Utilité des
pointeurs

Pointeurs
définition

Opérateurs

CS—202 Computer Systems — C Lectures

Pointeurs et

sférences -
o C02 — POINTERS 1: BASICS
dynamique
Récapitulation
Tableaux . .
dynamiques Jean-Cédric Chappelier
Laboratoire d’Intelligence Artificielle
Faculté 1&C
©EPFL 2024

Jean-Cédric Chappelier
CS202—-Computer Systems — C02 — Pointers 1: basics — 1/42

2 Les pointeurs, & quoi ¢a sert? AN

En programmation, les pointeurs servent essentiellement a trois choses :

@ a permettre un partage d’objet sans duplication entre divers bouts de code
= « référence »

@ a pouvoir choisir des éléments non connus a priori (au moment de la
programmation)
= généricité

® a pouvoir manipuler des objets dont la durée de vie (~ portée dynamique)
dépasse les blocs dans lesquels ils sont déclarés (portée, au sens syntaxique)
= allocation dynamique

Note : les pointeurs n’existent pas dans tous les langages en tant que type
explicitement manipulable par le programmeur (p.ex. Java).

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 2/42

= Les pointeurs, a quoi ¢a sert?

Exemple :
Vous souvenez vous de la fin de I'exercice sur les intégrales ?
Comment faire pour ne pas recompiler le programme pour chaque nouvelle fonction ?

Supposons que vous ayez préprogrammeé 5 fonctions :
double fi(double x);

double f5(double x);
et vous donnez le choix a l'utilisateur :

do {
printf("De quelle fonction voulez-vous calculer "
"1'intégrale [1-5] 7\n");
scanf ("%d", &rep);
} while ((rep < 1) || (rep > 5));

Comment manipuler de fagon générique la réponse de l'utilisateur ?
= avec un pointeur sur la fonction correspondante.

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 3/42

@ le programme complet 1/2 @

#include <stdio.h>
#include <math.h>

double fi(double x) { return x*x;

double f2(double x) { return exp(x);
double f3(double x) { return sin(x);
double f4(double x) { return sqrt(exp(x));
double f5(double x) { return log(l.0+sin(x)); }

e

/* Fonction est un nouveau type : pointeur sur des fonctions *
* prenant un double en argument et retournant un double */
typedef double (*Fonction) (double);

Fonction demander_fonction(void)
{
int rep;
Fonction choisie;
do {
printf("De quelle fonction [...] calculer 1'intégrale [1-5] ?\n");
scanf ("%d", &rep);
} while ((rep < 1) || (rep > 5));

switch (rep) {
case 1: choisie = f1 ; break ;

©EPFL 2024 case 2: choisie = f2 ; break ;
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 4 /42

wer €&® le programme complet 2/2

case 3: choisie = £f3 ; break ;

case 4: choisie = f4 ; break ;

case 5: choisie = f5 ; break ;
}

return choisie;

}
double demander_nombre(void) { ... }
double integre(Fonction f, double a, double b) { ... }

int main(void) {
double a;
double b;
Fonction choix;

a = demander_nombre() ;

b = demander_nombre();

choix = demander_fonction();

printf("Integrale entre %1f et %1f :\n", a, b);
printf ("%f\n", integre(choix, a, b));

return 0;

oEPFL 2024 Note : ce programme peut encore étre amélioré, notamment en utilisant des tableaux...

Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 5/42

Les pointeurs

Pointeurs :

définition
Une variable est physiquement identifiée de fagon unique par son adresse,
c’est-a-dire I'adresse de 'emplacement mémoire qui contient sa valeur.
Un pointeur est une variable qui contient 'adresse d’un autre objet informatique.
i Une « variable de variable » en somme

pointeur

adresse de x

mémoire : ...010101010001 0001001110101010‘0100010100...

valeur de la variable x

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 6/42

Pointeurs :
définition

Les pointeurs (2) : une analogie A

Un pointeur c’est comme la page d’un carnet d’adresse .
(sur lesquelles on ne peut écrire qu'une seule adresse a la fois) :

déclarer un pointeur ajouter une page dans le carnet (mais cela ne veut
pas dire qu’il y a une adresse écrite dessus)
allouer un pointeur p aller construire une maison quelque part et noter

son adresse sur la page p (mais p n’est pas la mai-
son, c’est juste la page qui contient 'adresse de
cette maison)

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 7/42

Les pointeurs (2) : une analogie A
Un pointeur c’est comme la page d’un carnet d’adresse e’

