
Compilation
séparée

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

CS–202 Computer Systems – C Lectures

C04 – SEPARATE COMPILATION

Jean-Cédric Chappelier

Laboratoire d’Intelligence Artificielle
Faculté I&C

CS202–Computer Systems – C04 – Separate Compilation – 1 / 30



Compilation
séparée
L’approche
modulaire

La compilation
séparée

Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Approche modulaire

Jusqu’à maintenant vos programmes étaient écrits en une seule fois,
dans un seul fichier.

Cette approche n’est pas réaliste pour des programmes plus conséquents,
qui nécessitent partage de composants, maintenance séparée, réutilisation, ...

On préfère une approche modulaire, c’est-à-dire une approche qui
décompose la tâche à résoudre en sous-tâches

implémentées sous la forme de modules génériques
(qui pourront être réutilisés dans d’autres contextes).

Chaque module correspond alors à une tâche ponctuelle, à un ensemble cohérent de
données, à un concept de base, etc.

CS202–Computer Systems – C04 – Separate Compilation – 2 / 30



Compilation
séparée
L’approche
modulaire

La compilation
séparée

Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Utilité

☞ Pourquoi faire cela?
▶ Pour rendre réutilisable : éviter de réinventer la roue à chaque fois

La conception d’un programme doit tenir compte de deux aspects importants :
▶ la réutilisation des objets/fonctions existants : bibliothèques logicielles (« libraries »

en anglais) ;
(les autres/passé −→ nous/présent)

▶ la réutilisabilité des objets/fonctions nouvellement créés.
(nous/présent −→ les autres/futur)

▶ Pour maintenir plus facilement : pas besoin de tout recompiler le jour où on
corrige une erreur dans une (sous-...-sous-)fonction

▶ Pour pouvoir développer des programmes indépendamment,
c’est-à-dire même si le code source n’est pas disponible

▶ Distribuer des bibliothèques logicielles (morceaux de code) sans en donner les
codes sources (protection intellectuelle).
Remarque : vous pouvez vous-même créer vos propres bibliothèques.

CS202–Computer Systems – C04 – Separate Compilation – 3 / 30



Compilation
séparée
L’approche
modulaire

La compilation
séparée

Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Conception modulaire

Concrètement, cela signifie que les types, structures de données et fonctions
correspondant à un « concept de base » seront regroupés dans un fichier
qui leur est propre.

Par exemple, on définira la structure qcm et ses fonctions dans un fichier,
à part de son utilisation.

☞ séparation des déclarations des objets de leur utilisation effective
(dans un main()).

Concrètement, cela crée donc plusieurs fichiers séparés qu’il faudra regrouper
(« lier ») en un tout pour faire un programme.

CS202–Computer Systems – C04 – Separate Compilation – 4 / 30



Compilation
séparée
L’approche
modulaire

La compilation
séparée

Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Exemple : exercice sur les QCM
typedef struct { ... } qcm;

void affiche(qcm const * question);
int poser_question(qcm const * question);
...

void affiche(qcm const * question)
{

...
}

int poser_question(qcm const * question)
{

...
}

int demander_nombre(int min, int max);

int demander_nombre(int a, int b) {
...

}

int main(void)
{

qcm maquestion;

...
poser_question(maquestion);

}

CS202–Computer Systems – C04 – Separate Compilation – 5 / 30



Compilation
séparée
L’approche
modulaire

La compilation
séparée

Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Compilation séparée

Le but est de séparer chacun de ces « concepts » dans un fichier séparé.

☞ Mais comment alors faire un tout (un programme complet) ?
Comment main() connait-il le reste?
Comment les QCMs connaissent-ils demander_nombre()?

La partie déclaration est la partie visible du module que l’on écrit,
qui va permettre son utilisation (et donc sa réutilisation).

C’est elle qui est utile aux autres fichiers pour utiliser les objets déclarés.

La partie définition est l’implémentation du code correspondant et n’est pas
directement nécessaire pour l’utilisateur du module.
Elle peut être cachée (aux autres).

CS202–Computer Systems – C04 – Separate Compilation – 6 / 30



Compilation
séparée
L’approche
modulaire

La compilation
séparée

Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Compilation séparée
De ce fait, il est nécessaire (en conception modulaire) de séparer chacune
de ces parties, en deux fichiers :

▶ les fichiers de déclaration (fichiers « headers »), avec une extension .h.
Ce sont ces fichiers qu’on inclut en début de programme par la commande
#include

▶ les fichiers de définition (fichiers sources, avec une extension .c)
Ce sont ces fichiers que l’on compile pour créer du code exécutable.

