
Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

CS–202 Computer Systems – C Lectures

C02 – POINTERS 1: BASICS

Jean-Cédric Chappelier

Laboratoire d’Intelligence Artificielle
Faculté I&C

CS202–Computer Systems – C02 – Pointers 1: basics – 1 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Les pointeurs, à quoi ça sert?

En programmation, les pointeurs servent essentiellement à trois choses :
➀ à permettre un partage d’objet sans duplication entre divers bouts de code

☞ « référence »

➁ à pouvoir choisir des éléments non connus a priori (au moment de la
programmation)
☞ généricité

➂ à pouvoir manipuler des objets dont la durée de vie (≃ portée dynamique)
dépasse les blocs dans lesquels ils sont déclarés (portée, au sens syntaxique)
☞ allocation dynamique

Note : les pointeurs n’existent pas dans tous les langages en tant que type
explicitement manipulable par le programmeur (p.ex. Java).

CS202–Computer Systems – C02 – Pointers 1: basics – 2 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Les pointeurs, à quoi ça sert?
Exemple :
Vous souvenez vous de la fin de l’exercice sur les intégrales?
Comment faire pour ne pas recompiler le programme pour chaque nouvelle fonction?

Supposons que vous ayez préprogrammé 5 fonctions :
double f1(double x);
...
double f5(double x);

et vous donnez le choix à l’utilisateur :

do {
printf("De quelle fonction voulez-vous calculer "

"l'intégrale [1-5] ?\n");
scanf("%d", &rep);

} while ((rep < 1) || (rep > 5));

Comment manipuler de façon générique la réponse de l’utilisateur?
⇒ avec un pointeur sur la fonction correspondante.

CS202–Computer Systems – C02 – Pointers 1: basics – 3 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

le programme complet 1/2
#include <stdio.h>
#include <math.h>

double f1(double x) { return x*x; }
double f2(double x) { return exp(x); }
double f3(double x) { return sin(x); }
double f4(double x) { return sqrt(exp(x)); }
double f5(double x) { return log(1.0+sin(x)); }

/* Fonction est un nouveau type : pointeur sur des fonctions *
* prenant un double en argument et retournant un double */

typedef double (*Fonction)(double);

Fonction demander_fonction(void)
{

int rep;
Fonction choisie;
do {

printf("De quelle fonction [...] calculer l'intégrale [1-5] ?\n");
scanf("%d", &rep);

} while ((rep < 1) || (rep > 5));

switch (rep) {
case 1: choisie = f1 ; break ;
case 2: choisie = f2 ; break ;

CS202–Computer Systems – C02 – Pointers 1: basics – 4 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

le programme complet 2/2
case 3: choisie = f3 ; break ;
case 4: choisie = f4 ; break ;
case 5: choisie = f5 ; break ;

}
return choisie;

}

double demander_nombre(void) { ... }
double integre(Fonction f, double a, double b) { ... }

int main(void) {
double a;
double b;
Fonction choix;

a = demander_nombre();
b = demander_nombre();
choix = demander_fonction();
printf("Integrale entre %lf et %lf :\n", a, b);
printf("%f\n", integre(choix, a, b));
return 0;

}

Note : ce programme peut encore être amélioré, notamment en utilisant des tableaux...
CS202–Computer Systems – C02 – Pointers 1: basics – 5 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Les pointeurs

Une variable est physiquement identifiée de façon unique par son adresse,
c’est-à-dire l’adresse de l’emplacement mémoire qui contient sa valeur.

Un pointeur est une variable qui contient l’adresse d’un autre objet informatique.

☞ une « variable de variable » en somme

pointeur
adresse de x

mémoire : . . .010101010001 0001001110101010︸ ︷︷ ︸0100010100. . .

valeur de la variable x

CS202–Computer Systems – C02 – Pointers 1: basics – 6 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Les pointeurs (2) : une analogie

Un pointeur c’est comme la page d’un carnet d’adresse
(sur lesquelles on ne peut écrire qu’une seule adresse à la fois) :

déclarer un pointeur ajouter une page dans le carnet (mais cela ne veut
pas dire qu’il y a une adresse écrite dessus !)

allouer un pointeur p aller construire une maison quelque part et noter
son adresse sur la page p (mais p n’est pas la mai-
son, c’est juste la page qui contient l’adresse de
cette maison !)

