Series 3: C Programming - Pointers 2

Reminder

Have you read, in week 1 exercises series, the advice related to these series of exercises?

Exercise 1: Automatic letter generator (functions and character strings, level 1)

The goal of this exercise is to write a program named letter.c, which will constitute a (very simplistic) automatic
generator of letters.

1. First, write a function generateLetter() (without arguments, and without return value). This function should
simply produce the following output on the screen: (without the ‘{’ and ‘}’ characters.)

Dear {Ms.} {Mireille},

I am writing to you regarding {your coursel}.

We should see each other on {12}/{18} to discuss it.
Let me know!

{Kind regards}, {John}.

Simply call the generateLetter () function from the main() function. Compile your program and make sure it
properly works.

2. Now modify the generateLetter () function, so as to make the parts in the preceding text between the curly
bracket (“{}”) configurable. To do this, you will need to pass a certain number of arguments to the function, in
order to specify:

o The appropriate name prefix for the introduction (“Ms.” for a female recipient, and “Mr.” for a male recipient);
This choice must be made based on the value of an enumerated argument (e.g. gender);

e The name of the recipient, named for example recipient;

o The subject of the letter (parameter named subject);

e The appointment date as two integer parameters, one for the day and one for the month;

e The polite formula (polite parameter);

o and the name of the author (author).

The function will therefore have seven parameters.

Invoke the function at least twice in a row from main(), setting the calls to produce the previous letter, and the
response below:

Dear Mr. John,

I am writing to you regarding your meeting request.
We should see each other on 12/16 to discuss it.
Let me know!

Sincerely, Mireille.

Exercise 2: Word segmentation (character strings, level 2)

In the token.c file, prototype then define the function:

int nextToken(char const * str, size_t* from, size_t* len)

whose role will be to find the position and length of the first word in the string str that comes after the position from.
Note: words are separated by a sequence of at least one space character (i.e. ' ').

The function should update the from and len arguments to the index of the first character of the word and its length,
provided such a word exists. If the word exists, the function should return a strictly positive value. Otherwise, the
function should return 0, and the updated values of from and len becomes meaningless.

From the main of the program, you will ask the user to enter a string of characters on the keyboard, and display (by
making successive calls to the nextToken() function) all the words of the entered string. Words should be displayed
per line and placed between apostrophes.

Use the operating example below to check the validity of your program; pay particular attention to ensure that the
apostrophes surround the words without there being a space in between.

Also check that the program behaves correctly even when the entered string ends with a series of spaces.

Note: to read [an entire line], use:
fgets(line_to_read, size, stdin);
where line_to_read is an array of at least size char.

Since the sentence (read in line_to_read) is entered by the user, you cannot know the exact value that size should
take. In this case, pre-define a size MAX_SIZE large enough for the user to enter a sentence of reasonable length.

Example of operation:

Enter a string: uh hello, this is my string!

The words of "uh hello, here is my channel!" are:
luhl

'hello, '’

'this'

lisl

lmyl

'string'

I!I

Exercise 3: Integrals revisited (arrays, typedef, pointers to functions, level 3)
Pointers to functions
The aim here is to extend exercise 4 of series 1 in the direction suggested by the last remark (and as seen in class).

Copy your program integrale.c (or whatever name you gave it) to a new file, then modify it according to the
description below.

Try (obviously!) to do this exercise without copying the corresponding slides from the course...

Define three functions of your choice that combine mathematical functions defined in math.h (man sin, man exp, man
sqrt).

All these functions must be compatible with the prototype: double f (double) ;.
Define the type Function as a pointer to a prototype function similar to the one shown above.

Write a function request_function() that takes no arguments and returns a Function. This function must ask the
user for a number between 1 and 5. If the user answers 1, 2 or 3, the request_function() should return a pointer to
the corresponding function of yours. If he/she answers 4, it should return a pointer to the sine function (sin) and if
he/she answers 5 it should return a pointer to the exponential function (exp).

Next calculate the integral of the returned function using the function integrate() (defined in exercise 4 of series 1)
which you will have modified so that it takes as an additional argument: Function.