A quoi sert donc un fichier .h?

☞ A ce que les autres fichiers .c, qui utilisent ce module, puissent compiler.

Règles :
1. Pour chaque fichier (.c ou .h), pris/considéré indépendemment (= « pour

lui-même ») : y mettre tous les #include dont ce fichier a besoin
et uniquement ceux dont il a besoin ! Ni plus, ni moins !

2. Faire commencer le fichier .h par « #pragma once; » afin d’éviter les inclusions
multiples.

CS202–Computer Systems – C04 – Separate Compilation – 7 / 30



Compilation
séparée
L’approche
modulaire

La compilation
séparée

Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Compilation séparée : exempletypedef struct { ... } qcm;

void affiche(qcm const * question);
int poser_question(qcm const * question);
...

void affiche(qcm const * question)
{

...
}

int poser_question(qcm const * question)
{

...
}

#include "qcm.h"
void affiche(qcm const * question)
{

...
}

int poser_question(qcm const * question)
{

...
}

qcm.c

typedef struct { ... } qcm;

void affiche(qcm const * question);
int poser_question(qcm const * question);
...

qcm.h

CS202–Computer Systems – C04 – Separate Compilation – 8 / 30



Compilation
séparée
L’approche
modulaire

La compilation
séparée

Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Compilation séparée (2)

La séparation des parties déclaration et définition en deux fichiers permet une
compilation séparée du programme complet :
▶ phase 1 (compilation) : production de fichiers binaires (appelés fichiers objets)

correspondant à la compilation des fichiers sources (.c) contenant les parties
définitions (et dans lesquels on inclut (#include) les fichiers « headers » (.h)
nécessaires) ;

▶ phase 2 (édition de liens) : production du fichier exécutable final à partir des
fichiers objets et des éventuelles bibliothèques.

Note : pour un programme en N parties (.c), on fait N fois la phase de
compilation et 1 seule fois la phase d’édition de liens.

CS202–Computer Systems – C04 – Separate Compilation – 9 / 30



Compilation
séparée
L’approche
modulaire

La compilation
séparée

Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Compilation d’un programme C

fichier
source

fichier
source 2

fichier
ASM

fichier
« objet »

fichier
exécutable

assemblage

gcc -c

précompilateur

gcc -E

compilateur

gcc -S

éd. liens

ld

hello_E.c
typedef long unsigned int size_t;

typedef unsigned char __u_char;
typedef unsigned short int __u_short;
typedef unsigned int __u_int;
typedef unsigned long int __u_long;

typedef signed char __int8_t;
typedef unsigned char __uint8_t;
typedef signed short int __int16_t;
typedef unsigned short int __uint16_t;
typedef signed int __int32_t;
...

hello.asm
.file "hello.c"
.section .rodata

.LC0: .string "Hello World!"
.text
.globl main
.type main, @function

main:
.LFB0: .cfi_startproc

pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
movl $.LC0, %edi

...

CS202–Computer Systems – C04 – Separate Compilation – 10 / 30



Compilation
séparée
L’approche
modulaire

La compilation
séparée

Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Compilation séparée d’un programme C

gcc -c qcm.c -o qcm.o

fichier source1 fichier objet1

fichier source2 fichier objet2

compilateur

gcc -c questionnaire.c -o questionnaire.o

gcc questionnaire.o qcm.o -o questionnaire

fichier exécutable

édition de liens

En fait, gcc appelle ici

l’éditeur de lien ld

CS202–Computer Systems – C04 – Separate Compilation – 11 / 30



Compilation
séparée
L’approche
modulaire

La compilation
séparée

Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Compléments sur les headers files
Un même fichier .h pourrait se trouver inclus plusieurs fois dans la compilation via
d’autre fichier .h.

Pour éviter des redéfinition multiples et garantir que le contenu d’un fichier .h n’est
présent qu’une seule fois dans une compilation donnée, on utilise le truc suivant
▶ définition d’un identificateur «unique» au début du fichier

Par convention c’est souvent le nom du projet suivit du nom du fichier en majuscules avec
des _ à la place des caractères non alphanumériques.