CS202–Computer Systems – C02 – Pointers 1: basics – 7 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Les pointeurs (2) : une analogie

Un pointeur c’est comme la page d’un carnet d’adresse
(sur lesquelles on ne peut écrire qu’une seule adresse à la fois) :

« libérer un pointeur » p
(en fait, c’est « libérer la
mémoire pointée par le
pointeur » p)

p
adresse

valeur

Aller détruire la maison dont l’adresse est écrite en
page p.
Cela ne veut pas dire que l’on a effacé l’adresse
sur la page p ! ! mais juste que cette maison n’existe
plus.
Cela ne veut pas non plus dire que toutes les pages
qui ont la même adresse que celle inscrite sur la
page p n’ont plus rien (mais juste que l’adresse
qu’elles contiennent n’est plus valide)

CS202–Computer Systems – C02 – Pointers 1: basics – 7 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Les pointeurs (2) : une analogie

Un pointeur c’est comme la page d’un carnet d’adresse
(sur lesquelles on ne peut écrire qu’une seule adresse à la fois) :

p1 = p2 On recopie à la page p1 l’adresse écrite sur la page
p2. Cela ne change rien à la page p2 et surtout ne
touche en rien la maison dont l’adresse se trouvait
sur la page p1 !

p1 = NULL

p1
adresse

valeur

On gomme la page p1. Cela ne veut pas dire que
cette page n’existe plus (son contenu est juste ef-
facé) ni (erreur encore plus commune) que la maison dont
l’adresse se trouvait sur p1 (c.-à-d. celle que l’on est
en train d’effacer) soit modifiée en quoi que ce soit ! !
Cette maison est absolument intacte !

CS202–Computer Systems – C02 – Pointers 1: basics – 7 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Les pointeurs (3) : la pratique
La déclaration d’un pointeur se fait selon la syntaxe suivante :

type* identificateur;

Cette instruction déclare une variable de nom identificateur de type pointeur sur
une valeur de type type.

Exemple :
int* px;
déclare une variable px qui pointe sur une valeur de type int.

L’initialisation d’un pointeur se fait comme pour les autres variables :
type* identificateur = adresse;

Exemples :
int* ptr = &i;
int* ptr = NULL; /* ne pointe NULLe part */

CS202–Computer Systems – C02 – Pointers 1: basics – 8 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Opérateurs sur les pointeurs

C possède deux opérateurs particuliers en relation avec les pointeurs : & et *.

& est l’opérateur qui
retourne l’adresse mémoire de la valeur d’une variable

Si x est de type type, &x est de type type* (pointeur sur type).

Exemple :
int i = 3;
int* ptr = NULL; /* ptr est un pointeur

* sur un entier */
// ...
ptr = &i; // ptr pointe sur la variable i

px
adresse

x
valeur

&x

CS202–Computer Systems – C02 – Pointers 1: basics – 9 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Opérateurs sur les pointeurs (2)
* est l’opérateur qui retourne la valeur pointée par une variable pointeur. Si px est
de type type*, (*px) est la valeur de type type pointée par px.

px
adresse

valeur

*px

Exemple :
int i = 3;
int* ptr = NULL;

ptr = &tr;
printf("%d\n", *ptr); // affiche la valeur pointee par ptr

Notes :
▶ *&i est donc strictement équivalent à i

▶ structures : p->x est équivalent à (*p).x

CS202–Computer Systems – C02 – Pointers 1: basics – 10 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Houlala !

GARE AUX CONFUSION!

Concernant les pointeurs, C utilise malheureusement une notation identique, *,
pour deux choses différentes ! (sans parler de la multiplication !)

type* ptr; *ptr
déclare une variable ptr comme un
pointeur sur un type de base type

accède au contenu de l’endroit pointé
par ptr

CE N’EST PAS LA MÊME CHOSE!

CS202–Computer Systems – C02 – Pointers 1: basics – 11 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs et passage par référence

Comme un pointeur contient l’adresse mémoire d’une valeur, si l’on passe un pointeur
en argument d’une fonction, toute modification faite sur cette valeur à l’intérieur de la
fonction sera répercutée à l’extérieur.
=⇒ effet de bord

mais très utile en C pour simuler le passage par référence

Utilisez donc les pointeurs pour faire des passages par référence !

