Pointeurs sur
fonctions

Récapitulation
Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

CS—-202 Computer Systems — C Lectures
C03 — POINTERS 2: COMPLEMENTS

Jean-Cédric Chappelier

Laboratoire d’Intelligence Artificielle
Faculté 1&C

CS202—-Computer Systems — C03 — Pointers 2: complements — 1/32

Chaines de

Chaines de caracteres

différent de Java !

A la différence d’autre langages, C n’offre pas de type de base pour la manipulation
des chaines de caractéres.

En C, une chaine de caractéres est codée dans un tableau de (ou pointeur sur
des) caractéeres.

NOTE : La fin de la chaine de caractéres est indiquée par le caractére nul (noté '\0"
ou (char) 0)

Du point de vue organisation de la mémoire, on a donc strictement :

char nom[6] = { 'H', 'e', 'b', 'u', 's', '\0' }; I

Attention ! Ce n'est pas comme cela qu’on écrit en pratique ! ("Hebus")
= il y a heureusement quelques facilités de programmation supplémentaires !
©EPFL 2u24
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 2 /32

=we Chaines de caractéres (2)

La déclaration d’'une chaine de caractéres peut se faire

@ par une constante littérale (entre guillemets) :
"Bonjour" (Note : \" pour représenter le caractere ")

Cette constante est un tableau de caractéres qui inclut le caractere nul a la fin

@ par une variable de taille fixe (tableau) :
char nom[25] ;
char nom_fichier [FILENAME_MAX] ;
char const welcome[] = "Bonjour";

® par une allocation dynamique (pointeur) :
char* nom;
= Ne pas oublier de faire I'allocation (calloc/malloc)

= penser que pour stocker une chaine de n caractéres il faut allouer de la
place pour n+ 1 caractéres (en raison du '\0' final).

©EPFL 2024
Jean-Cédric Chappelier

CS202-Computer Systems — CO3 — Pointers 2: complements — 3/32

e Affectation de chaines de caracteres

A

Attention ! Voici une erreur courante concernant I'affectation de chaines de caractereg”:

% char* s = "bonjour"; I

N’est en général PAS CORRECT! (bien que cela fonctionne ! Mais que se passe-t-il en réalité ?)

La seule bonne fagon de faire est
soit d'utiliser la fonction strncpy (si s doit étre modifiée) :

strncpy(s, "bonjour", TAILLE); I

Note : il faut bien sOr avoir alloué s avant (a TAILLE+1 éléments),
mais aussi mettre le '\0' final que strncpy ne garantit pas :

char* s = calloc(TATLLE+1, 1); I

Lutilisation du = avec une valeur littérale ("blablabla")
n’est sans risque QUE lors de linitialisation d’un tableau
statique :

GEPFL2024 char s[] = "Bonjour"; I
Jean-Cédric Chappelier

soit d’utiliser const
(si s ne doit pas étre mo-
difiée) :

const char* s
= "bonjour";

CS202—-Computer Systems — C03 — Pointers 2: complements — 4 /32

=wes Fonctions de la bibliotheque string

char* strcpy(char* dest, char const* src);
copie la chaine src dans la chaine dest. Retourne dest.
Attention ! aucune vérification de taille n’est effectuée ! Préférez strncpy!

char* strncpy(char* dest, char const* src, size_t n);
copie les n premiers caractéres de src dans dest. Retourne dest.
Attention ! n’ajoute pas le '\0' & la fin si src contient plus de n caractéres!

char* strcat(char* dest, char const* src);
ajoute la chaine src a la fin de la chaine dest. Retourne dest.
Attention! aucune vérification de taille n’est effectuée ! Préférez strncat!

char* strncat(char* dest, char const* src, size_t n);
ajoute au plus n caractéres de src a la fin de dest. Retourne dest.

int strcmp(char const* s1, char const* s2);

Compare (ordre alphabétique) les chaines s1 et s2. Retourne un nombre négatif si s1
< s2, 0 si les deux chaines sont identiques et un nombre positif si s1 > s2.

Préférez strncmp!