▶ inclusion conditionnelle du fichier (y compris la définition ci-dessus)

Cela donne :

#ifndef MONFICHIERAMOI_H
#define MONFICHIERAMOI_H

// ... le fichier comme d'habitude
#endif

On peut aussi utiliser : #pragma once

CS202–Computer Systems – C04 – Separate Compilation – 12 / 30



Compilation
séparée
L’approche
modulaire

La compilation
séparée

Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Compléments sur les headers files (2)

Les modules écrits en C peuvent également être utilisés en C++

Mais le C++ requiert que de telles fonctions soient déclarées en extern "C"

Pour faire un fichier d’en-tête C portable en C++, on utilisera donc une nouvelle fois la
compilation conditionnelle comme suit :

#ifdef __cplusplus
extern "C" {
#endif

// ... le fichier comme d'habitude

#ifdef __cplusplus
}
#endif

CS202–Computer Systems – C04 – Separate Compilation – 13 / 30



Compilation
séparée
L’approche
modulaire

La compilation
séparée

Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Compléments sur les headers files (résumé)
Pour résumer, voici à quoi
ressemble un fichier d’en-tête
«bien» écrit
(il manque cependant encore de
commentaires !) :

#pragma once

#ifdef __cplusplus
extern "C" {
#endif

/* pas nécessaire pour les fonctions
* mais obligatoire pour les variables (globales) */

#ifndef QCM_C
#define extern_ extern
#else
#define extern_
#endif

// prototypes fonctions et autres...

// exemple de variable globale (à éviter !!)
extern_ unsigned int nombre_qcm;

#undef extern_

#ifdef __cplusplus
}
#endif

CS202–Computer Systems – C04 – Separate Compilation – 14 / 30



Compilation
séparée

Makefiles
Concepts

Variables

Compléments

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Makefile (introduction)

Mais quand on a un grand nombre de mo-
dules, cela devient vite fastidieux de faire
toutes ces compilations et ces liens...

...pour cela il y a des moyens plus pratiques dont les Makefile

Un Makefile est un fichier qui permet de construire facilement un projet en indiquant
les composants et leurs dépendances.
(« Makefile » est vraiment le nom de ce fichier, sans extension .qqchose ;
c’est juste un fichier texte.)

Une fois un Makefile constitué, pour réaliser l’exécutable correspondant au projet
il suffit de taper simplement make.

ou alors pour construire un programme particulier cible :
make cible.

CS202–Computer Systems – C04 – Separate Compilation – 15 / 30



Compilation
séparée

Makefiles
Concepts

Variables

Compléments

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Makefile (bases)
Un Makefile a une structure très simple : il est constitué d’un ensemble de règles
décrivant les différents modules à faire et de quoi ils dépendent (« liste de
dépendances »).

Une règle s’écrit :
but: liste de dépendances

Exemple :
questionnaire: demander_nombre.o qcm.o questionnaire.o

La première règle écrite dans le fichier Makefile permet de donner la liste de tous les
exécutables que l’on veut créer ; par exemple :
all: questionnaire

Si on a des bibliothèques système à utiliser, il faut les ajouter dans la variable LDLIBS
au début du Makefile :
LDLIBS = -lm

CS202–Computer Systems – C04 – Separate Compilation – 16 / 30



Compilation
séparée

Makefiles
Concepts

Variables

Compléments

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Makefile (exemple simple)
Exemple (simple) complet :

LDLIBS = -lm

all: questionnaire

questionnaire: demander_nombre.o qcm.o questionnaire.o

questionnaire.o: questionnaire.c qcm.h
qcm.o: qcm.c qcm.h demander_nombre.h

Remarques :
1. On peut ajouter d’autres options au compilateur avec la variable CFLAGS.

Par exemple : CFLAGS += -g -std=c17

2. On peut obtenir automatiquement les dépendances de compilation (c.-à-d. les
dépendances des fichiers .c) à l’aide de la commande :
gcc -MM *.c

3. make utilise des règles implicites.
On peut donc exprimer encore beaucoup plus de choses dans un Makefile.

CS202–Computer Systems – C04 – Separate Compilation – 17 / 30



Compilation
séparée

Makefiles
Concepts

Variables

Compléments

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Makefile (suite)
On n’est pas obligé d’utiliser les règles implicites de compilation, mais on peut, au cas
par cas, spécifier exactement la/les commandes que l’on souhaite exécuter pour
passer des dépendances au but.
Cela se fait de la façon suivante

but: liste de dépendances
<TAB>commande

où <TAB> représente une tabulation
(j’insiste : pas 4 ou 8 espaces, mais 1 seul caractère <TAB> !)

