{ Variables %

En C, une donnée est stockée dans une variable caractérisée
par :
> son type et son identificateur (définis lors de la
déclaration);
> sa valeur, définie la premiere fois lors de l'initialisation puis
éventuellement modifiée par la suite.

Rappels de syntaxe : Types élémentaires :
type id ; int
type id = valeur; double

char

id = expression ;

Exemples : int val = 2 ;
double const pi = 3.141592653;
i=j+3;
Les variables non modifiables se déclarent avec le mot réservé
©EPFL 2024 const .

Jean-Cédric Chappelier

EPFL double COIlSt g = 9 ° 81 5 CS202—-Computer Systems — Fiches Résumé — 1/13

Operateurs arithmétiques

* multiplication Operateurs de comparaison
/ division == teste I'égalité logique
% modulo = non égalité

+ addition < inférieur

- soustraction > supérieur

- opposé (1 opérande) <= inférieur ou égal

++ incrément (1 opérande) >= supérieur ou égal

-- décrément (1 opérande)

Operateurs logiques
&& "et" logique
[l ou
! négation (1 opérande)

Priorités (par ordre décroissant, tous les opérateurs d’'un méme groupe

sont de priorité égale) :

O 0 ->. VvV++—— *x /% + - <<=>>= ===
OEPFL 2024 &&, [I, = += -=etc.,, ,

Jean-Cédric Chappelier

E PF L C8202-Computer Systems — Fiches Résumé — 2/13

L]

==

Les structures de controle %v

les branchements conditionnels : si... alors ...

if (condition) switch (expression) {
instructions case valeur:

j ;.4 instructions;

if (condition 1) break;

instructions 1
default:

else if (condition N) instructions;
instructions N }
else
instructions N+1
les boucles conditionnelles : tant que ...
while (condition) do Instructions while
Instructions (condition);

les itérations : pour ... allant de ... a
for (initialisation ; condition ; increment)

instructions

les sauts : break; et continue;

Note : instructions représente 1 instruction élémentaire ou un bloc.
©EPFL 202¢ instructions; représente une suite d’instructions élémentaires.

Jean-Cédric Chappelier

E PF L CS202—-Computer Systems — Fiches Résumé — 3/13

" Les fonctions Z’

Prototype (a mettre avant toute utilisation de la fonction) :

type nom (typel argl,

., typeN argN);

type est void si la fonction ne retourne aucune valeur.

Définition :
type nom (typel argl,
{
corps
return value;
}

Passage par valeur :

type f(type2 arg);
f(x)

= x he peut pas étre
modifié par £

©EPFL 2024
Jean-Cédric Chappelier

=PrFL

., typeN argN)

Passage par référence (va-
leur de pointeur en fait) :

type f(type2* arg);

£ (&x)

w x peut étre modifié par £

CS202—-Computer Systems — Fiches Résumé — 4/13

\~”_ Les tableaux Zy

déclaration : type identificateur[taille];
déclaration/initialisation :
type identificateur[taille] = {waly, ... , valpje};

Accés aux éléments : tab[i] i entre 0 et taille-1
Le passage typel f(type2 tab[]); d’'un tableau tab a une

fonction £ se fait automatiquement par référence
pour éviter les effet de bords : typel f(type2 const tab[]);

tableau multidimentionnel :
type identificateur[taillel][taille2];
tab[i] [j];

Les tableaux ne peuvent pas étre des types de retour pour les
fonctions. :-(

©EPFL 2024
Jean-Cédric Chappelier

E PF L CS202—-Computer Systems — Fiches Résumé — 5/13

©EPFL 2024
Jean-Cédric Chappelier

=PrFL

% Les structures

Déclaration du type correspondant :

struct Nom_du_type {
typel champl ;
type2 champ2 ;

I8
Déclaration d’'une variable :

struct Nom_du_type identificateur;
Déclaration/Initialisation d’'une variable :

struct Nom_du_type identificateur = { wall, wval2, ... };

Accés a un champs donné de la structure :
tdentificateur. champ

Affectation globale de structures :
tdentificateurl = identificateurd

CS202—-Computer Systems — Fiches Résumé — 6/13

[C

% Les pointeurs

Déclaration : typex identificateur;

Adresse d’une variable : &variable
Acceés au contenu pointé par un pointeur : *pointeur

Pointeur sur une constante : type const* ptr;
Pointeur constant : typex const ptr = adresse;

Allocation mémoire :
#include <stdlib.h>

pointeur = malloc(sizeof (type));
pointeur = calloc(nombre, sizeof (type));
pointeur = realloc(pointeur, sizeof(type));

Libération de la zone mémoire allouée : free(pointeur);

Pointeur sur une fonction : type_retour
(* ptrfet) (arguments...)

©EPFL 2024
Jean-Cédric Chappelier

E PF L C8202-Computer Systems — Fiches Résumé — 7/13

) e

Les chaines de caracteres

Valeur littérale : "valeur"

Déclarations :
char* nom;
char nom[tatlle];
char nom[] = "waleur";

Ecriture tprintf("...%s...", chaine); OU puts(chaine);

Lecture : scanf ("%s", chaine); OU gets(chaine) ;

Quelques fonctions de <string.h> :

strlen strcat
strcpy strncat
strncpy strchr
strcmp strrchr
strncmp strstr

©EPFL 2024
Jean-Cédric Chappelier

E PF L CS202—-Computer Systems — Fiches Résumé — 8/13

Les entrées/sorties Z

Clavier / Terminal : stdin/ stdout et stderr
Fichier de définitions : #include <stdio.h>

Utilisation :
écriture : int printf ("FORMAT", exprl, expr2, ...);
lecture : int scanf ("FORMAT", ptrl, ptr2, ...);

Saut a la ligne : ’\n’

Lecture d'une ligne entiére :
charx fgets(charx s, int size, FILEx stream);

©EPFL 2024
Jean-Cédric Chappelier

F L C8202-Computer Systems — Fiches Résumé — 9/13

©EPFL 2024
Jean-Cédric Chappelier

=PrFL

e

% Les entrées/sorties (fichiers)

Type : FILE*
ouverture : FILEx fopen(const char* mom, const char* mode)

Mode :

"r" en lecture, "w" en écriture (écrasement), "a" en écriture (a la
fin), suivit de '+ pour ouverture en lecture et écriture, et/ou de v’
pour fichiers en binaires

Ecriture :

fprintf (FILEx, ...) pour fichiers textes

size_t fwrite(const void* adr_debut, size_t taille_el, size_t
nb_el, FILEx); pour les fichiers binaires

Lecture :

fscanf (FILEx, ...) pour fichiers textes

size_t fread(void* adr_debut, size_t taille_el, size_t nb_el,
FILEx); pour les fichiers binaires

Test de fin de fichier : feof (FILE*)

Fermeture du fichier : fclose (FILE*)

CS202—-Computer Systems — Fiches Résumé — 10/13

e,

% Compilation séparée

Compilation modulaire
= séparation des prototypes (dans les fichier .h) des définitions
(dans les fichiers .c)
= compilation séparée

1. Inclusion des prototypes nécessaires dans le code :

#include "header.h"
2. Compilation vers un fichier "objet" (.0) : gcc -c¢ prog.c
3. Lien entre plusieurs objets :
gcc progl.o prog2.o0 prog3.0 -0 mMONprog

Makefile :
moyen utile pour décrire les dépendances entre modules d’un
projet (et compiler automatiquement le projet)

Syntaxe :

cible: dependance <TAB>commande

©EPFL 2024
Jean-Cédric Chappelier

E PF L CS202-Computer Systems — Fiches Résumé — 12/13