☞ Rappel : c’est bien pour cela qu’on écrit :
scanf("%d", &x);

CS202–Computer Systems – C02 – Pointers 1: basics – 12 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs et passage par référence (2)

Exemple :

void swap(int* a, int* b) {
int const tmp = *a;
*a = *b;
*b = tmp;

}
int main(void) {

int i = 3, j = 2;
printf("%d,%d\n", i, j); /* affiche 3,2 */
swap(&i, &j);
printf("%d,%d\n", i, j); /* affiche 2,3 */
return 0;

}

Exercice : comment écrire swap en Java?

CS202–Computer Systems – C02 – Pointers 1: basics – 13 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Optimisation

Un moyen d’éviter la copie locale du passage par valeur (d’objets complexes) est
d’utilise un passage par adresse (pointeur).

Mais comme il s’agit d’une optimisation et non pas d’un vrai passage par référence
(c.-à-d. on ne veut pas modifier la valeur passée), on n’autorisera pas la fonction à
modifier ses arguments en protégeant la valeur pointée par le mot const.

Exemple :

Matrice addition (Matrice const * m1,
Matrice const * m2);

CS202–Computer Systems – C02 – Pointers 1: basics – 14 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Optimisation (2)

Conseil : utilisez toujours const dans vos passages par pointeurs sauf si vous voulez
vraiment modifier la variable pointée.

Note : on utilisera la même optimisation (adresse plutôt qu’objet) pour la valeur de
retour lorsqu’il s’agit de structures compliquées :

Par exemple :
Matrice* addition (Matrice const * a, Matrice const * b)
{

Matrice* resultat = malloc(sizeof(Matrice));
if (resultat != NULL) {

// algorithme d'addition
// ...

}
return resultat;

}

mais attention ! :
prévoir le free quelque
part...

☞ cours de la semaine
prochaine

Notez bien le malloc et surtout pas (! ! !) :
Matrice resultat;; return &resultat;

CS202–Computer Systems – C02 – Pointers 1: basics – 15 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs const et
pointeurs sur des const

type const* ptr; (ou const type* ptr)
déclare un pointeur sur un objet constant de type type : on ne pourra pas modifier la
valeur de l’objet au travers de ptr (mais on pourra faire pointer ptr vers un autre objet).

type* const ptr = &obj;
déclare un pointeur constant sur un objet obj de type type : on ne pourra pas faire
pointer ptr vers autre chose (mais on pourra modifier la valeur de obj au travers de
ptr).

Pour résumer : const s’applique toujours au type directement précédent, sauf si il est
au début, auquel cas il s’applique au type directement suivant.

CS202–Computer Systems – C02 – Pointers 1: basics – 16 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs const et
pointeurs sur des const

int i = 2, j = 3;
int const * p1 = &i;
int* const p2 = &i;

printf("%d,%d,%d\n", i, *p1, *p2); /* affiche 2,2,2 */

p1 = 5; / erreur de compilation : on ne peut pas
* modifier au travers de p1 */

p2 = 5; / OK, licite */

printf("%d,%d,%d\n", i, *p1, *p2); /* affiche 5,5,5 */

p1 = &j; /* licite */
p2 = &j; /* erreur de compilation : on ne peut pas

* modifier p2 */

printf("%d,%d,%d\n", i, *p1, *p2); /* affiche 5,3,5 */

CS202–Computer Systems – C02 – Pointers 1: basics – 17 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs et références
En programmation, il existe la notion de référence, proche de la notion de pointeur
mais néamoins subtilement différente.
(certains langage d’ailleurs, dont C++, offrent les deux : pointeurs et références.
Les références n’existent par contre pas en C.)

Une référence est en fait un identificateur (c.-à-d. un autre nom).

À la différence des pointeurs, une référence
▶ peut avoir une sémantique de = très différente des pointeurs
▶ doit toujours être initialisée
▶ ne peut jamais être nulle (c.-à-d. ne pas référencer quelque chose)
▶ ne peut référencer qu’un seul et même objet (tout au long du programme)
▶ ne peut pas référencer une autre référence
▶ n’a pas d’adresse en tant que telle (c.-à-d. on ne peut pas avoir de pointeur sur des

références. En fait, il est même tout à fait possible qu’une référence n’existe pas en tant que
telle dans la mémoire, contrairement à un pointeur, mais ne soit qu’un alias géré par
l’éditeur de liens).