Exemple :

questionnaire: questionnaire.o qcm.o
<TAB>gcc -o questionnaire questionnaire.o qcm.o

On peut définir plusieurs commandes à la suite pour une même cible. Il suffit de les
mettre chacune à la ligne précédée d’un <TAB>

Elles sont alors exécutées par make les unes après les autres
(nouveau Shell à chaque fois)

CS202–Computer Systems – C04 – Separate Compilation – 18 / 30



Compilation
séparée

Makefiles
Concepts

Variables

Compléments

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Makefile : variables prédéfinies
Afin de faciliter l’écriture des commandes dans un Makefile, un certain nombre de
variables sont prédéfinies

$@ le but
$? les dépendances qui ne sont plus à jour
$< dépendances telles que définies par les

règles par défaut
$^ [GNU make] liste des dépendances
$(CC) le nom du compilateur (C)
$(CFLAGS) options de compilation
$(LDFLAGS) options du linker
$(LDLIBS) bibliothèques à ajouter

Exemples :

questionnaire.o: questionnaire.c qmc.h
<TAB>gcc -o $@ $<

CS202–Computer Systems – C04 – Separate Compilation – 19 / 30



Compilation
séparée

Makefiles
Concepts

Variables

Compléments

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Makefile : variables prédéfinies (2)

Exemple de règles par défaut exprimées avec les variables prédéfinies :
compilation .c → .o :

$(CC) -c $(CPPFLAGS) $(CFLAGS) $<

édition de liens :

$(CC) -o $@ $(LDFLAGS) $ˆ $(LDLIBS)

CS202–Computer Systems – C04 – Separate Compilation – 20 / 30



Compilation
séparée

Makefiles
Concepts

Variables

Compléments

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Makefile : variables

On peut également définir ses propres variables.

La déclaration se fait simplement avec le nom de la variable suivit de =

Exemple :
RUBS = *.o *~ *.bak

Pour utiliser la valeur d’une variable on entoure son nom de $( )

Exemple : $(RM) $(RUBS)

Les variables peuvent être redéfinies lors de l’appel :
make LDLIBS=-lm monprog

redéfinit la variable LDLIBS.

CS202–Computer Systems – C04 – Separate Compilation – 21 / 30



Compilation
séparée

Makefiles
Concepts

Variables

Compléments

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Makefile : divers (1/2)

▶ On peut mettre des commentaires dans un Makefile

Tout ce qui suit derrière un # jusqu’à la fin de la ligne est considéré comme un
commentaire

▶ Si l’on fait précéder la commande donnée dans une règle par @ la commande n’est
pas répétée à l’écran lors de l’exécution de make (c.-à-d. no echo)

▶ Si l’on fait précéder la commande donnée dans une règle par -, make continue
l’exécution même en cas d’échec de cette commande

▶ On peut générer automatiquement la liste de toutes les dépendances en utilisant
l’option -MM de gcc :
gcc -MM *.c

CS202–Computer Systems – C04 – Separate Compilation – 22 / 30



Compilation
séparée

Makefiles
Concepts

Variables

Compléments

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Makefile : divers (2/2)

▶ Il existe plusieurs outils pour générer automatiquement les Makefiles en
fonction de la configuration de la machine.

Voir par exemple :
▶ CMake, http://www.cmake.org,

▶ SCons, http://http://www.scons.org/,

▶ gyp, http://https://code.google.com/p/gyp/,

▶ ninja, http://http://martine.github.io/ninja/,

▶ Jam (BJam, KJam, ...),

▶ the GNU Build Tools, alias « autotools » (automake, autoconf and libtool), cf
http://sourceware.org/autobook/,
http://autotoolset.sourceforge.net/tutorial.html

▶ les outils intégrés de développement de projets (IDE) : Code : :Blocks, KDevelop,
Anjuta, NetBeans, Eclipse, ...

CS202–Computer Systems – C04 – Separate Compilation – 23 / 30

http://www.cmake.org
http://http://www.scons.org/
http://https://code.google.com/p/gyp/
http://http://martine.github.io/ninja/
http://sourceware.org/autobook/
http://autotoolset.sourceforge.net/tutorial.html


Compilation
séparée

Makefiles
Concepts

Variables

Compléments

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Makefile : exemple
# Makefile pour le projet BIDULEMACHIN
# cree par C. J. Reileppach le 11/03/2018

CC = gcc
CFLAGS += -std=c17 -g -Wall
LDLIBS += -lm

TARGETS = bidulemachin
OBJS = *.o
RUBS = $(OBJS) *~ core \#*\#

all: $(TARGETS)
@echo All done.

clean:
-@$(RM) $(RUBS)
@echo Cleaned.

new: clean
-@$(RM) $(TARGETS)
$(MAKE) all

CS202–Computer Systems – C04 – Separate Compilation – 24 / 30



Compilation
séparée

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Rôle de l’édition de liens

Les différentes composantes d’un programme ayant été compilées séparément,
le code compilé (ou « code objet ») contient des références à des bouts de codes
non connus au moment la compilation.