Arrays of pointers to functions

If you haven’t already done it like this, we will now further refine the choice by implementing an array of Functions
representing all the possible choices.

You can choose to implement it using a static array (define the size as a constant) or dynamically (i.e., pointer here [so
you will have a pointer to a pointer to a function!]).

Define an array of Functions named choice.

The basic idea is to choose the function directly by indexing the array of possible choices. If the user’s response is stored,
for example, in the variable rep, then the correct function will be choice[rep]. (The function request_function()
now returns an integer).

Initialize this array to match the previous choices (f1, £2, £3, sin, exp).
Test your program.

Finally, if you still have the courage and want to further refine your program, you can create a structure which contains
the Function and a character string describing the function.

When asking the user, display the description of the function to help the user in their choice.

Execution example

You can choose from the following functionms::

1- x square

2- root of expomnential
3- log(l+sin(x))

4- sine

5- exponential

Which function [1-5]
Enter a real number:

Enter a real number: O
Sine integral between -3.14159265359 and O:

-2.00001781364

Exercise 4: mini VM (pointers to functions, level 1)
Let’s come back to function pointers by simulating a very simple command interpreter.

A command interpreter is simply an infinite (or almost) loop that matches an action (function call) to a string entered

by the user.

We are going to make a very simple version here to illustrate the function pointers. Assume that we are working with a

do you want to calculate the integral of? 4
-3.141592653589

machine with 2 registers and 5 commands:

e quit, which simply displays “Bye!”;

e pop, which writes the value of the 2nd register to the 1st;

 push, which writes the value of the 1st register into the 2nd, asks the user for a value (double), and puts it into

the 1st register.

e add, which adds the value of the 2nd register to the 1st.

e print which displays the value of the 1st register.
If an unknown command is entered, it will be considered as quit.

Execution example

Enter a command
-> 0

Enter a command
Value 7 1.2
Enter a command
-> 1.2

Enter a command
Value 7 2.3
Enter a command
-> 2.3

Enter a command
Enter a command
-> 3.5

Enter a command
Bye!

To work in a generic way (we might want to generalize a little more), all these commands will have a prototype:

(print,
(print,
(print,
(print,
(print,

(print,
(print,

(print,

add,

add,

add,

add,

add,

add,
add,

add,

void command(void* data);

and will interpret data as necessary: either one or two consecutive doubles.

Write an interpreter () function that takes a const char* and returns a pointer to a command. This function must
of course translate the name of a command into the corresponding function.

Finally finish your program by declaring in the main an array of two double initialized at 0 (which will serve as a
representation of the 2-register memory of our machine) and by making a loop which requests a command from the user
then execute this command. The loop will stop as soon as the command received is exit (see example of execution

above).

push,
push,
push,
push,
push,

push,
push,

push,

pop.

pop,

pop.,

pop,

pop.,

pop.
pop,

pop.,

quit)
quit)
quit)
quit)
quit)

quit)
quit)

quit)

: print
: push
: print
: push
¢ print

: add
: print

: quit

Exercise 5: linked list (data structures, pointers, level 2)

We want to write the program chainlist.c which implements a version of linked lists.

1. Let’s decide to implement a dynamic linked list of elements of type type_el.

To make the thing easily editable, define this type, for example as an integer type.

2. Then define the type ChainList, representing a “linked list”, based on the observation: a linked list is a sequence
of elements each containing a value and the linked list of subsequent values.

3. Prototype and define the manipulation functions associated with lists:

inserting an element in the list after a given element,

inserting an element at the top of the list,

removing the first element from the list,

deleting a given element of the list (do not forget to free the memory requested during insertion for the
element which is deleted)

and calculating the length of the list (number of elements) (for change, try coding it with a for loop).

Improvement (Level 3): When calculating list length, be careful of cyclical lists (where the next of an element is
a previous element).