CS202–Computer Systems – C02 – Pointers 1: basics – 18 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Pointeurs et références

Pour faire simple : une référence est comme un pointeur qu’on ne peut pas changer
(« * const », donc) et qui est toujours affecté (à une adresse valide).

L’utilisation des références est donc limitée au cas ➀ des trois cas d’utilisation des
pointeurs : on ne peut pas les utiliser pour la généricité, ni pour l’allocation dynamique.

Les références, par contre, sont beaucoup plus faciles à manipuler que les pointeurs et
permettent d’écrire du code plus sûr.

Adage (pour les langages qui ont pointeurs et références, pas pour le C donc :-() :
utilisez des références quand vous pouvez, utilisez des pointeurs quand vous devez.

CS202–Computer Systems – C02 – Pointers 1: basics – 19 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Allocation de mémoire

Il y a deux façons d’allouer de la mémoire en C.
➀ déclarer des variables

La réservation de mémoire est déterminée à la compilation : allocation statique.

☞ allocation « sur la pile »

➁ allouer dynamiquement de la mémoire pendant l’exécution d’un programme.

L’allocation dynamique permet également de réserver de la mémoire
indépendamment de toute variable : on pointe directement sur une zone
mémoire plutôt que sur une variable existante.

☞ allocation « sur le tas »

CS202–Computer Systems – C02 – Pointers 1: basics – 20 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Pile et tas

Mémoire virtuelle d’un processus :

0xffffffff

0x00000000

pile

données

texte

tas

pile (« stack ») : variables locales
Note : taille limite de la pile : ulimit -s ;
typiquement quelques Mo.

tas (« heap ») : allocation dynamique
Note : le tas est en général limité uniquement par l’espace
d’adressage (ulimit -m)...
...jusqu’à « mettre à genoux » la machine (mémoire vir-
tuelle, swap, ...)

« données » : variables statiques et globales

« texte » : code du programme et constantes

CS202–Computer Systems – C02 – Pointers 1: basics – 21 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Allocation dynamique de mémoire

C possède deux fonctions malloc et calloc, définies dans stdlib.h, permettant
d’allouer dynamiquement de la mémoire.

Note : il existe également realloc dont nous parlons plus loin.

pointeur = malloc(taille);

réserve une zone mémoire de taille taille et met l’adresse correspondante dans
pointeur.

Pour aider à la spécification de la taille, on utilise souvent l’opérateur sizeof qui
retourne la taille mémoire d’un type (donné explicitement ou sous forme d’une
expression).
(Le type de retour de sizeof est size_t. printf/scanf : %zu)

Par exemple pour allouer de la place pour un double :
pointeur = malloc(sizeof(double));

CS202–Computer Systems – C02 – Pointers 1: basics – 22 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Allocation dynamique : calloc

Si l’on souhaite allouer de la mémoire consécutive pour plusieurs variables de même
type (typiquement un tableau, dynamique), on préfèrera calloc à malloc :

void* calloc(size_t nb_elements, size_t taille_element);

Par exemple pour allouer de la place pour 3 double consécutifs :

pointeur = calloc(3, sizeof(double));

The use of calloc() is strongly encouraged when allocating multiple sized objects in
order to avoid possible integer overflows.

[malloc man-page in OpenBSD]

Le problème?

☞ p = malloc(n * sizeof(Type)) peut engendrer un overflow sur la multiplication
et allouer en fait bien moins que n cases, ce qui peut ensuite conduire à un
débordement mémoire sur p[i].

CS202–Computer Systems – C02 – Pointers 1: basics – 23 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Et ça peut vraiment arriver?
Voici un exemple de ce bug dans le code du server OpenSSH 3.1 :

unsigned int nresp;
char** reponse;
...
nresp = packet_get_int();
if (nresp > 0) {

response = malloc(nresp * sizeof(char*));
for (i = 0; i < nresp; ++i)

response[i] = packet_get_string(NULL);
}
...

(tiré de la fonction input_userauth_info_response() dans auth2-chall.c)

Où est le bug?

