R + 1000

10R + 2D = 200
R .

• Delay of all packets on bottleneck: 5000
R +D.

• Delay of last packet after bottleneck: 1000
R + 1000

10R + 1000
10R + 3D = 1200

R + 3D.

• Total: 6400
R + 6D.

The two together: 13600
R + 42D.

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

10

Ä [5 points] Which is the maximum number of segments that may be lost and not affect at all the
answer to sub-question Ã? If you need to assume a timeout value, assume that the timeout value is
fixed at 4RTT. Justify your answer.

Answer and justification:

No data-carrying segment may be lost, otherwise there would be a timeout (or a fast retransmit) and
that would change the TCP diagram (hence the delay for the HTTP response to reach A1).

One segment that carries only an ACK may be lost without changing the TCP diagram: either ACK
5001 or ACK 6001. Figure 3 shows these two scenarios.

Losing one of these two ACKs does not change the TCP diagram because:

• TCP ACKs are cumulative. Hence, as long as D1 receives ACK 7001, it knows that A1 received
all the data segments up to and including SEQ 6001.

• Losing one of these ACKs causes D1 to advance its sender window more slowly, but it still
transmits the last 5 data segments at the maxiumum possible rate.

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

11

￼D1 ￼A1

SYN

SYN ACK

HTTP GET

1 MSS

ACK 2001

SEQ 1001

ACK 1001

SEQ 1

2 MSS

4 MSS
3 MSS

7 MSS
6 MSS

5 MSS

SEQ 2001

ACK 3001

SEQ 3001
SEQ 4001
SEQ 5001
SEQ 6001 ACK 4001

ACK 5001
ACK 6001
ACK 7001SEQ 7001

SEQ 8001
SEQ 9001

SEQ 10001
SEQ 11001

￼D1 ￼A1

SYN

SYN ACK

HTTP GET

ACK 2001

SEQ 1001

ACK 1001

SEQ 1

SEQ 2001

ACK 3001

SEQ 3001
SEQ 4001
SEQ 5001
SEQ 6001 ACK 4001

ACK 5001
ACK 6001
ACK 7001SEQ 7001

SEQ 8001
SEQ 9001

SEQ 10001
SEQ 11001

1 MSS

2 MSS

4 MSS
3 MSS

7 MSS

6 MSS
5 MSS

Figure 3: Diagrams for Question 5(5).

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

12

Question 3 – Forking and multi-threading [19 points]

Consider the program forkloop.c on the next page, compiled as follows:

gcc forkloop.c -o forkloop

In the program, fork and wait control the lifecycle of processes; pthread_create and pthread_join
the lifecycles of threads, and pthread_mutex_lock of critical sections.

À [4 points] Draw a picture with the process parent-child tree for the execution of ./forkloop 3 0.
For each node in the tree, include the variables that determine the future execution of the process
in the form var = val.

Á [1 point] Provide one possible output of ./forkloop 3 0.

Â [2 points] Is the output of ./forkloop 3 0 deterministic? Justify completely.

Ã [2 points] Provide one possible output of ./forkloop 3 1.

Ä [2 points] Is the output of ./forkloop 3 1 deterministic. Justify completely.

Å [1 point] How many stacks are there (maximal value) for the process where f(z = 2) ?

Æ [7 points] Draw these stacks (for the process with f(z = 2)) with one thread in the critical
section and the other thread blocked waiting on the mutex.
Stacks should be drawn from top to bottom (as on the hardware). Each call frame of the stack
must be labeled with the name of the function (but the return IP address (RIP) does not need
to be shown). The arguments and local variables of each call frame must be identified as follows:

• if the variable has a known integer value you must show the name along with the value
(e.g. foo = 4);

• if the variable points to a null-terminated string, or an array of null-terminated strings with
known values, show it as foo = ”bonjour” or foo = [”hello”, ”world”], respectively;

• if the variable is a pointer, you must draw an arrow to the pointed address on a stack, on
the heap, or on the global segment;

• if the value cannot be determined in this scenario, label it with a question mark (e.g. foo =?).