(sur lesquelles on ne peut écrire qu'une seule adresse a la fois) :

« libérer un pointeur » p Aller détruire la maison dont I'adresse est écrite en
(en fait, c’est « libérer la page p.
mémoire pointée par le Cela ne veut pas dire que I'on a effacé I'adresse

pointeur » p) sur la page p!! mais juste que cette maison n’existe
plus.
P Cela ne veut pas non plus dire que toutes les pages

qui ont la méme adresse que celle inscrite sur la
page p n'ont plus rien (mais juste que l'adresse
qu’elles contiennent n’est plus valide)

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 7/42

Les pointeurs (2) : une analogie

Pointeurs :
définition

Un pointeur c’est comme la page d’'un carnet d’adresse

(sur lesquelles on ne peut écrire qu'une seule adresse a la fois) :

pl = p2

I
=
=
=
=

pl

©EPFL 2024
Jean-Cédric Chappelier

On recopie a la page p1 I'adresse écrite sur la page
p2. Cela ne change rien a la page p2 et surtout ne
touche en rien la maison dont I'adresse se trouvait
sur la page p1!

On gomme la page p1. Cela ne veut pas dire que
cette page n’existe plus (son contenu est juste ef-
facé) ni (erreur encore plus commune) que la maison dont
I'adresse se trouvait sur p1 (c.-a-d. celle que 'on est
en train d’effacer) soit modifiée en quoi que ce soit!!
Cette maison est absolument intacte !

CS202—-Computer Systems — C02 — Pointers 1: basics — 7/42

Les pointeurs (3) : la pratique

La déclaration d’'un pointeur se fait selon la syntaxe suivante :
typex identificateur;

Cette instruction déclare une variable de nom <dentficateur de type pointeur sur
une valeur de type type.

Exemple :
int* px;
déclare une variable px qui pointe sur une valeur de type int.

Linitialisation d’un pointeur se fait comme pour les autres variables :
typex identificateur = adresse;

Exemples :
int* ptr = &i;
int* ptr = NULL; /* ne pointe NULLe part */
©EPFL 2024

Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 8/42

Opérateurs sur les pointeurs

Opérateurs

C possede deux opérateurs particuliers en relation avec les pointeurs : & et *.

& est 'opérateur qui
retourne I'adresse mémoire de la valeur d’une variable

Si x est de type type, &x est de type type* (pointeur sur type).

Exemple : pXx
int i = 3; adresseq—&x
int* ptr = NULL; /* ptr est un pointeur
* sur un entier */ X
/] ...
valeur
ptr = &i; // ptr pointe sur la variable i

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 9/42

Opérateurs sur les pointeurs (2)
* est 'opérateur qui retourne la valeur pointée par une variable pointeur. Si px est
Opérateurs de type type*, (xpx) est la valeur de type type pointée par px.
px

valeur
Exemple :
int i = 3;

int* ptr = NULL;

ptr = &tr;
printf("%d\n", *ptr); // affiche la valeur pointee par ptr

Notes :
> x&i est donc strictement équivalent a i
GEPFL 2024 > structures : p->x est équivalent a (*p) .x

Jean-Cédric Chappelier
CS202—-Computer Systems — C02 — Pointers 1: basics — 10/42

Houlala!

Opérateurs

Ay
Q@\Z GARE AUX CONFUSION !

Concernant les pointeurs, C utilise malheureusement une notation identique, *,
pour deux choses différentes! (sans parler de la multiplication !)

typex ptr; *ptr
déclare une variable ptr comme un | accede au contenu de I'endroit pointé
pointeur sur un type de base type par ptr

CE N’EST PAS LA MEME CHOSE!

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 11/42

Pointeurs et passage par référence

Passage par
référence

Comme un pointeur contient 'adresse mémoire d’une valeur, si I'on passe un pointeur
en argument d’'une fonction, foute modification faite sur cette valeur a l'intérieur de la
fonction sera répercutée a l'extérieur.

= effet de bord

mais trés utile en C pour simuler le passage par référence
Utilisez donc les pointeurs pour faire des passages par référence!

= Rappel : c’est bien pour cela qu’on écrit :
scanf ("%d", &x);

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 12/42

Pointeurs et passage par référence (2)

Exemple :
P’agsage par
référence void swap(int* a, int* b) {
int const tmp = *a;
*a = *b;
*b = tmp;
}

int main(void) {
int i =3, j = 2;
printf ("%d,%d\n", i, j); /* affiche 3,2 */
swap(&i, &j);
printf ("%d,%d\n", i, j); /* affiche 2,3 */
return O;

Exercice : comment écrire swap en Java?