Que se passe-t-il si nresp vaut 1073741856?...
☞ nresp * sizeof(char*)= 1073741856 x 4 = 4294967424
...qui sur un unsigned int en 32 bits se représente par...
...128 !

On a donc alloué la place pour 128 char*, alors que juste derrière on fait une boucle
de 0 à 1073741855 ! !

☞ Buffer overflow!

calloc est protégé contre cette erreur.

CS202–Computer Systems – C02 – Pointers 1: basics – 24 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Différences entre malloc et calloc

calloc est protégé contre l’erreur de débordement de la multiplication,

mais en plus calloc initialise à 0 (le contenu de) la zone allouée.

Avec malloc la mémoire n’est pas initialisée.

Pour initialiser de la mémoire : memset (défini dans string.h) :
memset(pointeur, valeur, taille);

Exemple : memset(ptr, 255, sizeof(*ptr));

Conseil : initialisez toujours toute la mémoire utilisée.

Par exemple :
struct Machin bidule;
memset(&bidule, 0, sizeof(bidule));

CS202–Computer Systems – C02 – Pointers 1: basics – 25 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Test d’allocation correcte

Les fonctions malloc et calloc retournent NULL si l’allocation n’a pas pu avoir lieu.

Pour cela, on écrit souvent l’allocation mémoire comme suit

pointeur = calloc(nombre, sizeof(type));
if (pointeur == NULL) {

/* ... gestion de l’erreur ... */
/* ... et sortie (return code d’erreur) */

}
/* suite normale */

CS202–Computer Systems – C02 – Pointers 1: basics – 26 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Libération mémoire allouée

free permet de libérer de la mémoire allouée par calloc ou malloc.

free(pointeur)

libère la zone mémoire allouée au pointeur pointeur.

C’est-à-dire que cette zone mémoire peut maintenant être utilisée pour autre chose.
Il ne faut plus y accéder !...

Je vous conseille donc par mesure de prudence de faire suivre tous vos free par une
commande du genre :

pointeur = NULL;

Règle absolue : Toute zone mémoire allouée par un [cm]alloc doit impérativement
être libérée par un free correspondant !
(☞ « garbage collecting »)

Veillez à bien vous assurer que c’est le cas dans vos programmes
(attention aux structures de contrôle !)

CS202–Computer Systems – C02 – Pointers 1: basics – 27 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Allocation mémoire : exemple
int* create_long_live_int()
{

int* px = NULL;
// ...
px = malloc(sizeof(int));
if (px != NULL) {

px = 20; / met la valeur 20 dans la zone *
* mémoire pointée par px. */

// ...
}
return px;

}

{ // ... ailleurs
int* q = create_long_live_int();
printf("%d\n", *q);
// ...
return q;

}

{ // ... encore ailleurs, plus loin
int* r = ...;
// ...
free(r); // quand on n'en as plus besoin
r = NULL;

}

Note : sauf exception (très grosse
taille), on ne fait pas malloc et free
dans la même portée ! !

L’allocation dynamique n’est que le
« cas d’utilisation numéro 3 ». Elle
n’est pas utile pour les cas 1 et 2 ! !

CS202–Computer Systems – C02 – Pointers 1: basics – 28 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Toujours allouer avant d’utiliser !

Attention ! Si on essaye d’utiliser (pour la lire ou la modifier) la valeur pointée par un
pointeur pour lequel aucune mémoire n’a été réservée, une erreur de type
Segmentation fault ou Bus Error se produira à l’exécution.

Exemple :
int* px;
px = 20; / ! Erreur : px n'a pas été alloué !! */

Compilation : OK

Exécution
➥ Segmentation fault

Conseil : Initialisez toujours vos pointeurs. Utilisez NULL si vous ne connaissez pas
encore la mémoire pointée au moment de l’initialisation :

int* px = NULL;

CS202–Computer Systems – C02 – Pointers 1: basics – 29 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

«Bus Error» ou
«Segmentation Fault»?

C’est en gros la même chose : accès à de la mémoire interdite.

Il y a cependant une subtile différence entre « segmentation fault »
et « bus error ».

« bus error » signifie que le noyau n’a pas pu détecter l’erreur d’accès mémoire
par lui-même, mais que c’est de la mémoire physique (le matériel) qu’est venu
le signal d’erreur.