Answers:

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

13

1 // necessary #include <...>
2
3 #define MAX_N 12
4
5 pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;
6
7 void * g(void *arg) {
8 int *p = (int *) arg;
9 pthread_mutex_lock(&mut);

10 *p = *p + 1000;
11 pthread_mutex_unlock(&mut);
12 }
13
14 int f(int z) {
15 if (z > 0 && z < MAX_N) {
16 pthread_t thr[MAX_N];
17 int acc = 0;
18 for (int i = 0; i < z; i++) {
19 pthread_create(&thr[i], NULL, g, &acc);
20 }
21 for (int i = 0; i < z; i++) {
22 pthread_join(thr[i], NULL);
23 }
24 return acc;
25 } else {
26 return -2;
27 }
28 }
29
30 int forkloop(int n, int m) {
31 for (; n > 0; n--) {
32 pid_t x = fork();
33 if (x > 0) {
34 wait(NULL);
35 } else if (m > 0) {
36 return f(n) + n ;
37 } else {
38 return n;
39 }
40 }
41 return 0;
42 }
43
44 int main(int argc, char **argv)
45 {
46 int a1 = atoi(argv[1]);
47 int a2 = atoi(argv[2]);
48 if (a1 < MAX_N) {
49 int y = forkloop(a1, a2);
50 printf("done %d\n", y);
51 }
52 }

Answers (continued):

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

14

À

forkloop
3 0

child 1
n=3,
m=0

child 2
n=2,
m=0

child 3
n=1,
m=0

Á

done 3
done 2
done 1
done 0

Â It is deterministic, because the main
process always needs to wait for the
current child process to finish, and
then starts the next for loop iteration.

Ã

done 3003
done 2002
done 1001
done 0

Ä It is deterministic. Same with Á,
the main process always needs to wait
for each child process to finish. Within
each child process, the mutex guaran-
tees the deterministic results of acc.

Å 3

Æ

Child Process
(f(z=2))

main()
argc = 3
argv = {"./forkloop", "3", "1"}
a1 = 3 , a2 = 1
y = ?

forkloop()
n = 2 , m=1
x = 0

f()
z = 2
i = 0
thr[12] = ?
acc = ?

Thread 1
g()
arg = &acc
p = &acc

Thread 2
g()
arg = &acc
p = &acc

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

15

Question 4 – File System [12 points]

Assume a file system mounted at the root directory "/" that has only the following files and directories:
/usr/bin/gcc
/usr/bin/clang
/bin/gcc

/usr/bin/gcc corresponds to gcc version 41 and /bin/gcc corresponds to gcc version 42.

Assume also that the user has full access to the whole file system. Thus, the script containing the
following commands is executed without errors:
mv /usr/bin/clang /bin
cp /usr/bin/gcc /bin/gcc
mv /bin/clang /usr/bin

mv is the standard POSIX utility to move a file using the rename system call
(int rename(const char *old, const char *new););
cp is the standard utility to copy a file. If the destination file already exists, cp opens the file with the
open system call, and modifies its content.

Finally, assume the following hypothesis about the file system and its content:

• the inode structure has only the following:

– a length field indicating the length of the file;

– a modification time field;

– entries for direct and indirect blocks;

• for simplicity, all directories and files are small and fit within a single data block;

• the OS has a very large file system buffer cache, initially empty, which is used to cache inodes
and data blocks;

• the OS file system buffer cache holds recently-accessed inodes and data blocks in memory;

• the OS writes back to disk all modified inodes and data blocks synchronously on all system calls;

• the inode numbers are:
/: 1 /usr: 11 /usr/bin: 22 /usr/bin/gcc: 33
/usr/bin/clang: 44 /bin: 55 /bin/gcc: 66

• the next available inode numbers are: 77, 88, 99. You may or may not have to use these.

Based on the above commands (script) and assumptions:

À [2 points]What is the directory structure of the file system mounted at "/" once the script finishes?
For gcc, specify the version.

Answer:

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

16

Á [10 points] In the tables below, mark the inodes and data blocks that are read from and/or written
to disk as a result of each command.

Enter the number of blocks associated with each inode (inode blocks, indirect blocks, data blocks)
which are read from or written to disk for each syscall.

Mark read/write accesses to inode in table 1 and read/write accesses to data blocks in table 2 as
follows:

No access: X One Read: R One Write: W

Examples:
One read and write: RW Two reads: RR Two reads and one write: RRW

and so on for different combinations of read (R) and writes (W).
The order of RW does not matter.

Creating/Moving a new inode/data block or updating an existing block is counted as a write.
In these tables, all blank answers will be interpreted as "not answered" rather than "X".

State your assumptions, if any.