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 13/42

€ Optimisation €gd

Passage par
référence

Un moyen d’éviter la copie locale du passage par valeur (d’objets complexes) est
d’utilise un passage par adresse (pointeur).

Mais comme il s’agit d’'une optimisation et non pas d’un vrai passage par référence
(c.-a-d. on ne veut pas modifier la valeur passée), on n’autorisera pas la fonction a
modifier ses arguments en protégeant la valeur pointée par le mot const.

Exemple :

Matrice addition (Matrice const * mil,
Matrice const * m2);

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 14 /42

€ Optimisation (2) €D A

F
Passage par Conseil : utilisez toujours const dans vos passages par pointeurs sauf si vous voulez
référence vraiment modifier la variable pointée.
Note : on utilisera la méme optimisation (adresse plutét qu’objet) pour la valeur de
retour lorsqu’il s’agit de structures compliquées :
Par exemple :
Matrice* addition (Matrice const * a, Matrice const * b) mais attention' .
‘ s ¢ I
Matrice* resultat = mallog(sizeof (Matrice)); prevoir le free quelque
if (resultat != NULL) part.—
// algorithme d'additfion .
/" > cours de la semaine
} .
return resultat; prOChalne
}
Notez bien le malloc et surtout pas (!!!) :
©EPFL 2024 Matrice resultat;; return &resultat;

Jean-Cédric Chappelier
CS202—-Computer Systems — C02 — Pointers 1: basics — 15/42

@ Pointeurs const et
pointeurs sur des const

type const* ptr; (OU const type* ptr)
déclare un pointeur sur un objet constant de type type : on ne pourra pas modifier la
valeur de I'objet au travers de ptr (mais on pourra faire pointer ptr vers un autre objet).

const pointeurs

typex const ptr = &obj;
déclare un pointeur constant sur un objet obj de type type : on ne pourra pas faire
pointer ptr vers autre chose (mais on pourra modifier la valeur de obj au travers de

ptr).

Pour résumer : const s’applique toujours au type directement précédent, sauf si il est
au début, auquel cas il s’applique au type directement suivant.

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 16/42

@ Pointeurs const et @

pointeurs sur des const

int i =2, j = 3;
int const * pl = &i;
const pointeurs int* const p2 = &i;

printf("%d,%d,%d\n", i, *pl, *p2); /* affiche 2,2,2 */

pl = 5; / erreur de compilation : on ne peut pas
* modifier au travers de pl */
*p2 = 5; /x 0K, licite */

printf("%d,%d,%d\n", i, *pl, *p2); /* affiche 5,5,5 */

pl = &j; /* licite */
P2 = &j; /* erreur de compilation : on ne peut pas
* modifier p2 */

printf("%d,%d,%d\n", i, *pl, *p2); /* affiche 5,3,5 */

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 17 /42

En programmation, il existe la notion de référence, proche de la notion de pointeur
mais néamoins subtilement différente.

(certains langage d’ailleurs, dont C++, offrent les deux : pointeurs et références.

Les références n’existent par contre pas en C.)

Pointeurs et

références Une référence est en fait un identificateur (c.-a-d. un autre nom).

A la différence des pointeurs, une référence

> peut avoir une sémantique de = tres différente des pointeurs

> doit toujours étre initialisée

> ne peut jamais étre nulle (c.-a-d. ne pas référencer quelque chose)
ne peut référencer qu’'un seul et méme objet (tout au long du programme)
ne peut pas référencer une autre référence

n’a pas d’adresse en tant que telle (c.-a-d. on ne peut pas avoir de pointeur sur des
références. En fait, il est méme tout a fait possible qu’une référence n’existe pas en tant que
telle dans la mémoire, contrairement a un pointeur, mais ne soit qu’un alias géré par

OEPFL 2020 I'éditeur de liens).

Jean-Cédric Chappelier

vyYyy

CS202—-Computer Systems — C02 — Pointers 1: basics — 18/42

Pour faire simple : une référence est comme un pointeur qu’on ne peut pas changer
Pointeurs ot (« * const », donc) et qui est toujours affecté (a une adresse valide).
références
Lutilisation des références est donc limitée au cas @ des trois cas d'utilisation des
pointeurs : on ne peut pas les utiliser pour la généricité, ni pour I'allocation dynamique.