CS202–Computer Systems – C02 – Pointers 1: basics – 30 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Récapitulons : règles de bon usage

Si vous suivez ces règles, vous vous faciliterez la vie de programmeur avec pointeurs :
▶ Toute zone mémoire allouée dynamiquement (malloc) doit impérativement être

libérée par un free correspondant !
et c’est celui qui alloue qui doit libérer

Corollaire : si vous fournissez une fonction qui alloue de la mémoire vous devez
fournir une fonction « réciproque » qui libère la mémoire, de sorte que celui qui
appelle votre première fonction puisse respecter la règle ci-dessus (en appelant la
seconde fonction)

▶ Testez systématiquement vos malloc/calloc :
pointeur = calloc(nombre, sizeof(type));
if (pointeur == NULL) {

/* ... gestion de l’erreur ... */
/* ... et sortie (return code d’erreur) */

}
/* suite normale */

CS202–Computer Systems – C02 – Pointers 1: basics – 31 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Récapitulons : règles de bon usage

Si vous suivez ces règles, vous vous faciliterez la vie de programmeur avec pointeurs :
▶ Pour les allocations multiples, utilisez calloc et non pas malloc
▶ Initialisez toujours vos pointeurs.

Utilisez NULL si vous ne connaissez pas encore la mémoire pointée au moment de
l’initialisation

▶ Initialisez toujours toute la mémoire utilisée (memset).
▶ ajoutez un ptr = NULL; après chaque free
▶ utilisez toujours const dans vos « faux » passages par référence (optimisation)

▶ utilisez les outils supplémentaires de votre environnement de
développement : options du compilateur, debugger, programmes de surveillance
de la mémoire (e.g. valgrind, Address Sanitizer, ...), programmes de
recherche de bugs (scan-build, splint, flawfinder, ...)

CS202–Computer Systems – C02 – Pointers 1: basics – 31 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Tableaux dynamiques (rappel)

Un tableau dynamique est un ensemble d’éléments homogène et à accès direct
de taille non fixée a priori

Interface :
▶ accès à un élément quelconque (sélecteur)
▶ modifier un élément quelconque (modificateur)
▶ insérer/supprimer un élément en fin du tableau (modificateur)
▶ tester si le tableau est vide (sélecteur)
▶ parcourir le tableau (itérateur)

Au contraire de Java (ArrayList) ou C++ (vector), il n’y a pas, en C,
de bibliothèque standard fournissant de telles structures de données abstraites.
Voyons comment les implémenter...

CS202–Computer Systems – C02 – Pointers 1: basics – 32 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Les tableaux en C (RAPPEL)
En C, on a :

taille initiale connue a priori?

non oui

taille pouvant varier
lors de l’utilisation
du tableau?

oui —(1) —

non (C99) VLA type[N]
(1) N’existe pas en C, mais possible grâce au « flexible array member »

Pour rappel en Java, on utilise :

taille initiale connue a priori?

non oui

taille pouvant varier
lors de l’utilisation
du tableau?

oui ArrayList

non type[]

CS202–Computer Systems – C02 – Pointers 1: basics – 33 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Tableaux dynamiques : exemple d’utilisation

vector v;

// initialisation
if (vector_construct(&v) == NULL) {

... // erreur
}

// utilisation
if (vector_push(&v, 2) == 0) {

... // erreur
}

...

// libération mémoire
vector_delete(&v);

CS202–Computer Systems – C02 – Pointers 1: basics – 34 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Tableaux dynamiques : exemple d’implémentation

typedef int type_el; // pour définir le type d'un élément

typedef struct {
size_t size; // nombre d'éléments utilisés dans le tableau
size_t allocated; // nb élements déjà alloués
type_el* content; // tableau de contenu (alloc. dyn.)