©EPFL 2024
Jean-Cédric Chappelier

CS202-Computer Systems — C03 — Pointers 2: complements — 5/32

Chaines de

=we Fonctions de la bibliotheque Strln% $2)

int strncmp(char const* sl, char conSt* s2, size
comme strcmp, Mais ne compare au plus que les n premiers caractéres de chacune
des chaines.

size_t strlen(char const * s);
Retourne le nombre de caractéres dans s (sans le caractére nul de la fin).

char* strchr(char const* s, char c);
Retourne un pointeur sur la premiére occurrence de c dans s, ou NULL si ¢ n'est pas
dans s

char* strrchr(char const* s, char c);
idem que strchar mais en partant de la fin. Retourne donc la derniere occurrence de
c dans s.

char* strstr(char const*x sl1, char const* s2);
retourne le pointeur vers la premiére occurrence de de s2 dans s1 (ou NULL si s2 n’est
pas incluse dans s1).

|| existe plusieurs autres fonctions dans string. Pour en
savoir plus: man 3 string

©EPFL 2024
Jean-Cédric Chappelier

CS202-Computer Systems — C03 — Pointers 2: complements — 6 /32

o | ecture/Ecriture

#include <stdio.h>

Ecriture d’une chaine de caractéres s :

printf("...%s...", s);

ou

puts(s); (quiajoute un retour a la ligne a la fin)
ou

fputs(s, stdout); (lui n’ajoute rien)

Lecture d’'une chaine de caractéres s :
scanf ("%s", s);

ou (mieux! car fixe une taille limite)
fgets(s, taille, stdin);

ww Cf printf et scanf dans le cours sur les entrées/sorties (semaine 4).

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 7/32

Chaines de
caractéres

©EPFL 2024
Jean-Cédric Chappelier

e

Valeur littérale : "valeur"

Déclarations :
char* mom;
char nom[taille];
char nom[] = "waleur";

Les chaines de caractéres Z

Ecriture tprintf("...%s...", chaine); OU puts(chaine);

Lecture : scanf ("%s", chaine); OU gets(chaine) ;

Quelques fonctions de <string.h> :

strlen
strcpy
strncpy
strcmp
strncmp

strcat
strncat
strchr
strrchr
strstr

CS202-Computer Systems — C03 — Pointers 2: complements — 8/32

Pointeurs sur
fonctions

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs sur fonctions

En C, on peut en fait pointer sur n'importe quel endroit mémoire.
On peut en particulier pointer sur des fonctions (cf exemple d’il y a 2 cours).
La syntaxe consiste & mettre (xptr) a la place du nom de la fonction.

Par exemple :

double f(int i); estune fonction qui prend un int en argument et retourne un
double comme valeur

double (*g)(int i); estun pointeur sur une fonction du méme type que ci-dessus.

On peut maintenant par exemple faire : g=f; (identique a g=&f;)

puis ensduite : z=g(i); (identique a z=(*g) (i) ;)
Note : pas besoin du & ni du * dans l'utilisation des pointeurs de fonctions.

Pour un exemple complet, voir 'exemple du début du cours sur les pointeurs (il y a
2 cours).

CS202-Computer Systems — C03 — Pointers 2: complements — 9/32

Pointeurs sur fonctions (2)

Pointeurs sur
fonctions

Ces pointeurs sur fonctions sont donc un moyen trés utile de
passer des fonctions en arguments d’autres fonctions

Exemple précédent :
typedef double (*Fonction) (double);

double integre(Fonction f, double a, double b) { ... }

aire = integre(sin, 0.0, M_PI);

Plus généralement, on construit des fonctions « génériques » ayant comme arguments
des pointeurs génériques (voidx).

On peut ensuite passer ces fonctions génériques a des fonctions trés générales.

Lexemple typique est celui du tri gsort (man 3 gsort)

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 10/32

Pointeurs sur
fonctions

Utilisation de gsort A

void gsort(void* base, size_t nb_el, size_t size,
int (*compar) (const void*, const void*));
base est un pointeur sur la zone a trier
nb_el est le nombre d’éléments a trier
size est la taille d’'un élément (utiliser sizeof ici)
et compar est la fonction utilisée pour comparer deux arguments :
cette fonction doit retourner un entier
> nul en cas d’égalité;
> neégatif si le premier argument est « plus petit » (vient avant) le second argument;;
> positif s'il est « plus grand » (vient apres) .

