Compilation
séparée

Makefiles

Editions de liens
et chargeur

Fiche résumé

CS—-202 Computer Systems — C Lectures
C04 — SEPARATE COMPILATION

Jean-Cédric Chappelier

Laboratoire d’Intelligence Artificielle
Faculté 1&C

©EPFL 2024
Jean-Cédric Chappelier

CS202-Computer Systems — C04 — Separate Compilation — 1/30

Approche modulaire

Lapproche
modulaire

Jusqu’a maintenant vos programmes étaient écrits en une seule fois,
dans un seul fichier.

Cette approche n’est pas réaliste pour des programmes plus conséquents,
qui nécessitent partage de composants, maintenance séparée, réutilisation, ...

On préfére une approche modulaire, c’est-a-dire une approche qui
décompose la tdche a résoudre en sous-tdches

implémentées sous la forme de modules génériques

(qui pourront étre réutilisés dans d’autres contextes).

Chaqgue module correspond alors a une tache ponctuelle, a un ensemble cohérent de
données, a un concept de base, etc.

©EPFL 2024
Jean-Cédric Chappelier

CS202-Computer Systems — C04 — Separate Compilation — 2/30

Utilité

epme r= Pourquoi faire cela ?

fes - » Pour rendre réutilisable : éviter de réinventer la roue a chaque fois

Lapproche

La conception d’un programme doit tenir compte de deux aspects importants :
> la réutilisation des objets/fonctions existants : bibliotheques logicielles (« libraries »
en anglais) ;
(les autres/passé — nous/présent)
> la réutilisabilité des objets/fonctions nouvellement créés.
(nous/présent — les autres/futur)
» Pour maintenir plus facilement : pas besoin de tout recompiler le jour ou on
corrige une erreur dans une (sous-...-sous-)fonction
» Pour pouvoir développer des programmes indépendamment,
c’est-a-dire méme si le code source n’est pas disponible
» Distribuer des bibliotheques logicielles (morceaux de code) sans en donner les

codes sources (protection intellectuelle).
Remarque : vous pouvez vous-méme créer vos propres bibliothéques.

©EPFL 2024
Jean-Cédric Chappelier

CS202-Computer Systems — C04 — Separate Compilation — 3/30

Conception modulaire

Lapproche
modulaire

Concrétement, cela signifie que les types, structures de données et fonctions
correspondant a un « concept de base » seront regroupés dans un fichier
qui leur est propre.

Par exemple, on définira la structure qcm et ses fonctions dans un fichier,
a part de son utilisation.

= Séparation des déclarations des objets de leur utilisation effective
(dans un main(Q)).

Concretement, cela crée donc plusieurs fichiers séparés qu'il faudra regrouper
(« lier ») en un tout pour faire un programme.

©EPFL 2024
Jean-Cédric Chappelier

CS202-Computer Systems — C04 — Separate Compilation — 4 /30

Lapproche
modulaire

La compilation
séparée
Compléments sur
les .h

Makefiles

Editions de liens
et chargeur

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

Exemple : exercice sur les QCM

typedef struct { ... } qcm;

void affiche(qcm const * question);
int poser_question(qcm const * question);

void affiche(gcm const * question)

{

int poser_question(qcm const * question)

int demander_nombre(int min, int max);

int demander_nombre(int a, int b) {

}

int main(void)
{

qcm maquestion;

poser_question(maquestion) ;

CS202-Computer Systems — C04 — Separate Compilation — 5/30

Compilation séparée A

Ig:pcartemepilal\on /
Le but est de séparer chacun de ces « concepts » dans un fichier séparé.
ww Mais comment alors faire un tout (un programme complet) ?

Comment main() connait-il le reste ?
Comment les QCMs connaissent-ils demander_nombre () ?

La partie déclaration est la partie visible du module que I'on écrit,
qui va permettre son utilisation (et donc sa réutilisation).

C’est elle qui est utile aux autres fichiers pour utiliser les objets déclarés.

La partie définition est I'implémentation du code correspondant et n’est pas
directement nécessaire pour I'utilisateur du module.
Elle peut étre cachée (aux autres).

©EPFL 2024
Jean-Cédric Chappelier

CS202-Computer Systems — C04 — Separate Compilation — 6 /30

Compilation séparée A
: De ce fait, il est nécessaire (en conception modulaire) de séparer chacune
priviisnd de ces parties, en deux fichiers : —»

> les fichiers de déclaration (fichiers « headers »), avec une extension .h.

