
Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

CS–202 Computer Systems – C Lectures

C03 – POINTERS 2: COMPLEMENTS

Jean-Cédric Chappelier

Laboratoire d’Intelligence Artificielle
Faculté I&C

CS202–Computer Systems – C03 – Pointers 2: complements – 1 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

différent de Java !
Chaînes de caractères

À la différence d’autre langages, C n’offre pas de type de base pour la manipulation
des chaînes de caractères.

En C, une chaîne de caractères est codée dans un tableau de (ou pointeur sur
des) caractères.

NOTE : La fin de la chaîne de caractères est indiquée par le caractère nul (noté '\0'
ou (char) 0)

Du point de vue organisation de la mémoire, on a donc strictement :

char nom[6] = { 'H', 'e', 'b', 'u', 's', '\0' };

Attention ! Ce n’est pas comme cela qu’on écrit en pratique ! ("Hebus")

☞ il y a heureusement quelques facilités de programmation supplémentaires !

CS202–Computer Systems – C03 – Pointers 2: complements – 2 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Chaînes de caractères (2)

La déclaration d’une chaîne de caractères peut se faire
➀ par une constante littérale (entre guillemets) :

"Bonjour" (Note : \" pour représenter le caractère ")

Cette constante est un tableau de caractères qui inclut le caractère nul à la fin

➁ par une variable de taille fixe (tableau) :
char nom[25];
char nom_fichier[FILENAME_MAX];
char const welcome[] = "Bonjour";

➂ par une allocation dynamique (pointeur) :
char* nom;

☞ Ne pas oublier de faire l’allocation (calloc/malloc)

☞ penser que pour stocker une chaîne de n caractères il faut allouer de la
place pour n+1 caractères (en raison du '\0' final).

CS202–Computer Systems – C03 – Pointers 2: complements – 3 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Affectation de chaînes de caractères

Attention ! Voici une erreur courante concernant l’affectation de chaînes de caractères :

char* s = "bonjour";

N’est en général PAS CORRECT! (bien que cela fonctionne ! Mais que se passe-t-il en réalité?)

La seule bonne façon de faire est
soit d’utiliser la fonction strncpy (si s doit être modifiée) :

strncpy(s, "bonjour", TAILLE);

Note : il faut bien sûr avoir alloué s avant (à TAILLE+1 éléments),
mais aussi mettre le '\0' final que strncpy ne garantit pas :

char* s = calloc(TAILLE+1, 1);

L’utilisation du = avec une valeur littérale ("blablabla")
n’est sans risque QUE lors de l’initialisation d’un tableau
statique :

char s[] = "Bonjour";

soit d’utiliser const
(si s ne doit pas être mo-
difiée) :

const char* s
= "bonjour";

CS202–Computer Systems – C03 – Pointers 2: complements – 4 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Fonctions de la bibliothèque string
char* strcpy(char* dest, char const* src);
copie la chaîne src dans la chaîne dest. Retourne dest.
Attention ! aucune vérification de taille n’est effectuée ! Préférez strncpy !

char* strncpy(char* dest, char const* src, size_t n);
copie les n premiers caractères de src dans dest. Retourne dest.
Attention ! n’ajoute pas le '\0' à la fin si src contient plus de n caractères !

char* strcat(char* dest, char const* src);
ajoute la chaîne src à la fin de la chaîne dest. Retourne dest.
Attention ! aucune vérification de taille n’est effectuée ! Préférez strncat !

char* strncat(char* dest, char const* src, size_t n);
ajoute au plus n caractères de src à la fin de dest. Retourne dest.

int strcmp(char const* s1, char const* s2);
Compare (ordre alphabétique) les chaînes s1 et s2. Retourne un nombre négatif si s1
< s2, 0 si les deux chaînes sont identiques et un nombre positif si s1 > s2.
Préférez strncmp !

CS202–Computer Systems – C03 – Pointers 2: complements – 5 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Fonctions de la bibliothèque string (2)
int strncmp(char const* s1, char const* s2, size_t n);
comme strcmp, mais ne compare au plus que les n premiers caractères de chacune
des chaînes.

size_t strlen(char const * s);
Retourne le nombre de caractères dans s (sans le caractère nul de la fin).

char* strchr(char const* s, char c);
Retourne un pointeur sur la première occurrence de c dans s, ou NULL si c n’est pas
dans s

char* strrchr(char const* s, char c);
idem que strchar mais en partant de la fin. Retourne donc la dernière occurrence de
c dans s.

char* strstr(char const* s1, char const* s2);
retourne le pointeur vers la première occurrence de de s2 dans s1 (ou NULL si s2 n’est
pas incluse dans s1).