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 11/32

Exemple d’utilisation de gsort

Pointeurs sur
fonctions

int compare_int(void const * argl, void const * arg2) {
int const * const i = argl;
int const * const j = arg2;
return ((*¥i == *j) 7 0 : ((*i < *j) 7 -1 : 1)) ;

}

int tab[NB];

gsort(tab, NB, sizeof (int), compare_int);

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 12/32

Récapitulation

©EPFL 2024
Jean-Cédric Chappelier

Récapitulons

T T R un entier

ANEK D vrereneinanns un pointeur sur un entier

ANERA D ataaeaeanan un pointeur sur un pointeur sur un entier

intk £O aeeanan. une fonction qui retourne un pointeur sur un entier

int (RO aenenann.. un pointeur sur une fonction qui retourne un entier

intx GO veennnn.. un pointeur sur une fonction qui retourne un pointeur sur un entier
intak £O5 ceieaneans une fonction qui retourne un pointeur sur un pointeur sur un entier
intx t01 ueenena... un tableau de pointeurs sur des entiers

int GPIL] aeeenannns un pointeur sur un tableau d’entiers

int GEOID vvnennn. une fonction qui retourne un pointeur sur un tableau d’entiers

intk GEO)O ..an... une fonction qui retourne un pointeur sur une fonction retournant un

pointeur sur un entier

int (x(x(+£0)[1OYI1 une fonction qui retourne un pointeur sur un tableau de pointeurs
pointant sur des fonctions retournant des pointeurs sur tableaux
d’entiers

w N’hésitez pas a utiliser typedef!

CS202—-Computer Systems — C03 — Pointers 2: complements — 13 /32

Forcage de type (ou «casting»)

o En C, il est toujours possible d’interpréter avec un type différent une zone
mémoire/variable déclarée dans un premier type.
Cela a pour effet de convertir la valeur désignée dans le nouveau type.

Il suffit pour cela de faire précéder la valeur par le type forcé entre () :
(type) expression

Exemple :

double x = 5.4;
int i = (dnt) x; /* i = 5 */

(suppression de la partie fractionnaire, c.-a-d. conversion vers 0)

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 14 /32

Forcage de type (2) A

Cast

Attention ! Dans le cas de pointeur, cela ne change pas le contenu de la
zone/variable en question, mais uniquement son interprétation

Exemple :

double x = 5.4;
int* i = (int*) &x;

printf("%d\n", (int) x); /* affiche 5 */
printf("%d\n", *i); /* affiche -1717986918 */

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 15/32

Forcage de type (3)
On utilise le casting essentiellement pour :

» convertir facilement des valeurs (typiqguement d’un type entier & un autre, ou d’'un
type double a un type entier);

> écrire du code « générique » via des pointeurs (voidx).

Cast

Exemple : tri générique (man 3 gsort)

void gsort(void* base, size_t nmemb, size_t size,
int (*compar) (void const*, void const*));

Personne montab[TAILLE];

int compare_personnes(Personne const* p_quidami,
Personne const* p_quidam?2);

gsort ((montab, TAILLE, sizeof (Personne),
(int (%) (void const*, void const*))compare_personnes) ;

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 16 /32

gsort autre solution

Cast ... OU comme précédemment;
les « cast », optionnels en C, étant alors dans la fonction compar :

int compare_personnes(void const* argl, void const* arg2);

gsort (montab, TAILLE, sizeof(Personne), compare_personnes);

int compare_personnes(void const* argl, void const* arg2) {
Personne const* const p_quidaml = argl;

Personne const* const p_quidam2 = arg?2;

. *p_quidaml ...

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 17 /32

voidx* casts
Les casts depuis ou vers void* ont un statut un peu particulier (et différent entre C et
C++):
Cast @ dans les deux langages (C et C++), I'affectation vers void* est permise sans
cast :

int* ptrl; void* ptr2; . ptr2 = ptri;]

@ En C, un voidx* peut étre affecté, sans cast explicite, & un autre pointeur (de tout
type).
En C++, par contre, I'affectation depuis un void* vers un pointeur « non void » n’est pas
permise sans cast.
Le code suivant est donc valide en C mais incorrect en C++ :
int* ptrl; void* ptr2; ... ptrl = ptr2;

i} En C++, il faudrait écrire : ptr1 = static_cast<int*>(ptr2);

® En C++, la comparaison entre void* et pointeur quelconque est par contre permise
OEPFL 2028 (conversion implicite vers voidx).