Ce sont ces fichiers qu’on inclut en début de programme par la commande
#include

> les fichiers de définition (fichiers sources, avec une extension .c)
Ce sont ces fichiers que I'on compile pour créer du code exécutable.

A quoi sert donc un fichier .h?
e A ce que les autres fichiers . c, qui utilisent ce module, puissent compiler.

Régles :
1. Pour chaque fichier (.c ou .h), pris/considéré indépendemment (= « pour
lui-méme ») : y mettre tous les #include dont ce fichier a besoin
et uniquement ceux dont i/ a besoin ! Ni plus, ni moins!
2. Faire commencer le fichier .h par « #pragma once; » afin d’éviter les inclusions
OEprL 2024 multiples.

Jean-Cédric Chappelier
CS202-Computer Systems — C04 — Separate Compilation — 7 /30

. . 7
Compilation séparée-i-exer ;
Lapproche
Towari(void affiche(qcm const * question);
SZPZ",';‘;""“"" int poser_question(qcm const * question);
Compléments s
les .h
void affiche(qcm const * question)
{
}
int poser_question(qcm const * question)
bz
#include "qcm.h"
void affiche(gcm const * question)
t typedef struct { ... } qcm;
¥ ;))
void affiche(qcm const * question);
. . . int poser_question(qcm const * question);
int poser_question(qcm const * question)
{
qcm.h
¥
©EPFL 2024
Jean-Cédric Chappelier qcm .C

CS202-Computer Systems — C04 — Separate Compilation — 8/30

Compilation séparée (2)

La compilation
séparée

La séparation des parties déclaration et définition en deux fichiers permet une
compilation séparée du programme complet :

» phase 1 (compilation) : production de fichiers binaires (appelés fichiers objets)
correspondant a la compilation des fichiers sources (. c) contenant les parties
définitions (et dans lesquels on inclut (#include) les fichiers « headers » (.h)
nécessaires);

> phase 2 (eédition de liens) : production du fichier exécutable final a partir des
fichiers objets et des éventuelles bibliothéques.

Note : pour un programme en N parties (.c), on fait N fois la phase de
compilation et 1 seule fois la phase d’édition de liens.

©EPFL 2024
Jean-Cédric Chappelier

CS202-Computer Systems — C04 — Separate Compilation — 9/30

proche

modulaire
La compilation
séparée

Sompléments sur
es .h

©EPFL 2024
Jean-Cédric Chappelier

Compilation d’'un programme C

précompilateur compilateur assemblage éd. liens
fichier fichier fichier fichier fichier
—_— —_— K
source | gcc -E |source 2 | gcc -S|ASM | gcc -c |« objet » 1d |exécutable
hello.asm
hello_E-C .file llhello.cll
typedef long unsigned int size_t; .section .rodata
.LCO: .string "Hello World!"
typedef unsigned char __u_char; .text
typedef unsigned short int __u_shortj .globl main
typedef unsigned int __u_int; .type main, @function
typedef unsigned long int __u_long; main:
.LFBO: .cfi_startproc
typedef signed char __int8_t; pushqg %rbp
typedef unsigned char __uint8_t; .cfi_def_cfa_offset 16
typedef signed short int __intl6_t; .cfi_offset 6, -16
typedef unsigned short int __uintl6_t; movq %rsp, hrbp
typedef signed int __int32_t; .cfi_def_cfa_register 6
.. movl $.LCO, %edi

CS202—-Computer Systems — C04 — Separate Compilation — 10/30

Lapproche

Compilation séparée d’un programme C A

modulaire
La compilation
[g5e < qem-c o qen o] _
les .h
| fichier source | fichier objet1
compilateur

| fichier source2 | fichier objet2

|gcc -C questionnaire.c -o questionnaire.o|

fichier exécutable

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C04 — Separate Compilation — 11/30

Compléments sur les headers files

Un méme fichier .h pourrait se trouver inclus plusieurs fois dans la compilation via
Complmans su d’autre fichier .h.

les .

Pour éviter des redéfinition multiples et garantir que le contenu d’un fichier .h n’est
présent qu’une seule fois dans une compilation donnée, on utilise le truc suivant
» définition d'un identificateur «unique» au début du fichier
Par convention c’est souvent le nom du projet suivit du nom du fichier en majuscules avec
des _ a la place des caractéres non alphanumériques.