Exercise 6: return to the memory explorer (pointer arithmetic; level 1)

Repeat exercise 1 of series 2, but write it using pointer arithmetic, for example displaying all addresses directly (without
using an index):

0x7fffb7ed88ac : 01010000 80 ('P')
0x7fffb7ed88ad : 00000000 O
0x7fffb7ed88ae : 00000000 O
0x7fffb7ed88af : 00000000 O

In the same spirit, you can go back to other old exercises and re-write the solutions using pointer arithmetic. For
example, exercise 2 above (word segmentation).

more on next page, if you want
page, 11yt

Do you want more?

[optional] Exercise 7: MCQ questionnaire (structures + character strings + dynamic
allocation, level 2)

We are trying here to create an examination program in the form of a multiple choice questionnaire (MCQ) where a
question is asked and the answer is to be chosen from a set of proposed responses (only one correct response possible
per question).

In a mcq.c program, define a MCQ structure including 3 fields:

a question field, of type character string, which will contain the question to ask;

a responses field which will be an array of at most 10 character strings containing the proposed responses;

a nb_rep field, of unsigned integer type, containing the number of possible responses;

an integer solution field (positive integer) which contains the number of the correct answer (in the responses
field).

Prototype then define a display() function which takes a MCQ as an argument and displays it. For example :

e

How many teeth does an adult elephant have?

1- 32

2- from 6 to 10
3- a lot

4- 24

5- 2

In the main, create and initialize the MCQ above, then display it. Compile and verify that everything works correctly so
far.

Write a function ask_number () with 2 arguments, min and max, to ask for an integer in this range, and create a
function ask_question() which takes a MCQ as an argument, successively calls display and ask_number () and returns
the user’s response.

Before continuing, test your program (displaying the question and entering the answer).

We now seek to examine several questions. Define type Exam as a dynamic set (pointer) of QMC. Create an Exam in
the main, then fill it (in a create_examination() function is better!) with the following questions (partial code to
complete) where back is a pointer to an Exam:

strcpy ((*back) [0] .question,

"How many teeth does an adult elephant have");
(*back) [0] .nb_rep = 5;
strcpy ((*back) [0] .reponses[0], "32");
strcpy ((*¥back) [0] .reponses[1], "from 6 to 10");
strcpy ((*back) [0] .reponses[2], "a lot");
strcpy ((*back) [0] .reponses[3], "24");
strcpy ((*back) [0] .reponses[4], "2");
(*¥back) [0] .solution = 2;

strcpy ((*back) [1] .question,
"Which of the following statements is a function prototype");
(*back) [1] .nb_rep = 4;
strcpy ((*back) [1] .reponses[0], "int £(0);");
strcpy ((*back) [1] .reponses[1], "int f(int 0);");
strcpy ((*back) [1] .reponses[2], "int f(int i);");
strcpy ((*back) [1] .reponses[3], "int £(i);");
(*¥back) [1] .solution = 3;

strcpy ((*back) [2] .question,
"Who asks stupid questions");
(*back) [2] .nb_rep = 7;
strcpy ((*back) [2] .reponses[0], "the math prof.");
strcpy ((*back) [2] .reponses[1], "my boyfriend/girlfriend");
strcpy ((*back) [2] .reponses[2], "the physics prof.");
strcpy ((*¥back) [2] .reponses[3], "me");
strcpy ((¥back) [2] .reponses[4], "the programming prof.");
strcpy ((¥back) [2] .reponses[5], "no one, there are no stupid questions");

strcpy ((*back) [2] .reponses[6], "polls");
(*¥back) [2] .solution = 6;

Important: in this step, you will be required to make dynamic allocations. Remember to deallocate the memory once
the work is finished (for example with a destroy_examination function).

To finish:

1. Ask the questions one by one;
2. Count the number of correct responses;
3. Give the score at the end.

Execution example

How many teeth does an adult elephant have?

1- 32

2- from 6 to 10
3- a lot

4- 24

5- 2

Enter an integer between 1 and 5: 2
Which of the following statements is a function prototype
1- int £(0);
2- int f(int 0);
3- int f(int i);
4- int f(i);
Enter an integer between 1 and 4: 3
Who asks stupid questions
1- the math prof.
2- my boyfriend/girlfriend
3- the physics prof.
4- me
5- the programming prof.
6- no one, there are no stupid questions
7- polls
Enter an integer between 1 and 7: 5
You found 2 correct answers out of 3.