Jean-Cédric Chappelier
CS202—-Computer Systems — C03 — Pointers 2: complements — 18 /32

Pointeurs et tableaux

On a vu dans les cours et exercices précédents qu’on pouvait par exemple allouer un
pointeur sur une zone de 3 double :

Pointeurs et
tableaux

double* ptr;
ptr = calloc(3, sizeof(double));

Pourtant ptr en tant que tel ne pointe que sur un double!
(regardez son type : doublex)

Que vaut *ptr ?
w= la valeur du premier double stocké dans cette zone.

Comment accéder aux 2 autres ?

= avec une syntaxe identique aux tableaux : ptr[1] et ptr[2]

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 19/32

Pointeurs et tableaux (2)

En C, un tableau est en fait trés similaire a un pointeur (on I'a déja vu lors du passage
_ d’argument a une fonction) constant sur une zone allouée statiquement (lors de la
tabloa déclaration du tableau).

Ainsi int [] est pratiquement identique & « int* const »
et *p est strictement équivalent a p [0]

MAIS

int** ou int*[] sont trés différents de int [] [] (qui d’ailleurs n’existe pas en tant que
tel! int [1 [M1, oui)

intkk
> n’est pas continu en mémoire ;
» n’est pas alloué au départ;
> les lignes n'ont pas forcément le méme nombre d’éléments.

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 20 /32

Pointeurs et tableaux (2)

int** p3; int* p2[N]; int plN] [M];
p2[1] [0]
Pointeurs et
tableaux
p3 ‘ ‘
¢ p2l &— A el p1[0] [0]
N
M
[N
p2[0] [0] pll1] [0]
N| M
M
| p1(2] [3]
p2[2] [3]
©EPFL 2024

Jean-Cédric Chappelier
CS202—-Computer Systems — C03 — Pointers 2: complements — 21/32

Pointeurs et tableaux (3)
Qu’affiche la portion de code suivant ?

#define N 2
#define M 14
_ /...
fa‘:)'lnet:ﬁf et double p1[N][M];
doublex p2[N];
double** p3;

p3 = calloc(N, sizeof (double*)); // usual checks...

for (size_t i = 0; i < N; ++i) {
p2[i] = calloc(M, sizeof(double)); // ...
p3[i] = calloc(M, sizeof(double)); // ...
}

printf ("&(p1[11[2]) - pl = %u doubles\n",
(unsigned int) &(p1[1][2]) - (unsigned int) pl) / sizeof(double));

printf("&(p2[1]1[2]) - p2 = %u doubles\n",
((unsigned int) &(p2[1]1[2]) - (unsigned int) p2) / sizeof(double));

printf ("&(p3[11[2]) - p3 = %u doubles\n",
((unsigned int) &(p3[11[2]) - (unsigned int) p3) / sizeof(double));

©EPFL 2024 // ... // en particulier les free() !!
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 22 /32

Pointeurs et tableaux (4)

Pointeurs et
tableaux

Réponse (sur ma machine a un moment donné) :

&(p1[1]1[2]) - pl = 16 doubles
&(p2[11[2]) - p2 = 151032928 doubles
&(p3[1]1[2]) - p3 = 49 doubles

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 23 /32

Arithmétique
des pointeurs

©EPFL 2024
Jean-Cédric Chappelier

Arithmétique des pointeurs

On peut facilement déplacer un pointeur en mémoire a I'aide des opérateurs + et -

(et bien sdr leurs cousins ++, +=, etc.)

« Ajouter » 1 a un pointeur revient a le déplacer « en avant » dans la mémoire, d’un
emplacement égal a une place mémoire de la taille de I'objet pointeé.

Exemples (trés pratiques) :
int tab[N];

const int* const end = tab + N;

for (int* p = tab; p < end; ++p) { ... *p ...
char* s; char*x p; char lu;

P =s;

while (lu = *p++) { ... 1lu ... }

CS202—-Computer Systems — C03 — Pointers 2: complements — 24 /32

Explication de I’exemple précédent

char* s; char* p; char lu;

> Que veut dire *p++? p=s;
Est-ce * (p++) ou (*p)++? while (lu = *p++) { ... 1lu ... }

Arithmétique
des pointeurs

> Que fait l'autre ((xp)++)?

> Est-ce que xp++ est pareil que x++p ?

» Pourquoi une variable 1u plutét que *p directement dans le corps de la boucle ?
Par exemple : while (xp++) { ... *p ... }

» Erreur dans la condition d’'arrét de la boucle ? (== au lieu de =) ?