» inclusion conditionnelle du fichier (y compris la définition ci-dessus)

Cela donne :

#ifndef MONFICHIERAMOI_H
#define MONFICHIERAMOI_H

// ... le fichier comme d'habitude
#endif

On peut aussi utiliser : #pragma once

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C04 — Separate Compilation — 12/30

Compléments sur les headers files (2)

o s Les modules écrits en C peuvent également étre utilisés en C++
Mais le C++ requiert que de telles fonctions soient déclarées en extern "C"

Pour faire un fichier d’en-téte C portable en C++, on utilisera donc une nouvelle fois la
compilation conditionnelle comme suit :

#ifdef __cplusplus

extern "C" {
#endif

// ... le fichier comme d'habitude
#ifdef __cplusplus

}
#endif

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C04 — Separate Compilation — 13 /30

Compléments sur les hea

, Pour résumer, voici & quoi

Compamans s ressemble un fichier d’en-téte
«bien» écrit

(il manque cependant encore de

commentaires!) :

©EPFL 2024
Jean-Cédric Chappelier

#pragma once

#ifdef __cplusplus

extern "C" {
#endif

/* pas nécessaire pour les fonctions
* mais obligatoire pour les variables (globales) */
#ifndef QCM_C
#define extern_ extern
#else
#define extern_
#endif

// prototypes fonctions et autres...

// exemple de variable globale (& éviter !!)
extern_ unsigned int nombre_gcm;

#undef extern_
#ifdef __cplusplus

}
#endif

14/30

Makefile (introduction) A
L A

Mais quand on a un grand nombre de mo-
dules, cela devient vite fastidieux de faire
toutes ces compilations et ces liens...

...pour cela il y a des moyens plus pratiques dont les Makefile

Un Makefile est un fichier qui permet de construire facilement un projet en indiquant
les composants et leurs dépendances.

(« Makefile » est vraiment le nom de ce fichier, sans extension .qqchose;

c’est juste un fichier texte.)

Une fois un Makefile constitué, pour réaliser 'exécutable correspondant au projet
il suffit de taper simplement make.

ou alors pour construire un programme particulier cible :
OEPRL 2024 make cible.

Jean-Cédric Chappelier
CS202—-Computer Systems — C04 — Separate Compilation — 15/30

Makefile (bases)

Un Makefile a une structure trés simple : il est constitué d’'un ensemble de régles
décrivant les différents modules a faire et de quoi ils dépendent (« liste de
dépendances »).

Concepts

Une regle s’écrit :

but: liste de dépendances

Exemple :

questionnaire: demander_nombre.o qcm.o questionnaire.o

La premiére regle écrite dans le fichier Makefile permet de donner la liste de tous les
exécutables que I'on veut créer; par exemple :

all: questionnaire

Si on a des bibliotheques systéme a utiliser, il faut les ajouter dans la variable LDLIBS
au début du Makefile :

©EPFL 2024 LDLIBS = -1m

Jean-Cédric Chappelier
CS202—-Computer Systems — C04 — Separate Compilation — 16 /30

Makefile (exemple simple)
Exemple (simple) complet :
LDLIBS = -1m

Concepts

all: questionnaire
questionnaire: demander_nombre.o gcm.o questionnaire.o

questionnaire.o: questionnaire.c qcm.h
qcm.o: qcm.c gcm.h demander_nombre.h

Remarques :
1. On peut ajouter d’autres options au compilateur avec la variable CFLAGS.
Par exemple : CFLAGS += -g -std=cl7

2. On peut obtenir automatiquement les dépendances de compilation (c.-a-d. les
dépendances des fichiers .c) a l'aide de la commande :
gcec -MM *.c

3. make utilise des regles implicites.
oEPFL 2024 On peut donc exprimer encore beaucoup plus de choses dans un Makefile.

Jean-Cédric Chappelier
CS202—-Computer Systems — C04 — Separate Compilation — 17 /30

Makefile (suite)
On n’est pas obligé d'utiliser les regles implicites de compilation, mais on peut, au cas
par cas, spécifier exactement la/les commandes que I'on souhaite exécuter pour
passer des dépendances au but.
Cela se fait de la fagon suivante

Concepts

but: liste de dépendances
<TAB>commande

oU <TAB> représente une tabulation
('insiste : pas 4 ou 8 espaces, mais 1 seul caractére <TAB>!)