Les références, par contre, sont beaucoup plus faciles a manipuler que les pointeurs et
permettent d’écrire du code plus s(r.

Adage (pour les langages qui ont pointeurs et références, pas pour le C donc :-() :
utilisez des références quand vous pouvez, utilisez des pointeurs quand vous devez.

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 19/42

Allocation de mémoire A

Il'y a deux facons d’allouer de la mémoire en C.

@ déclarer des variables
— La réservation de mémoire est déterminée a la compilation : allocation statique.
dynamique

w allocation « sur la pile »

@ allouer dynamiquement de la mémoire pendant I’exécution d’'un programme.

Lallocation dynamique permet également de réserver de la mémoire
indépendamment de toute variable : on pointe directement sur une zone
mémoire plutét que sur une variable existante.

== allocation « sur le tas »

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 20/42

Pile et tas A

Mémoire virtuelle d’'un processus :

OXFFEFHef pile (« stack ») : variables locales

Note : taille limite de la pile : ulimit -s;
typiquement quelques Mo.

Allocation
dynamique

Récapitulation

tas (« heap ») : allocation dynamique

Note : le tas est en général limité uniquement par I'espace
d’adressage (ulimit -m)...

...jusqu’a « mettre a genoux » la machine (mémoire vir-
tuelle, swap, ...)

Tableaux

dynamiques

« données » : variables statiques et globales

« texte » : code du programme et constantes

0x00000000

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 21/42

Allocation dynamique de mémoire A
C possede deux fonctions malloc et calloc, définies dans stdlib.h, permettant—- 7
d'allouer dynamiquement de la mémoire.

Note : il existe également realloc dont nous parlons plus loin.

A\Iocat!on
dynamique pointeur = malloc(taille);

réserve une zone mémoire de taille tazlle et met 'adresse correspondante dans
pointeur.

Pour aider a la spécification de la taille, on utilise souvent I'opérateur sizeof qui
retourne la taille mémoire d’un type (donné explicitement ou sous forme d’une
expression).

(Le type de retour de sizeof est size_t. printf/scanf : %zu)

Par exemple pour allouer de la place pour un double :

pointeur = malloc(sizeof (double));

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 22/42

Allocation dynamique : calloc A

F
Si I'on souhaite allouer de la mémoire consécutive pour plusieurs variables de méme
type (typiquement un tableau, dynamique), on préférera calloc a malloc :

void* calloc(size_t nb_elements, size_t taille_element);

Allocation Par exemple pour allouer de la place pour 3 double consécutifs :

dynamique

pointeur = calloc(3, sizeof (double));

The use of calloc() is strongly encouraged when allocating multiple sized objects in
order to avoid possible integer overflows.
[malloc man-page in OpenBSD]

Le probleme ?
i p = malloc(n * sizeof (Type)) peut engendrer un overflow sur la multiplication
et allouer en fait bien moins que n cases, ce qui peut ensuite conduire a un
débordement mémoire sur p[i].

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 23/42

Et ca peut vraiment arriver ?
Voici un exemple de ce bug dans le code du server OpenSSH 3.1 :

unsigned int nresp;
char** reponse;

nresp = packet_get_int();
if (nresp > 0) {
gﬁﬁﬁk response = malloc(nresp * sizeof (charx));
for (i = 0; i < nresp; ++i)
response[i] = packet_get_string(NULL);

(tiré de la fonction input_userauth_info_response() dans auth2-chall.c)

Ou estle bug?

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 24 /42

Différences entre malloc et calloc

calloc est protégé contre I'erreur de débordement de la multiplication,

mais en plus calloc initialise a 0 (le contenu de) la zone allouée.

Avec malloc la mémoire n’'est pas initialisée.

Allocation
dynamique

Pour initialiser de la mémoire : memset (défini dans string.h) :

memset (pointeur, valeur, taille);

Exemple : memset (ptr, 255, sizeof (xptr));

Conseil : initialisez toujours toute la mémoire utilisée.

Par exemple :

struct Machin bidule;
memset (&bidule, 0, sizeof(bidule));

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 25/42

Test d’allocation correcte A

Les fonctions malloc et calloc retournent NULL si I'allocation n’a pas pu avoir lieu.

o Pour cela, on écrit souvent I'allocation mémoire comme suit

pointeur = calloc(nombre, sizeof (type));
if (pointeur == NULL) {

/* ... gestion de 1’erreur ... */

/* ... et sortie (return code d’erreur) */
}

/* suite normale */

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 26 /42

Libération mémoire allouée A

free permet de libérer de la mémoire allouée par calloc ou malloc. sy

free(pointeur)

libére la zone mémoire allouée au pointeur pointeur.

o C’est-a-dire que cette zone mémoire peut maintenant étre utilisée pour autre chose.
Il ne faut plus y accéder!...