Answers:

À

/usr/bin/clang
/usr/bin/gcc (v41)
/bin/gcc (v41)

Á

inode blocks:
In 1 In 11 In 22 In 33 In 44 In 55 In 66 In 77 In 88 In 99

mv R R RW X X RW X X X X
cp X X X R X X RW X X X
mv X X W X X W X X X X

data blocks:
In 1 In 11 In 22 In 33 In 44 In 55 In 66 In 77 In 88 In 99

mv R R RW X X RW X X X X
cp X X X R X X W X X X
mv X X W X X W X X X X

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

17

Question 5 – Scheduling [14 points]

Consider a system with a single CPU for computation and a single disk for IO, with the following
characteristics:

• CPU:

– Round Robin (RR) policy for scheduling computation requests (i.e., with a single queue);

– scheduling quantum: 1 second;

– when multiple tasks enter the tail of the pending queue at the same time, they enter in the
following priority (i.e., the pending queue is a FIFO):

∗ new task;

∗ blocked task;

∗ currently running task;

– negligible time to send disk IO request.

• Disk:

– elevator scan scheduling policy for scheduling IO requests;

– has five cylinders;

– head starts at cylinder zero and moves depending on the first request;

– seek time to move from one cylinder to next: 1 second;

– assume that there are no rotational or transfer latencies;

– Scheduling policy is invoked when an IO request finishes.

The following table describes five tasks which do some CPU and Disk IO operations. Once the disk
IO operation is completed, a task executes for the remainder of its CPU total time.
Here is the description of each column:

• Task Arrival Time: the time at which the task arrives;

• CPU Total Time: total time required for the computation of the task;

• IO Request Time: the time at which the task requests for IO; for example, if task 1 starts at
time 1, it will request for IO at time 2 (=1 + 1);

• IO Access: the cylinder number accessed during the IO request.

Task Arrival Time CPU Total Time IO Request Time IO Access
Task ID (in seconds) (in seconds) (in seconds) (Cylinder Number)

1 1 3 1 3
2 2 2 1 4
3 3 5 1 2
4 3 3 2 1
5 3 3 1 3

Given the list of five tasks above, fill in the time "diagram" on the next page (table) to show when
each task computation and IO completes.
State your assumptions whenever necessary or appropriate.

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

18

Fill in the "time diagram as follows" from "Time=2" onwards:

• Running Task as the task that executes on the CPU during the period.

• Ready tasks is the ordered list of ready tasks during the period.

• Same for blocked tasks.

• "Current Disk Cylinder" expressed as "[Task ID:Cylinder Number]", for instance: [1:3], where
Task ID is the task associated with the current disk seek and Cylinder Number should reflect
the position of the disk at the end of period.

• "Pending Disk IO requests" as a list of [Task ID:Cylinder Number], for instance: [1:3], [1:4].

You may not need to fill all the rows of the table.

Running Task Ready Tasks Blocked Tasks
Current Disk Cylinder Pending Disk IO requestsTime (Task ID) (Tasks IDs) (Tasks IDs)

0 - - - [-:0] -
1 1 - - [-:0] -
2 2 - 1 [1:1] -
3 3 4, 5 1, 2 [1:2] [2:4]
4 4 5 1, 2, 3 [1:3] [2:4], [3:2]
5 5 1, 4 2, 3 [2:4] [3:2]
6 1 4, 2 3, 5 [5:3] [3:2]
7 4 2, 5, 1 3 [3:2] -
8 2 5, 1, 3 4 [4:1] -
9 5 1, 3, 4 - [-:1] -
10 1 3, 4, 5 - [-:1] -
11 3 4, 5 - [-:1] -
12 4 5, 3 - [-:1]
13 5 3 - [-:1]
14 3 - - [-:1]
15 3 - - [-:1]
16 3 - - [-:1]
17
18
19
20

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

19

Question 6 – C Programming [25 points]

6.1 Wrong or right? [2 points]

Provided that the library string has been included (and there is a proper main() function), would
the following portion of code compile?

Fully justify your answer.

1 #define NAME_SIZE 127
2 #define NB_VALUES 4
3
4 struct Foo {
5 char name[NAME_SIZE+1];
6 int whatever;
7 double values[NB_VALUES];
8 };
9

10 void init_phys(struct Foo* s)
11 {
12 double values[] = { 299792458, 9.80665, 6.02214076e23, 1.602176634e-19 };
13 strcpy(s->name, "Some physics");
14 s->whatever = 42;
15 s->values = values;
16 }

Answer and justification:

No it does not compile since array cannot be assigned (line 15).

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

20

6.2 Pointers [8 points]

On a 64-bit architecture where:

• sizeof(short int) is 2, such that 256× a+ b is represented in memory with b first then a;

• the integer value of (char)'A' is 65, the one of 'B' is 66, etc.;

what does the following code print?

Fully justify your answer and provide a drawing of the memory state of the variables tab, ptr, p1,
p2, p3 and q at line 6 just after the call line 25.