Il existe plusieurs autres fonctions dans string. Pour en
savoir plus : man 3 string

CS202–Computer Systems – C03 – Pointers 2: complements – 6 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Lecture/Écriture

#include <stdio.h>

Écriture d’une chaîne de caractères s :
printf("...%s...", s);
ou
puts(s); (qui ajoute un retour à la ligne à la fin)
ou
fputs(s, stdout); (lui n’ajoute rien)

Lecture d’une chaîne de caractères s :
scanf("%s", s);
ou (mieux ! car fixe une taille limite)
fgets(s, taille, stdin);

☞ cf printf et scanf dans le cours sur les entrées/sorties (semaine 4).

CS202–Computer Systems – C03 – Pointers 2: complements – 7 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Les chaînes de caractères
Valeur littérale : "valeur"

Déclarations :
char* nom;
char nom[taille];
char nom[] = "valeur";

Écriture : printf("...%s...", chaine); ou puts(chaine);

Lecture : scanf("%s", chaine); ou gets(chaine);

Quelques fonctions de <string.h> :

strlen strcat
strcpy strncat
strncpy strchr
strcmp strrchr
strncmp strstr

CS202–Computer Systems – C03 – Pointers 2: complements – 8 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs sur fonctions
En C, on peut en fait pointer sur n’importe quel endroit mémoire.
On peut en particulier pointer sur des fonctions (cf exemple d’il y a 2 cours).

La syntaxe consiste à mettre (*ptr) à la place du nom de la fonction.

Par exemple :
double f(int i); est une fonction qui prend un int en argument et retourne un
double comme valeur
double (*g)(int i); est un pointeur sur une fonction du même type que ci-dessus.

On peut maintenant par exemple faire : g=f; (identique à g=&f;)

puis ensuite : z=g(i); (identique à z=(*g)(i);)

Note : pas besoin du & ni du * dans l’utilisation des pointeurs de fonctions.

Pour un exemple complet, voir l’exemple du début du cours sur les pointeurs (il y a
2 cours).

CS202–Computer Systems – C03 – Pointers 2: complements – 9 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs sur fonctions (2)

Ces pointeurs sur fonctions sont donc un moyen très utile de
passer des fonctions en arguments d’autres fonctions

Exemple précédent :

typedef double (*Fonction)(double);
...
double integre(Fonction f, double a, double b) { ... }
...
aire = integre(sin, 0.0, M_PI);

Plus généralement, on construit des fonctions « génériques » ayant comme arguments
des pointeurs génériques (void*).

On peut ensuite passer ces fonctions génériques à des fonctions très générales.

L’exemple typique est celui du tri qsort (man 3 qsort)

CS202–Computer Systems – C03 – Pointers 2: complements – 10 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Utilisation de qsort

void qsort(void* base, size_t nb_el, size_t size,
int(*compar)(const void*, const void*));

base est un pointeur sur la zone à trier
nb_el est le nombre d’éléments à trier
size est la taille d’un élément (utiliser sizeof ici)
et compar est la fonction utilisée pour comparer deux arguments :
cette fonction doit retourner un entier
▶ nul en cas d’égalité ;
▶ négatif si le premier argument est « plus petit » (vient avant) le second argument ;
▶ positif s’il est « plus grand » (vient après) .

CS202–Computer Systems – C03 – Pointers 2: complements – 11 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Exemple d’utilisation de qsort

int compare_int(void const * arg1, void const * arg2) {
int const * const i = arg1;
int const * const j = arg2;
return ((*i == *j) ? 0 : ((*i < *j) ? -1 : 1)) ;

}
...

int tab[NB];
...

qsort(tab, NB, sizeof(int), compare_int);