[optional] Exercise 8: Multiple choice questions revisited (level 2)

This exercise repeats the previous exercise. We now want this program mcq to be independent of a particular MCQ
(separation of the algorithm and the data).

For this we will give this program the possibility of reading the MCQs in a file.
Copy the mcq.c program into a new file then edit it.
Start by copying the request_file() function from exercise 13 of series 1 (stat.c).

Then change the create_examination() function from the previous exercise (the one which created the MCQ) so
that it creates the content of the MCQ from a file passed as an argument:

Exam create_examination(FILE* file);
The format of the file to read is as follows:

Q: question
reponsel
->reponse2
reponse3

Q: question2

The -> sign at the start of a line indicates the correct response. The # sign at the start of a line indicates a comment
line.

If the response itself starts with "->" or "#", avoid placing that sign right at the beginning of the line, but instead insert
a space. The reading procedure should eliminate these initial spaces.

Note: the advantage of this format is that the order of the responses can easily be changed in the configuration file
without having to modify the indication of the correct response.

Example file:

Q: How many teeth does an adult elephant have?
32

-> from 6 to 10

a lot

24

2

Q: Which sign is the strangest?
#

->

=>=>H##<-

#b

a

The last question corresponds to

Which sign is the strangest?

1- #
2- =>
3- >##<-
4- a

and the answer is 3.

Create the file corresponding to last time’s questionnaire in examl.txt and test your program.

[optional] Exercise 9: Address book (pointers, files, character strings; level 3)
[proposed by T. Coppey, 2010]

The goal of this exercise is to create a complete mini-application that includes a data structure (unbalanced binary
trees), files (read/write) and a small command interpreter.

A binary tree allows you to store different objects ordered by a key. In our address book, we will use the person’s name
as key and the telephone number as values (but you can of course add other fields).

1. Create an abook. c file where you can copy into the prototypes below. You will also complete the addr__ structure
which represents a node of the tree so that it contains (in addition to the tree structure): the name, the telephone
number, and possibly other fields (address, e-mail, ...).

/* a node of the tree */
typedef struct addr__ addr_t;
struct addr__ {

/* to be completed */
s

/* the tree, defined by its root */
typedef struct book__ {

addr_t* root;
} book_t;

/* create a new empty address book */
book_t* book_create(void) ;

/* release associated resources */
void book_free(book_t* b);

/* list in order all the names in the address book */
void book_list(book_t* b);

/* display an address book entry */
void book_view(book_t* b, const char* name);

/* add or modify an address book entry */
void book_add(book_t* b, const char* name, const char* num);

/* delete an entry from the address book */
void book_remove (book_t* b, const char* name) ;

/* replace the contents of the address book with those of the file */
void book_load(book_t* b, const char* file);

/* save the contents of the notebook in a CSV format file */
void book_save(book_t* b, const char* file);

2. Then implement the functions that have been prototyped (you are free to modify the prototype if it suits you).
The functions are listed somewhat in ascending order of difficulty.

Note: the CSV format is: one name-number record per line, where the fields are separated by ‘;’. For example:

Lucien;012 345 67 89;
Stéphane;021 879 51 32;
Julien;079 523 12 45;
Antoine;076 125 08 78;
Damien;022 329 08 85;

3. To be able to manipulate your address book you will need a command interpreter. The mode of operation is very
simple, you must

o read the line that contains the command

o split the received string into arguments

o depending on the first argument, call the corresponding function with the correct arguments
e restart

To split the received string into arguments, you can use the following code:

/* we divide the command into arguments, see man strsep */
int an=0; /* number of arguments */
char *a[10]; /* arguments array */
char *ptr=cmd; /* cmd is the buffer that contains the line */
while (an<10 && (al[an]=strsep(&ptr," \t\n"))!=NULL) {
if (alan] [0]!='\0") ++an;
b

/* arguments are in a[0] .. alan-1] */

The interpretations of the commands are as follows. They correspond directly to a function that you have
previously implemented.

add <name> <num> add a number

del <name> delete a number

view <name> show information

list list names

load <file> read file addresses
save <file> save addresses to file
quit quit program

The bravest among you will go even further by implementing the command interpreter in the form of an array of
pointers to generic functions.