1 #include <stdio.h>
2 #include <string.h>
3
4 void f(int nb, const short int* q, size_t sz)
5 {
6 printf("%d: ", nb);
7 for (size_t i = 0; i < sz; ++i) printf("%d, ", *(q + i));
8 putchar('\n');
9 }

10
11 void g(void* ptr)
12 {
13 const char* const p1 = ptr;
14 printf("1: \"%s\"\n", p1);
15
16 const short int* const p2 = ptr;
17 printf("2: %d\n", *p2);
18
19 f(3, p2, 4);
20 f(4, p2, sizeof(ptr));
21 f(5, p2, strlen(ptr));
22
23 const short int** p3 = &p1;
24 ++(*p3);
25 f(6, *p3, 1);
26 }
27
28 int main(void)
29 {
30 short int tab[10] = { 65 * 256 + 66, // 16'706
31 67,
32 68 * 256 + 69, // 17'477
33 70,
34 71 * 256 + 72, // 18'248
35 73, 74, 75, 76, 77 };
36 g(tab);
37 return 0;
38 }

Answer and justification: It prints:
1: "BAC"
2: 16706
3: 16706, 67, 17477, 70,
4: 16706, 67, 17477, 70, 18248, 73, 74, 75,
5: 16706, 67, 17477,
6: 67,

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

21

Here is the corresponding memory state:

Justifications:

1. as a string (char*), it stops at the first null-char;

2. simply the (short int) value of the first (short int) element;

3. simply the four first (short int) values;

4. sizeof(ptr) == 8 (8 bytes = 64 bits);

5. strlen(ptr) == 3: see point 1;

6. this one is maybe a bit more tricky: p3 points indeed to p1 but the ++ has the short int*
semantics, thus move forward by one short int.

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

22

6.3 A bit of arithmetics [15 points]

We here consider writing a few pieces of a C code, the aim of which is to do arithmetic processing
using (binary) tree representation.

Each node of the tree will have an operation (which can be represented as an
int) and two operands (which are themselves (sub-)trees).
The leaves are also tree nodes which simply have a numerical value as their
"operation" and two empty operands.
For instance, the arithmetic expression (5+2)×(50−(8−5)) will be represented
by the binary tree drawn on the right:

MULT

SUBST

SUBST

58

50

ADD

25

À [2 points] Assuming that the operations are for instance represented as

enum Operation { ADD, SUBST, MULT, DIV };

propose a type (data structure) to represent the arithmetic binary trees:

Here is a simple solution:

typedef struct node Node; // optional
typedef Node* Tree; // optional

struct node {
int value;
Node* left;
Node* right;

};

There can be several alternatives, using more attributes (e.g. a type attribute), more types (e.g.
using a Leaf type), more abstract (e.g. using void* genericity to handle Node/Leaf distinction),
using union, ...).

Of course, the answers to the next questions shall match with the types proposed here.

Á [1 point] Declare a variable named five, stored on the stack, that would represent the leaf
node 5:

const Node five = { 5, NULL, NULL };

Â [5 points] Define a merge() function that takes an operation and two trees and merge them
into a higher level tree (to be returned).

For instance the merge of the tree

ADD

25
with the tree

SUBST

1350
using the operation MULT will

return the tree:

MULT

SUBST

1350

ADD

25

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

23

Node* merge(enum Operation op, Node* left, Node* right)
{

Node* ret = malloc(sizeof(Node));
if (ret != NULL) {

ret->value = op;
ret->left = left;
ret->right = right;

}
return ret;

}

Ã [1 point] Define a leaf() function which takes an integer value and returns a leaf node (or a
pointer to it), similar to the variable five from subquestion À, but allocated on the heap.

Node* leaf(int value) { return merge(value, NULL, NULL); }

Ä [1 point] Use the merge() and leaf() functions to declare a variable named example represent-
ing the expression (5 + 2)× (50− (8− 5)) (the tree of which is drawn above).

Node* example =
merge(MULT,

merge(ADD, leaf(5) , leaf(2)),
merge(SUBST, leaf(50),

merge(SUBST, leaf(8) , leaf(5))
)

);

Whatever the proposed solution (data types and merge()/leaf() implementation), I don’t see
how the answer to that question could be different.

Å [5 points] Finally, define a release() function that completely deallocates a tree, assuming all
its nodes have been allocated on the heap.

void release(Node* tree)
{

if (tree != NULL) {
release(tree->left);
release(tree->right);
free(tree);

}
}

CS-202, Final Exam – IN & SC
Argyraki K., Bugnion E. & Chappelier J.-C. June 17th, 2024