Exemple :

questionnaire: questionnaire.o qcm.o

<TAB>gcc -o questionnaire questionnaire.o gcm.o

On peut définir plusieurs commandes a la suite pour une méme cible. Il suffit de les
mettre chacune a la ligne précédée d'un <TAB>

Elles sont alors exécutées par make les unes aprés les autres
sancerscnamerer (NOUVEAU Shell @ chaque fois)

CS202—-Computer Systems — C04 — Separate Compilation — 18/30

Makefile : variables prédéfinies

Afin de faciliter I'écriture des commandes dans un Makefile, un certain nombre de
variables sont prédéfinies

Variables

$@ le but

$7 les dépendances qui ne sont plus a jour

$< dépendances telles que définies par les
regles par défaut

$- [GNU make] liste des dépendances

$(CC) le nom du compilateur (C)

$(CFLAGS) options de compilation
$ (LDFLAGS) options du linker
$(LDLIBS) bibliothéques a ajouter
Exemples :
questionnaire.o: questionnaire.c gmc.h
<TAB>gcc -o $@ $<
©EPFL 2024

Jean-Cédric Chappelier
CS202—-Computer Systems — C04 — Separate Compilation — 19/30

Makefile : variables prédéfinies (2)

Concepts
Variables
Compléments

Exemple de régles par défaut exprimées avec les variables prédéfinies :
compilation .c — .o :

$(CC) -c $(CPPFLAGS) $(CFLAGS) $<

édition de liens :

$(CC) -o $@ $(LDFLAGS) $~ $(LDLIBS)

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C04 — Separate Compilation — 20 /30

Makefile : variables

Variables

On peut également définir ses propres variables.

La déclaration se fait simplement avec le nom de la variable suivit de =
Exemple :

RUBS = *.0 *~ x.bak

Pour utiliser la valeur d’'une variable on entoure son nom de $()

Exemple : $(RM) $(RUBS)

Les variables peuvent étre redéfinies lors de I'appel :
make LDLIBS=-1m monprog
redéfinit la variable LDLIBS.

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C04 — Separate Compilation — 21/30

Makefile : divers (1/2)

Compléments.
» On peut mettre des commentaires dans un Makefile

Tout ce qui suit derriere un # jusqu’a la fin de la ligne est considéré comme un
commentaire

» Sil'on fait précéder la commande donnée dans une régle par @ la commande n’est
pas répétée a I'écran lors de I'exécution de make (c.-a-d. no echo)

» Sil'on fait précéder la commande donnée dans une régle par -, make continue
'exécution méme en cas d’échec de cette commande

» On peut générer automatiquement la liste de toutes les dépendances en utilisant
l'option -MM de gcc :
gce -MM *.c

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C04 — Separate Compilation — 22 /30

Compléments

©EPFL 2024
Jean-Cédric Chappelier

Makefile : divers (2/2)

Il existe plusieurs outils pour générer automatiquement les Makefiles en
fonction de la configuration de la machine.

Voir par exemple :
» CMake, http://www.cmake.org,

» SCons, http://http://wuw.scons.org/,

gyp, http://https://code.google.com/p/gyp/,
ninja, http://http://martine.github.io/ninja/,
Jam (BJam, KJam, ...),

the GNU Build Tools, alias « autotools » (automake, autoconf and libtool), cf
http://sourceware.org/autobook/,
http://autotoolset.sourceforge.net/tutorial.html

vV v.v Yy

> les outils intégrés de développement de projets (IDE) : Code : :Blocks, KDevelop,
Anjuta, NetBeans, Eclipse, ...

CS202—-Computer Systems — C04 — Separate Compilation — 23 /30

http://www.cmake.org
http://http://www.scons.org/
http://https://code.google.com/p/gyp/
http://http://martine.github.io/ninja/
http://sourceware.org/autobook/
http://autotoolset.sourceforge.net/tutorial.html

Makefile : exemple

Makefile pour le projet BIDULEMACHIN
Compéments # cree par C. J. Reileppach le 11/03/2018

cC = gcc
CFLAGS += -std=cl7 -g -Wall
LDLIBS += -1m

TARGETS = bidulemachin
0BJS = *.o0
RUBS = $(0BJS) *~ core \#x*\#

all: $(TARGETS)
Q@echo All done.

clean:
-@$(RM) $(RUBS)
Q@echo Cleaned.

new: clean
-@$(RM) $(TARGETS)
$(MAKE) all

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C04 — Separate Compilation — 24 /30

Role de I’édition de liens A

Editions de liens -
et chargeur oo /

Les différentes composantes d’'un programme ayant été compilées séparément,
le code compilé (ou « code objet ») contient des références a des bouts de codes
non connus au moment la compilation.