[optional] Exercise 10: Needleman-Wunsch algorithms (Viterbi algorithm on the editing
graph) and Longest Common Subsequence (level 2)

[adapted by T. Coppey (2010) based on an old exam subject.]

The comparison and alignment of character sequences is a fundamental task in several fields of application, notably in
speech recognition, image processing and bioinformatics.

The aim of this exercise is to implement the Needleman-Wunsch algorithm (which is a Viterbi algorithm), used for
example in the BioWall that you can in Musée Bolo, not far from the IN exercise rooms.

The first part of the algorithm consists of evaluating the comparison between two character strings of different sizes,
by minimizing the number of insertions of “holes” between two characters of the same string. In practice, a matrix
Mof size (m + 1) x (n + 1) is constructed, where m and n are the numbers of characters of the two strings to be
compared. A “hole” is characterized by a horizontal or vertical movement in the matrix. We then assign to each cell
M;,; of the matrix a score defined by the following equations:

M; o= My; =0 for0<i<mand0<j<n
M;; =max{ M;_1;-1+Si;, Mij—1—2, M;_1,;,—2} forl<i<mand1<j<n
with

¢ _[2 ifA=B
. -1 lfAlfBj

where A; designates the i*" character of the first string and B; the j*h character of the 2nd string.

The goal is to implement in C a function that creates this matrix from two character strings entered by the user. Each
cell must keep, in addition to its score, the one of the two parent cell(s), for which the maximum has been reached in
the above equation. Here is an illustration where red arrows represent parent cells:

A G TC

O; 4y 0y 0 G
& h A

THo -1 -1 iz»C AGT _C
" _
Alo*2+0 @ 0 TAC
Y A A
clo 0 %+

The second part of the algorithm finds a correct alignment. To do this, you must search for a path starting from cell
Mn,n and arriving at cell Mg ,o, each time using the stored parent cell.

To implement this algorithm, proceed in the following steps:
1. In the needle.h file describe the data structures:

e To compare 2 strings s1 and s2 of respective lengths 11 and 12, you will need to create an array of (12 +
1) x (11 + 1) cells (by placing sl horizontally and s2 vertically).

o Each cell contains a (numeric) value and a reference to the predecessor cell (there are only 3 possibilities:
immediately left, top or diagonal).

2. Then write in needle.c a function computeTable () which takes the two character strings as input and constructs
the array by assigning to each cell a predecessor and a value according to the previous equations:

o For the first line, the predecessor is on the left and the value 0.
e For the first column, the predecessor is at the top and the value 0.
e Then fill in the array according to the previous equations, memorizing the predecessor

3. Write a function extractSolution() that takes the table as input and calculates the path from My, to My,
using the predecessor of each cell (Hint: you will have to start calculating the path from the end and then reverse
it).

4. You can then test your program using the function

void showSolution(Solution* sol, const char* si1, const char* s2) {
int 1i,j;
for (i=0,j=0; i<sol->size; ++i) {
switch (sol->dirs[i]) {
case DirDiag: /*continued*/
case DirHorz: printf("/c",s1[jl); ++j; break;
case DirVert: printf("_");

}
printf("\n");
for (i=0,j=0; i<sol->size; ++i) {
switch (sol->dirs[i]) {
case DirDiag: /*continued+*/
case DirVert: printf(")c",s2[jl); ++j; break;
case DirHorz: printf("_");

}
printf ("\n");
}

Which will give you for the values:

sl = "Hello sir, what time is it on your watch 7"
s2 = "Have a good day madam, may the happy little girl show you the way"

the following result:

_____________________ Hello sir, what__ tim__e _is_ it on your watch_ 7__
Have a good day madam, may the_ _happy little girl sh_ow you_ __t_he way

5. Extension: You can now easily replace the Needleman-Wunsch algorithm with the Longest Common Subsequence
(LCS) algorithm if you wish; simply replace the formula with:

Mo — Mifl’jfl +1 if A; = Bj
by max{ Mi,j—h Mi—l,j } if Ai 7& Bj

[optional] Exercise 11: Formal derivation (level 3)

[adapted by T. Coppey (2010) based on an old exam subject.]