(c’est aussi vrai pour un programme contenu dans un seul fichier : il utilise toujours des
bibliothèques du systèmes [ne serait-ce que la libc !] qui ont été compilées [bien] avant lui !)

Le rôle de l’édition de liens (« linker ») est précisément de construire ces liens entre
bouts de codes compilés séparément : résoudre les ambiguïtés d’appel

CS202–Computer Systems – C04 – Separate Compilation – 25 / 30



Compilation
séparée

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Rôle de l’édition de liens (2)

Un code objet, c’est en fait du code partiel + des tables d’adressage

Il contient trois types de tables :
▶ table d’exportation des objets globaux (variables ou fonctions) ;

▶ table d’importation des objets référencés, mais d’adresse inconnue ;

▶ table des tâches : liste des endroits dans le code où se trouvent les adresses
à résoudre.

CS202–Computer Systems – C04 – Separate Compilation – 26 / 30



Compilation
séparée

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Rôle du chargeur

Mais même l’édition de liens ne peut pas tout résoudre...

Au moment de son « chargement » (loading) pour exécution par le système
d’exploitation, restent encore dans le programme certains détails d’adresses locales
à régler.

C’est précisément le rôle du chargeur (« loader »).

Le chargeur est un module du système d’exploitation dont le rôle est de résoudre les
dernières ambiguïtés liées au placement effectif en mémoire du programme
exécutable avant de lancer son exécution proprement dite.

En pratique, contrairement au compilateur et à l’éditeur de liens, vous ne voyez pas
explicitement ce module.

CS202–Computer Systems – C04 – Separate Compilation – 27 / 30



Compilation
séparée

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Linker/Loader : exemple
Reprenons notre exemple de QCM.

Lors de la compilation du programme principal questionnaire.c, le compilateur ne
connaît pas l’adresse mémoire du code correspondant aux fonctions déclarées dans
qcm.h

☞ le compilateur laisse cette partie du travail (résoudre les adresses inconnues) au
linker

Tables d’exportation :
dans qcm.o :

nom type adresse
affiche code 0 en relatif
poser_question code 342 en relatif (adresse de la première

instruction de cette fonction par rapport
à tout le code de ce module)

dans questionnaire.o :
nom type adresse
main code 0 en relatif

« code » ou « variable »

CS202–Computer Systems – C04 – Separate Compilation – 28 / 30



Compilation
séparée

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Linker/Loader : exemple (suite)
Table d’importation :
qcm.c n’en a pas (tous les objets qui y sont référencés sont connus)

pour questionnaire.c : affiche, poser_question, et peut être aussi sqrt (ou autres
fonctions de bibliothèques système)

Table des tâches :
pour qcm.c : tous les sauts en mémoire (par exemple dus à des structures de contrôle).

pour questionnaire.c : idem qcm.c, plus tous les endroits où un appel à du code
importé existe.

Dans ce cas, les valeurs à résoudre sont exprimées en termes d’entrées dans la table
d’importation, lesquelles seront résolues lors de l’édition de lien par consultation des
tables d’exportation des autres codes objets.

Pour finir, le chargeur modifie toutes les adresses de saut en fonction de l’adresse de
chargement du programme (point d’entrée)
.
(on dit que le chargeur « translate » le code)

CS202–Computer Systems – C04 – Separate Compilation – 29 / 30



Compilation
séparée

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Compulation séparée

Compilation modulaire
⇒ séparation des prototypes (dans les fichier .h) des définitions (dans les fichiers .c)

⇒ compilation séparée
1. Inclusion des prototypes nécessaires dans le code :

#include "header.h"

2. Compilation vers un fichier "objet" (.o) : gcc -c prog.c

3. Lien entre plusieurs objets :
gcc prog1.o prog2.o prog3.o -o monprog

Makefile :
moyen utile pour décrire les dépendances entre modules d’un projet (et compiler
automatiquement le projet)

Syntaxe :

cible: dependance <TAB>commande

CS202–Computer Systems – C04 – Separate Compilation – 30 / 30


	Compilation séparée
	L'approche modulaire
	La compilation séparée
	Compléments sur les .h

	Makefiles
	Concepts
	Variables
	Compléments

	Editions de liens et chargeur
	Fiche résumé