(c’est aussi vrai pour un programme contenu dans un seul fichier : il utilise toujours des
bibliothéques du systémes [ne serait-ce que la 1ibc] qui ont été compilées [bien] avant lui!)

Le rble de I'édition de liens (« linker ») est précisément de construire ces liens entre
bouts de codes compilés séparément : résoudre les ambiguités d’appel

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C04 — Separate Compilation — 25/ 30

Réle de I’édition de liens (2) A

Editions de liens »
et chargeur _ A /

Un code objet, c’est en fait du code partiel + des tables d’adressage

Il contient trois types de tables :
> table d’exportation des objets globaux (variables ou fonctions);
> table d'importation des objets référencés, mais d’adresse inconnue;

> table des taches : liste des endroits dans le code ou se trouvent les adresses
a résoudre.

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C04 — Separate Compilation — 26 /30

Réle du chargeur A

Editions de liens »
et chargeur e /

Mais méme I'édition de liens ne peut pas tout résoudre...

Au moment de son « chargement » (loading) pour exécution par le systeme
d’exploitation, restent encore dans le programme certains détails d’adresses locales
arégler.

C’est précisément le réle du chargeur (« loader »).

Le chargeur est un module du systeme d’exploitation dont le réle est de résoudre les
derniéres ambiguités liées au placement effectif en mémoire du programme
exécutable avant de lancer son exécution proprement dite.

En pratique, contrairement au compilateur et a I'éditeur de liens, vous ne voyez pas
explicitement ce module.

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C04 — Separate Compilation — 27 /30

Linker/Loader : exemple
Reprenons notre exemple de QCM.

Editions de liens
et chargeur

Lors de la compilation du programme principal questionnaire.c, le compilateur ne
connait pas I'adresse mémoire du code correspondant aux fonctions déclarées dans

qcm.h
= le compilateur laisse cette partie du travail (résoudre les adresses inconnues) au
linker
Tables d’exportation : « code » ou « variable »
dans qcm.o :
nom | type | adresse
affiche code | 0 en relatif

poser_question | code | 342 en relatif (adresse de la premiére
instruction de cette fonction par rapport
a tout le code de ce module)
dans questionnaire.o :
nom | type | adresse
p—— main | code | O en relatif

Jean-Cédric Chappelier

CS202—-Computer Systems — C04 — Separate Compilation — 28 /30

Linker/Loader : exemple (suite)

Table d’importation :
Editions de liens B . . TP 7
ot chargeur gcm.c n’en a pas (tous les objets qui y sont référencés sont connus)

pour questionnaire.c : affiche, poser_question, et peut étre aussi sqrt (ou autres
fonctions de bibliothéques systéme)

Table des taches :
pour qgcm. c : tous les sauts en mémoire (par exemple dus a des structures de contréle).

pour questionnaire.c :idem qcm. c, plus tous les endroits ol un appel a du code
importé existe.

Dans ce cas, les valeurs a résoudre sont exprimées en termes d’entrées dans la fable
d'importation, lesquelles seront résolues lors de 'édition de lien par consultation des
tables d’exportation des autres codes objets.

Pour finir, le chargeur modifie toutes les adresses de saut en fonction de I'adresse de
chargement du programme (point d’entrée)

©EPFL 2024 (on dit que le chargeur « translate » le code)

Jean-Cédric Chappelier

CS202—-Computer Systems — C04 — Separate Compilation — 29 /30

Fiche résumé

©EPFL 2024
Jean-Cédric Chappelier

e

/ Compulation séparée zﬂ

Compilation modulaire
= séparation des prototypes (dans les fichier .h) des définitions (dans les fichiers .c)
= compilation séparée

1. Inclusion des prototypes nécessaires dans le code :
#include "header.h"

2. Compilation vers un fichier "objet" (.0) : gcc -c prog.c

3. Lien entre plusieurs objets :
gcc progl.o prog2.o0 prog3.0 -0 mMoOnprog
Makefile :

moyen utile pour décrire les dépendances entre modules d’un projet (et compiler
automatiquement le projet)

Syntaxe :

cible: dependance <TAB>commande

CS202—-Computer Systems — C04 — Separate Compilation — 30/ 30

	Compilation séparée
	L'approche modulaire
	La compilation séparée
	Compléments sur les .h

	Makefiles
	Concepts
	Variables
	Compléments

	Editions de liens et chargeur
	Fiche résumé