The goal here is to make a program capable of formally deriving expressions.

For this we will use a binary tree structure. A binary tree is a data structure defined recursively by: A tree that is

e either a value;
o or a value and two (binary) subtrees.

d

T

A A

For example, if we denote a tree in parentheses by first indicating its right subtree, then its value, and finally its left
subtree, then:

(((@ b (e)) a ((£) ¢ ()

is a binary tree: with value a and two subtrees ((d) b (e)) et ((£) c (g)).
Similarly (f) is a one-valued tree (i.e. has no subtree).
1. Based on your knowledge of linked lists, define a data structure to represent binary trees.
In this data structure, the value will be represented by a char.
2. Then write the function allowing you to create a binary tree from a value and two subtrees.
3. Write a function to display a binary tree in parenthesized format as illustrated above.
We will recursively display the left subtree, then the value then (recursively) the right subtree.
4. In the main(), test that your code works correctly.

Optional: make sure that the same tree can share one or more subtree(s). For example, the tree ((x) + (x))
can be constructed from a single tree (x). To do this, you will either use deep copy or a reference counter.

10

5. Now let’s move on to the representation of arithmetic expressions.

We will use binary trees for this (we will only consider here the binary operators + - / * and ~ (power)):

for example a + b will be represented by the tree ((a) + (b)) where ‘+’ is the value of the first tree and "(a)"
and "(b)" are the subtrees.

Likewise the arithmetic expression (a + b) * (c + d) will be represented by the tree (((a) + (b)) * ((c) +
@n).

Construct trees representing the following expressions (4 expressions): x + a (x +a) * (x + b) ((x *x) *x) + (a

x)(x"a) /[((x*x) + (b *x)

Hint: start by creating the binary trees representing the expressions a, b and x (alone), then those representing
the expressions x+a, x+b and x* x.

6. Then write a function derive() which takes a binary tree as an argument, assumed to be a representation of a
valid arithmetic expression and a character representing the variable with respect to which to derive, and which
returns the binary tree corresponding to the derived arithmetic expression.

We will proceed to do this recursively, remembering the usual derivation rules:

da/dx = 0 where a is a constant (here: character different from x)

I
e

dx/dx

d(f+g)/dx = df/dx + dg/dx

d(f-g)/dx = df/dx - dg/dx

d(f*g)/dx = (df/dx * g) + (f * dg/dx)

d(f/g)/dx = ((df/dx * g) - (f * dg/dx)) / (g * g)

d(f~a)/dx = a *x df/dx * (f ~ (a - 1))

(where a does not depend on x, which we will assume here)

Important note: we do not want the minimal derivation tree! Clearly, we will not seek to simplify the obtained
expressions.

7. Test your differentiation function on the 4 previous expressions.

11

	Series 3: C Programming - Pointers 2
	Reminder
	Exercise 1: Automatic letter generator (functions and character strings, level 1)
	Exercise 2: Word segmentation (character strings, level 2)
	Example of operation:

	Exercise 3: Integrals revisited (arrays, typedef, pointers to functions, level 3)
	Pointers to functions
	Arrays of pointers to functions
	Execution example

	Exercise 4: mini VM (pointers to functions, level 1)
	Exercise 5: linked list (data structures, pointers, level 2)
	Exercise 6: return to the memory explorer (pointer arithmetic; level 1)
	Do you want more?
	[optional] Exercise 7: MCQ questionnaire (structures + character strings + dynamic allocation, level 2)
	Execution example

	[optional] Exercise 8: Multiple choice questions revisited (level 2)
	[optional] Exercise 9: Address book (pointers, files, character strings; level 3)
	[optional] Exercise 10: Needleman-Wunsch algorithms (Viterbi algorithm on the editing graph) and Longest Common Subsequence (level 2)
	[optional] Exercise 11: Formal derivation (level 3)