Je vous conseille donc par mesure de prudence de faire suivre tous vos free par une
commande du genre :
pointeur = NULL;

Régle absolue : Toute zone mémoire allouée par un [cm]alloc doit impérativement
étre libérée par un free correspondant!
(e= « garbage collecting »)

Veillez a bien vous assurer que c’est le cas dans vos programmes
cEPFL 2024 (attention aux structures de contréle !)

Jean-Cédric Chappelier
CS202—-Computer Systems — C02 — Pointers 1: basics — 27 /42

Allocation
dynamique

©EPFL 2024

Jean-Cédric Chappelier

Allocation mémoire : exemple

int* create_long_live_int()
{
int* px = NULL;
/...
px = malloc(sizeof(int));
if (px !'= NULL) {
px = 20; / met la valeur 20 dans la zone *

* mémoire pointée par px. */
/...
}
return px;
}
{// ... ailleurs

int* q = create_long_live_int();
printf("%d\n", *q);

/]
return q;
¥
{ // ... encore ailleurs, plus loin
int* r = ...;
/..

free(r); // quand on n'en as plus besoin
r = NULL;

Note : sauf exception (tres grosse
taille), on ne fait pas malloc et free
dans la méme portée!!

Lallocation dynamique n’est que le

« cas d’utilisation numéro 3 ». Elle
n’est pas utile pour les cas 1 et 2!!

CS202—-Computer Systems — C02 — Pointers 1: basics — 28/42

Toujours allouer avant d’utiliser! A

Attention ! Si on essaye d'utiliser (pour la lire ou la modifier) la valeur pointée parun
pointeur pour lequel aucune mémoire n’a été réservée, une erreur de type
% Segmentation fault ou Bus Error se produira a I'exécution.

Allocation EXempIe :

dynamique
int* px;
px = 20; / ! Erreur : px n'a pas été alloué !! %/

Compilation : OK

Exécution
= Segmentation fault

Conseil : Initialisez toujours vos pointeurs. Utilisez NULL si vous ne connaissez pas
encore la mémoire pointée au moment de linitialisation :
int* px = NULL;

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 29/42

@ «Bus Error» ou
«Segmentation Fault» ?

C’est en gros la méme chose : accés a de la mémoire interdite.
Allocation
dynamique

Il'y a cependant une subtile différence entre « segmentation fault »
et « bus error ».

« bus error » signifie que le noyau n’'a pas pu détecter I'erreur d’accés mémoire
par lui-méme, mais que c’est de la mémoire physique (le matériel) qu’est venu
le signal d’erreur.

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 30/42

Récapitulons : regles de bon usage

A

Si vous suivez ces regles, vous vous faciliterez la vie de programmeur avec pointeurs s
» Toute zone mémoire allouée dynamiquement (malloc) doit impérativement étre

libérée par un free correspondant!
et c’est celui qui alloue qui doit libérer

Corollaire : si vous fournissez une fonction qui alloue de la mémoire vous devez

Récapitulation

fournir une fonction « réciproque » qui libére la mémoire, de sorte que celui qui

appelle votre premiére fonction puisse respecter la regle ci-dessus (en appelant la

seconde fonction)

> Testez systématiquement vos malloc/calloc :

pointeur = calloc(nombre, sizeof(type));
if (pointeur == NULL) {

/* ... gestion de 1l’erreur ... */
/* ... et sortie (return code d’erreur) */
}
EPFL 2024 /* suite normale */

Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 31/42

Récapitulons : regles de bon usage A
Si vous suivez ces regles, vous vous faciliterez la vie de programmeur avec pointeurs /
» Pour les allocations multiples, utilisez calloc et non pas malloc

> Initialisez toujours vos pointeurs.

Utilisez NULL si vous ne connaissez pas encore la mémoire pointée au moment de
linitialisation

Initialisez toujours toute la mémoire utilisée (memset).

ajoutez un ptr = NULL; aprés chaque free

utilisez toujours const dans vos « faux » passages par référence (optimisation)

Récapitulation

vV vvyy

€D utilisez les outils supplémentaires de votre environnement de
développement : options du compilateur, debugger, programmes de surveillance
de la mémoire (e.g. valgrind, Address Sanitizer, ...), programmes de
recherche de bugs (scan-build, splint, flawfinder, ...)