CS202–Computer Systems – C03 – Pointers 2: complements – 12 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Récapitulons
int i un entier
int* p un pointeur sur un entier
int** p un pointeur sur un pointeur sur un entier
int* f() une fonction qui retourne un pointeur sur un entier
int (*f)() un pointeur sur une fonction qui retourne un entier
int* (*f)() un pointeur sur une fonction qui retourne un pointeur sur un entier
int** f(); une fonction qui retourne un pointeur sur un pointeur sur un entier
int* t[] un tableau de pointeurs sur des entiers
int (*p)[] un pointeur sur un tableau d’entiers
int (*f())[] une fonction qui retourne un pointeur sur un tableau d’entiers
int* (*f())() une fonction qui retourne un pointeur sur une fonction retournant un

pointeur sur un entier
int (*(*(*f())[])())[] une fonction qui retourne un pointeur sur un tableau de pointeurs

pointant sur des fonctions retournant des pointeurs sur tableaux
d’entiers

☞ n’hésitez pas à utiliser typedef !

CS202–Computer Systems – C03 – Pointers 2: complements – 13 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Forçage de type (ou «casting»)

En C, il est toujours possible d’interpréter avec un type différent une zone
mémoire/variable déclarée dans un premier type.

Cela a pour effet de convertir la valeur désignée dans le nouveau type.

Il suffit pour cela de faire précéder la valeur par le type forcé entre () :
(type) expression

Exemple :

double x = 5.4;
int i = (int) x; /* i = 5 */

(suppression de la partie fractionnaire, c.-à-d. conversion vers 0)

CS202–Computer Systems – C03 – Pointers 2: complements – 14 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Forçage de type (2)

Attention ! Dans le cas de pointeur, cela ne change pas le contenu de la
zone/variable en question, mais uniquement son interprétation

Exemple :

double x = 5.4;
int* i = (int*) &x;

printf("%d\n", (int) x); /* affiche 5 */
printf("%d\n", *i); /* affiche -1717986918 */

CS202–Computer Systems – C03 – Pointers 2: complements – 15 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Forçage de type (3)
On utilise le casting essentiellement pour :
▶ convertir facilement des valeurs (typiquement d’un type entier à un autre, ou d’un

type double à un type entier) ;
▶ écrire du code « générique » via des pointeurs (void*).

Exemple : tri générique (man 3 qsort)

void qsort(void* base, size_t nmemb, size_t size,
int (*compar)(void const*, void const*));

Personne montab[TAILLE];
...
int compare_personnes(Personne const* p_quidam1,

Personne const* p_quidam2);
...
qsort((montab, TAILLE, sizeof(Personne),

(int (*)(void const*, void const*))compare_personnes);

...

CS202–Computer Systems – C03 – Pointers 2: complements – 16 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

qsort autre solution

... ou comme précédemment ;
les « cast », optionnels en C, étant alors dans la fonction compar :
...
int compare_personnes(void const* arg1, void const* arg2);
...
qsort(montab, TAILLE, sizeof(Personne), compare_personnes);
...
int compare_personnes(void const* arg1, void const* arg2) {

Personne const* const p_quidam1 = arg1;
Personne const* const p_quidam2 = arg2;
...
... *p_quidam1 ...
...

}

CS202–Computer Systems – C03 – Pointers 2: complements – 17 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

void* casts
Les casts depuis ou vers void* ont un statut un peu particulier (et différent entre C et
C++) :

➀ dans les deux langages (C et C++), l’affectation vers void* est permise sans
cast :

int* ptr1; void* ptr2; ... ptr2 = ptr1;

➁ En C, un void* peut être affecté, sans cast explicite, à un autre pointeur (de tout
type).
En C++, par contre, l’affectation depuis un void* vers un pointeur « non void » n’est pas
permise sans cast.

Le code suivant est donc valide en C mais incorrect en C++ :
int* ptr1; void* ptr2; ... ptr1 = ptr2;

En C++, il faudrait écrire : ptr1 = static_cast<int*>(ptr2);

➂ En C++, la comparaison entre void* et pointeur quelconque est par contre permise
(conversion implicite vers void*).

CS202–Computer Systems – C03 – Pointers 2: complements – 18 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs et tableaux

On a vu dans les cours et exercices précédents qu’on pouvait par exemple allouer un
pointeur sur une zone de 3 double :

double* ptr;
ptr = calloc(3, sizeof(double));

Pourtant ptr en tant que tel ne pointe que sur un double !
(regardez son type : double*)

Que vaut *ptr?
☞ la valeur du premier double stocké dans cette zone.

Comment accéder aux 2 autres?

