
©EPFL 2024
Jean-Cédric Chappelier

Variables

En C, une donnée est stockée dans une variable caractérisée
par :
▶ son type et son identificateur (définis lors de la

déclaration) ;
▶ sa valeur, définie la première fois lors de l’initialisation puis

éventuellement modifiée par la suite.

Rappels de syntaxe : Types élémentaires :
type id ; int
type id = valeur; double

char
id = expression ;

Exemples : int val = 2 ;
double const pi = 3.141592653;
i=j+3;

Les variables non modifiables se déclarent avec le mot réservé
const :
double const g = 9.81; CS202–Computer Systems – Fiches Résumé – 1 / 13

©EPFL 2024
Jean-Cédric Chappelier

Opérateurs

Operateurs arithmétiques
* multiplication
/ division
% modulo
+ addition
- soustraction
- opposé (1 opérande)
++ incrément (1 opérande)
-- décrément (1 opérande)

Operateurs de comparaison
== teste l’égalité logique
!= non égalité
< inférieur
> supérieur
<= inférieur ou égal
>= supérieur ou égal

Operateurs logiques
&& "et" logique
|| ou
! négation (1 opérande)

Priorités (par ordre décroissant, tous les opérateurs d’un même groupe
sont de priorité égale) :
() [] -> ., ! ++ --, * / %, + -, < <= > >=, == !=,
&&, ||, = += -= etc., ,

CS202–Computer Systems – Fiches Résumé – 2 / 13

©EPFL 2024
Jean-Cédric Chappelier

Les structures de contrôle

les branchements conditionnels : si ... alors ...
if (condition)

instructions. .
if (condition 1)

instructions 1
...
else if (condition N)

instructions N
else

instructions N+1

switch (expression) {
case valeur:

instructions;
break;

...
default:

instructions;
}

les boucles conditionnelles : tant que ...
while (condition)

Instructions
do Instructions while

(condition);

les itérations : pour ... allant de ... à ...
for (initialisation ; condition ; increment)

instructions

les sauts : break; et continue;

Note : instructions représente 1 instruction élémentaire ou un bloc.
instructions; représente une suite d’instructions élémentaires.

CS202–Computer Systems – Fiches Résumé – 3 / 13

©EPFL 2024
Jean-Cédric Chappelier

Les fonctions

Prototype (à mettre avant toute utilisation de la fonction) :
type nom (type1 arg1, ..., typeN argN);

type est void si la fonction ne retourne aucune valeur.

Définition :
type nom (type1 arg1, ..., typeN argN)
{

corps
return value;

}

Passage par valeur : Passage par référence (va-
leur de pointeur en fait) :

type f(type2 arg);
f(x)

type f(type2* arg);
f(&x)

☞ x ne peut pas être
modifié par f

☞ x peut être modifié par f

CS202–Computer Systems – Fiches Résumé – 4 / 13

©EPFL 2024
Jean-Cédric Chappelier

Les tableaux

déclaration : type identificateur[taille];
déclaration/initialisation :

type identificateur[taille] = {val1, ... , valtaille};

Accès aux éléments : tab[i] i entre 0 et taille-1

Le passage type1 f(type2 tab[]); d’un tableau tab à une
fonction f se fait automatiquement par référence
pour éviter les effet de bords : type1 f(type2 const tab[]);

tableau multidimentionnel :
type identificateur[taille1][taille2];
tab[i][j];

Les tableaux ne peuvent pas être des types de retour pour les
fonctions. :-(

CS202–Computer Systems – Fiches Résumé – 5 / 13

©EPFL 2024
Jean-Cédric Chappelier

Les structures

Déclaration du type correspondant :

struct Nom_du_type {
type1 champ1 ;
type2 champ2 ;
...

};

Déclaration d’une variable :
struct Nom_du_type identificateur;

Déclaration/Initialisation d’une variable :
struct Nom_du_type identificateur = { val1, val2, ... };

Accès à un champs donné de la structure :
identificateur.champ

Affectation globale de structures :
identificateur1 = identificateur2

CS202–Computer Systems – Fiches Résumé – 6 / 13

©EPFL 2024
Jean-Cédric Chappelier

Les pointeurs

Déclaration : type* identificateur;

Adresse d’une variable : &variable
Accès au contenu pointé par un pointeur : *pointeur

Pointeur sur une constante : type const* ptr;
Pointeur constant : type* const ptr = adresse;

Allocation mémoire :
#include <stdlib.h>

pointeur = malloc(sizeof(type));
pointeur = calloc(nombre, sizeof(type));
pointeur = realloc(pointeur, sizeof(type));

Libération de la zone mémoire allouée : free(pointeur);

Pointeur sur une fonction : type_retour
(* ptrfct)(arguments...)

CS202–Computer Systems – Fiches Résumé – 7 / 13

©EPFL 2024
Jean-Cédric Chappelier

Les chaînes de caractères

Valeur littérale : "valeur"

Déclarations :
char* nom;
char nom[taille];
char nom[] = "valeur";

Écriture : printf("...%s...", chaine); ou puts(chaine);

Lecture : scanf("%s", chaine); ou gets(chaine);

Quelques fonctions de <string.h> :

strlen strcat
strcpy strncat
strncpy strchr
strcmp strrchr
strncmp strstr

CS202–Computer Systems – Fiches Résumé – 8 / 13

©EPFL 2024
Jean-Cédric Chappelier

Les entrées/sorties

Clavier / Terminal : stdin / stdout et stderr

Fichier de définitions : #include <stdio.h>

Utilisation :
écriture : int printf("FORMAT", expr1, expr2, ...);
lecture : int scanf("FORMAT", ptr1, ptr2, ...);

Saut à la ligne : ’\n’

Lecture d’une ligne entière :
char* fgets(char* s, int size, FILE* stream);

CS202–Computer Systems – Fiches Résumé – 9 / 13

©EPFL 2024
Jean-Cédric Chappelier

Les entrées/sorties (fichiers)

Type : FILE*

ouverture : FILE* fopen(const char* nom, const char* mode)

Mode :
"r" en lecture, "w" en écriture (écrasement), "a" en écriture (à la
fin), suivit de ’+’ pour ouverture en lecture et écriture, et/ou de ’b’
pour fichiers en binaires

Écriture :
fprintf(FILE*, ...) pour fichiers textes
size_t fwrite(const void* adr_debut, size_t taille_el, size_t
nb_el, FILE*); pour les fichiers binaires

Lecture :
fscanf(FILE*, ...) pour fichiers textes
size_t fread(void* adr_debut, size_t taille_el, size_t nb_el,
FILE*); pour les fichiers binaires

Test de fin de fichier : feof(FILE*)

Fermeture du fichier : fclose(FILE*)
CS202–Computer Systems – Fiches Résumé – 10 / 13

©EPFL 2024
Jean-Cédric Chappelier

Compilation séparée

Compilation modulaire
⇒ séparation des prototypes (dans les fichier .h) des définitions
(dans les fichiers .c)

⇒ compilation séparée
1. Inclusion des prototypes nécessaires dans le code :

#include "header.h"

2. Compilation vers un fichier "objet" (.o) : gcc -c prog.c

3. Lien entre plusieurs objets :
gcc prog1.o prog2.o prog3.o -o monprog

Makefile :
moyen utile pour décrire les dépendances entre modules d’un
projet (et compiler automatiquement le projet)

Syntaxe :

cible: dependance <TAB>commande

CS202–Computer Systems – Fiches Résumé – 12 / 13