} vector;

d’où : réallocation dynamique quand on dépasse la taille allouée

☞ allocation dynamique par blocs de taille fixe (allocated est un multiple de la taille
des blocs)

Comment?
☞ fonction realloc :

ptrnew = realloc(ptrold, newsize) ;

CS202–Computer Systems – C02 – Pointers 1: basics – 35 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

realloc

realloc :
▶ change la taille de la zone allouée, aussi bien en augmentation qu’en diminution

▶ déplace le pointeur (« réalloue ») si nécessaire, tout en gardant l’intégrité des
données (recopie)

▶ libère l’ancienne mémoire si nécessaire

▶ l’ancienne zone mémoire est inchangée si realloc échoue (c.-à-d. retourne NULL)

▶ la nouvelle zone mémoire supplémentaire (lorsqu’on augmente) n’est pas
initialisée

▶ si ptrold est NULL, c’est un malloc(newsize)

▶ si newsize est nulle (et ptrold n’est pas NULL), c’est un free(ptrold)

CS202–Computer Systems – C02 – Pointers 1: basics – 36 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Tableaux dynamiques : initialisation

vector* vector_construct(vector* v) {
if (v != NULL) {

vector result = { 0, 0, NULL };
result.content = calloc(VECTOR_PADDING, sizeof(type_el));
if (result.content != NULL) {

result.allocated = VECTOR_PADDING;
} else {

// retourne NULL si on n'a pas pu allouer la mémoire nécessaire
return NULL;

}
// écriture atomique
*v = result;

}
return v;

}

VECTOR_PADDING : taille des blocs choisie. Par exemple :
#define VECTOR_PADDING 128

CS202–Computer Systems – C02 – Pointers 1: basics – 37 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Tableaux dynamiques : libération mémoire

Attention ! Comme on a fourni une fonction faisant l’allocation (vector_construct),
il faut aussi fournir une fonction pour la libération :

void vector_delete(vector* v) {
if ((v != NULL) && (v->content != NULL)) {

free(v->content);
v->content = NULL;
v->size = 0;
v->allocated = 0;

}
}

NOTE : « x->y » est la même chose que « (*x).y »

CS202–Computer Systems – C02 – Pointers 1: basics – 38 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Tableaux dynamiques : ajout d’un élément

Exemple d’ajout d’un élément à la fin du tableau (et retourne la taille (nombre
d’éléments) du tableau après ajout, 0 en cas d’échec) :

size_t vector_push(vector* v, type_el val) {
if (v != NULL) {

while (v->size >= v->allocated) {
if (vector_enlarge(v) == NULL) {

return 0;
}

}
v->content[v->size] = val;
++(v->size);
return v->size;

}
return 0;

}

CS202–Computer Systems – C02 – Pointers 1: basics – 39 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Tableaux dynamiques : augmentation de taille

vector* vector_enlarge(vector* v) {
if (v != NULL) {

vector result = *v;
result.allocated += VECTOR_PADDING;
if ((result.allocated > SIZE_MAX / sizeof(type_el)) ||

((result.content = realloc(result.content,
result.allocated * sizeof(type_el)))

== NULL)) {
return NULL; /* retourne NULL en cas d'échec ;

* v n'a pas été modifié. */
}
// affectation finale, tout d'un coup
*v = result;

}
return v;

}

CS202–Computer Systems – C02 – Pointers 1: basics – 40 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

SIZE_MAX

SIZE_MAX est défini dans la bibliothèque standard stdint.h depuis C99,
sinon :

#ifndef SIZE_MAX
#define SIZE_MAX (~(size_t)0)
#endif

CS202–Computer Systems – C02 – Pointers 1: basics – 41 / 42

Utilité des
pointeurs

Pointeurs :
définition

Opérateurs

Passage par
référence

const pointeurs

Pointeurs et
références

Allocation
dynamique

Récapitulation

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Les pointeurs

Déclaration : type* identificateur;

Adresse d’une variable : &variable
Accès au contenu pointé par un pointeur : *pointeur

Pointeur sur une constante : type const* ptr;
Pointeur constant : type* const ptr = adresse;

Allocation mémoire :
#include <stdlib.h>

pointeur = malloc(sizeof(type));
pointeur = calloc(nombre, sizeof(type));
pointeur = realloc(pointeur, sizeof(type));

Libération de la zone mémoire allouée : free(pointeur);

Pointeur sur une fonction : type_retour (* ptrfct)(arguments...)

CS202–Computer Systems – C02 – Pointers 1: basics – 42 / 42

	Utilité des pointeurs
	Pointeurs : définition
	Opérateurs
	Passage par référence
	const pointeurs
	Pointeurs et références
	Allocation dynamique
	Récapitulation
	Tableaux dynamiques