☞ avec une syntaxe identique aux tableaux : ptr[1] et ptr[2]

CS202–Computer Systems – C03 – Pointers 2: complements – 19 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs et tableaux (2)

En C, un tableau est en fait très similaire à un pointeur (on l’a déjà vu lors du passage
d’argument à une fonction) constant sur une zone allouée statiquement (lors de la
déclaration du tableau).

Ainsi int[] est pratiquement identique à « int* const »
et *p est strictement équivalent à p[0]

MAIS
int** ou int*[] sont très différents de int[][] (qui d’ailleurs n’existe pas en tant que
tel ! int[][M], oui)

int** :
▶ n’est pas continu en mémoire ;
▶ n’est pas alloué au départ ;
▶ les lignes n’ont pas forcément le même nombre d’éléments.

CS202–Computer Systems – C03 – Pointers 2: complements – 20 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs et tableaux (2)

N M

M

M

N

p2[0][0]

p2[1][0]

p2[2][3]

p2 p1

int p1[N][M];

p1[0][0]

p1[1][0]

p1[2][3]

int* p2[N];

p3

int** p3;

CS202–Computer Systems – C03 – Pointers 2: complements – 21 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs et tableaux (3)
Qu’affiche la portion de code suivant?
#define N 2
#define M 14
// ...

double p1[N][M];
double* p2[N];
double** p3;

p3 = calloc(N, sizeof(double*)); // usual checks...

for (size_t i = 0; i < N; ++i) {
p2[i] = calloc(M, sizeof(double)); // ...
p3[i] = calloc(M, sizeof(double)); // ...

}

printf("&(p1[1][2]) - p1 = %u doubles\n",
(unsigned int) &(p1[1][2]) - (unsigned int) p1) / sizeof(double));

printf("&(p2[1][2]) - p2 = %u doubles\n",
((unsigned int) &(p2[1][2]) - (unsigned int) p2) / sizeof(double));

printf("&(p3[1][2]) - p3 = %u doubles\n",
((unsigned int) &(p3[1][2]) - (unsigned int) p3) / sizeof(double));

// ... // en particulier les free() !!

CS202–Computer Systems – C03 – Pointers 2: complements – 22 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs et tableaux (4)

Réponse (sur ma machine à un moment donné) :

&(p1[1][2]) - p1 = 16 doubles
&(p2[1][2]) - p2 = 151032928 doubles
&(p3[1][2]) - p3 = 49 doubles

CS202–Computer Systems – C03 – Pointers 2: complements – 23 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Arithmétique des pointeurs
On peut facilement déplacer un pointeur en mémoire à l’aide des opérateurs + et -
(et bien sûr leurs cousins ++, +=, etc.)

« Ajouter » 1 à un pointeur revient à le déplacer « en avant » dans la mémoire, d’un
emplacement égal à une place mémoire de la taille de l’objet pointé.

Exemples (très pratiques) :

int tab[N];
...
const int* const end = tab + N;
for (int* p = tab; p < end; ++p) { ... *p ... }

char* s; char* p; char lu;
...
p = s;
while (lu = *p++) { ... lu ... }

CS202–Computer Systems – C03 – Pointers 2: complements – 24 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Explication de l’exemple précédent
char* s; char* p; char lu;
...
p = s;
while (lu = *p++) { ... lu ... }

▶ Que veut dire *p++?
Est-ce *(p++) ou (*p)++?

☞ C’est *(p++) : c’est-à-dire ➀ *p, puis ➁ p += 1

▶ Que fait l’autre ((*p)++) ?

☞ ne pas confondre « les deux mondes » ! (chez qui se fait le ++)

▶ Est-ce que *p++ est pareil que *++p?

☞ NON! ➀ p += 1, puis ➁ *p

▶ Pourquoi une variable lu plutôt que *p directement dans le corps de la boucle?
Par exemple : while(*p++) { ... *p ... }

☞ pas la même valeur (la suivante)

▶ Erreur dans la condition d’arrêt de la boucle? (== au lieu de =) ?

☞ Non : c’est while ((lu = *p++) != '\0')

CS202–Computer Systems – C03 – Pointers 2: complements – 25 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Attention !
Attention ! Le résultat de « p = p + 1 » dépend du type de p !
(Et c’est souvent là une source d’erreur !)

Le plus simple (avant ce qui va suivre) est de comprendre
« p = p + 1 » comme « passe à l’objet (pointé) suivant ».