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 25/32

Attention!
Attention ! Le résultatde «p = p + 1 » dépend du type de p!
%‘ (Et c’est souvent la une source d’erreur!)

Le plus simple (avant ce qui va suivre) est de comprendre
Arithmétique «p = p + 1»comme « passe a l'objet (pointé) suivant ».

des pointeurs

En clair :

Toutes les opérations avec les pointeurs tiennent compte automati-
quement du type et de la grandeur des objets pointés.

Il faut éviter de penser aux vraies valeurs (adresses, en tant que nombres entiers),
mais si I'on y tient vraiment, on aura donc :

(int) (p+1) == (int) p + sizeof (Type)

pour p un pointeur de type « Typex »

Note : on ne peut donc pas faire d’arithmétique des pointeurs sur des void*!
©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 26 /32

Soustraction de pointeurs

On a vu qu'il existait les opérateurs ptr + int et ptr - int (chacun de type ptr).

Arithmetique Il existe aussi ptr - ptr

des pointeurs

«p2 - pl » retourne le nombre d’objets stockés entre p1 et p2 (de méme type).

dans stddef).

Attention ! Le type de cet opérateur (soustraction de pointeurs) est ptrdiff_t (défini
CE N’EST PAS int! (ceci est une grave erreur!)

ptrdiff_t dp = p2 - pi;

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 27 /32

Pointeurs et tableaux (synthese)

(Pour int* p; int t[N]; etint i;)

t[i] est en fait exactement * (t+i)
Arithmétique .
des pointeurs A noter que c’est symétrique... (...et on peut en effet écrire 3[t] !!)

t est en fait exactement &t [0] (et est un int* const)
int t2[N] [M] n’a rien & voir avec un int** (et est plus proche d’'un int* const)

void f(int t[N]) (ouvoid f(int t[])) sont en fait exactement void f(int* t) :
> attention a la sémantique de t (et en particulier a sa taille) dans le corps de £;

> nécessité absolue de toujours passer la taille de t comme argument
supplémentaire.

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 28 /32

Complément (et mise en garde) sur sizeof

Lopérateur sizeof accepte comme argument soit un type, soit une expression C
(laquelle n’est pas évaluée)
(et retourne la taille mémoire nécessaire a stocker le type de I'expression en question)

Exemples :

sizeof int i ;
int tab[N];

. sizeof (double)

.. sizeof(i) ... // = sizeof (int)

. sizeof(tab)/sizeof (tab[0]) ... // donne N, mais ATTENTION !!

Mais il faut faire attention a ne pas mal I'employer :

int tab[1000];
int* t = tab;
. sizeof(t) ... /* combien ca vaut 7 */

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 29 /32

Complément (et mise en garde) sur sizeof
Attention ! PIRE!

% #define N 1000

void f(int t[N]) {
. sizeof(t)/sizeof(int) ... /* combien ca vaut 7 */

}

sizeof

= Je répéte qu’un tableau passé en argument de fonction n’a AUCUNE
connaissance de sa taille!!

Autre (mauvais) exemple, plus subtil : ou est le bug ? :
int tab[1000];

const int* const end = tab + sizeof(tab);
for (int* t = tab; t < end; ++t) {
utiliser(*t, ...);

}

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 30 /32

€ Rappel : flexible array member

struct vector_double {
size_t size; // nombre d'éléments
double datalil];

}s
Petour surles Ceci permet d’avoir des tableaux dynamiques en C, via I'allocation dynamique :
member

const size_t N_MAX = (SIZE_MAX - sizeof(struct vector_double)) / sizeof(double) + 1;
if (nb <= N_MAX) {
struct vector_double* tab = malloc(sizeof (struct vector_double)
+ (nb-1)*sizeof (double));
if (tab != NULL) {
tab->size = nb;

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 31/32

€D Flexible array member €z

tab

AN
S—

1ot ary vector_double | jijisation -
(0] ¢ double tab->datal[i] l
[1]
n-1 double
[n-1]

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C03 — Pointers 2: complements — 32 /32

	Chaînes de caractères
	Pointeurs sur fonctions
	Récapitulation
	Cast
	Pointeurs et tableaux
	Arithmétique des pointeurs
	sizeof
	Retour sur les flexible array member