En clair :

Toutes les opérations avec les pointeurs tiennent compte automati-
quement du type et de la grandeur des objets pointés.

Il faut éviter de penser aux vraies valeurs (adresses, en tant que nombres entiers),
mais si l’on y tient vraiment, on aura donc :

(int) (p+1) == (int) p + sizeof(Type)

pour p un pointeur de type « Type* »

Note : on ne peut donc pas faire d’arithmétique des pointeurs sur des void* !

CS202–Computer Systems – C03 – Pointers 2: complements – 26 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Soustraction de pointeurs

On a vu qu’il existait les opérateurs ptr + int et ptr - int (chacun de type ptr).

Il existe aussi ptr - ptr

« p2 - p1 » retourne le nombre d’objets stockés entre p1 et p2 (de même type).

Attention ! Le type de cet opérateur (soustraction de pointeurs) est ptrdiff_t (défini
dans stddef).
CE N’EST PAS int ! (ceci est une grave erreur !)

ptrdiff_t dp = p2 - p1;

CS202–Computer Systems – C03 – Pointers 2: complements – 27 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs et tableaux (synthèse)

(Pour int* p; int t[N]; et int i;)

t[i] est en fait exactement *(t+i)
À noter que c’est symétrique... (...et on peut en effet écrire 3[t] ! !)

t est en fait exactement &t[0] (et est un int* const)

int t2[N][M] n’a rien à voir avec un int** (et est plus proche d’un int* const)

void f(int t[N]) (ou void f(int t[])) sont en fait exactement void f(int* t) :
▶ attention à la sémantique de t (et en particulier à sa taille) dans le corps de f ;
▶ nécessité absolue de toujours passer la taille de t comme argument

supplémentaire.

CS202–Computer Systems – C03 – Pointers 2: complements – 28 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Complément (et mise en garde) sur sizeof

L’opérateur sizeof accepte comme argument soit un type, soit une expression C
(laquelle n’est pas évaluée)
(et retourne la taille mémoire nécessaire à stocker le type de l’expression en question)

Exemples :

int i;
int tab[N];
... sizeof(double) ...
... sizeof(i) ... // = sizeof(int)
... sizeof(tab)/sizeof(tab[0]) ... // donne N, mais ATTENTION !!

Mais il faut faire attention à ne pas mal l’employer :

int tab[1000];
int* t = tab;
... sizeof(t) ... /* combien ca vaut ? */

CS202–Computer Systems – C03 – Pointers 2: complements – 29 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Complément (et mise en garde) sur sizeof
Attention ! PIRE !

#define N 1000

void f(int t[N]) {
... sizeof(t)/sizeof(int) ... /* combien ca vaut ? */

}

☞ Je répète qu’un tableau passé en argument de fonction n’a AUCUNE
connaissance de sa taille ! !

Autre (mauvais) exemple, plus subtil : où est le bug? :

int tab[1000];
...
const int* const end = tab + sizeof(tab);
for (int* t = tab; t < end; ++t) {

utiliser(*t, ...);
}

CS202–Computer Systems – C03 – Pointers 2: complements – 30 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Rappel : flexible array member

struct vector_double {
size_t size; // nombre d'éléments
double data[1];

};

Ceci permet d’avoir des tableaux dynamiques en C, via l’allocation dynamique :

const size_t N_MAX = (SIZE_MAX - sizeof(struct vector_double)) / sizeof(double) + 1;
if (nb <= N_MAX) {

struct vector_double* tab = malloc(sizeof(struct vector_double)
+ (nb-1)*sizeof(double));

if (tab != NULL) {
tab->size = nb;

}
}

CS202–Computer Systems – C03 – Pointers 2: complements – 31 / 32

Chaînes de
caractères

Pointeurs sur
fonctions

Récapitulation

Cast

Pointeurs et
tableaux

Arithmétique
des pointeurs

sizeof

Retour sur les
flexible array
member

©EPFL 2024
Jean-Cédric Chappelier

Flexible array member

vector_double

double

[n-1]

[1]

[0]

n-1 double

tab

Utilisation :

tab->data[i]

CS202–Computer Systems – C03 – Pointers 2: complements – 32 / 32

	Chaînes de caractères
	Pointeurs sur fonctions
	Récapitulation
	Cast
	Pointeurs et tableaux
	Arithmétique des pointeurs
	sizeof
	Retour sur les flexible array member