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 31/42

Tableaux dynamiques (rappel)

Un tableau dynamique est un ensemble d’éléments homogéne et a acces direct
de taille non fixée a priori

Interface :
> acces a un élément quelconque (sélecteur)
» modifier un élément quelconque (modificateur)
e > insérer/supprimer un élément en fin du tableau (modificateur)
> tester si le tableau est vide (sélecteur)
» parcourir le tableau (itérateur)

Au contraire de Java (ArrayList) ou C++ (vector), il N’y a pas, en C,
de bibliothéque standard fournissant de telles structures de données abstraites.
Voyons comment les implémenter...

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 32/42

Les tableaux en C (RAPPEL)

EnC,ona: ——
taille initiale connue a priori?
non oui
taille pouvant varier gy —(—
lors de I'utilisation
du tableau ? non (C99) VLA typelN]

Tableaux
dynamiques

Pour rappel en Java, on utilise :

(1) N'existe pas en C, mais possible grace au « flexible array member »

©EPFL 2024

taille initiale connue a priori?
non oui
taille pouvant varier gy ArrayList
lors de l'utilisation
du tableau ? non typel]

Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 33/42

Tableaux
dynamiques

©EPFL 2024
Jean-Cédric Chappelier

Tableaux dynamiques : exemple d’utilisation

vector v;

// initialisation
if (vector_construct(&v) == NULL) {
... // erreur

}

// utilisation
if (vector_push(&v, 2) == 0) {
... // erreur

}

// libération mémoire
vector_delete(&v) ;

CS202—-Computer Systems — C02 — Pointers 1: basics — 34 /42

Tableaux dynamiques : exemple d’implémentation A
F

typedef int type_el; // pour définir le type d'un é&lément

typedef struct {
size_t size; // nombre d'éléments utilisés dans le tableau
size_t allocated; // nb élements déja alloués
type_el* content; // tableau de contenu (alloc. dyn.)

} vector;

Tableaux
dynamiques

d’ou : réallocation dynamique quand on dépasse la taille allouée

ez allocation dynamique par blocs de taille fixe (allocated est un multiple de la taille
des blocs)

Comment ?
& fonction realloc :
ptrnew = realloc(ptrold, newsize) ;

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 35/42

realloc é
) 4
realloc :

» change la taille de la zone allouée, aussi bien en augmentation qu’en diminution

» déplace le pointeur (« réalloue ») si nécessaire, tout en gardant I'intégrité des
données (recopie)

» libére I'ancienne mémoire si nécessaire

Tableaux
dynamiques

> |'ancienne zone mémoire est inchangée si realloc échoue (c.-a-d. retourne NULL)

> la nouvelle zone mémoire supplémentaire (lorsqu’on augmente) n’'est pas
initialisée

> si ptroldest NULL, c’est un malloc(newsize)
> si newsize est nulle (et ptrold n'est pas NULL), c’est un free(ptrold)

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 36 /42

Tableaux dynamiques : initialisation

vector* vector_construct(vector* v) {
if (v != NULL) {
vector result = { 0, 0, NULL };
result.content = calloc(VECTOR_PADDING, sizeof (type_el));
if (result.content != NULL) {
result.allocated = VECTOR_PADDING;
} else {
// retourne NULL si on n'a pas pu allouer la mémoire nécessaire
Tableaux return NULL;
dynamiques
}
// écriture atomique
*v = result;
}
return v;

}

VECTOR_PADDING : taille des blocs choisie. Par exemple :
#define VECTOR_PADDING 128

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 37 /42

Tableaux dynamiques : libération mémoire

Attention ! Comme on a fourni une fonction faisant I'allocation (vector_construct),
% il faut aussi fournir une fonction pour la libération :

void vector_delete(vector* v) {
if ((v '= NULL) && (v->content !'= NULL)) {
free(v->content) ;
v->content = NULL;
Tableaux
dynamiques v->size = O;
v->allocated = 0;

NOTE : « x->y » est la méme chose que « (*x) .y »

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 38/42

Tableaux dynamiques : ajout d’un élément

Exemple d’ajout d’'un élément a la fin du tableau (et retourne la taille (nombre

d’éléments) du tableau apres ajout, 0 en cas d’échec) :

size_t vector_push(vector* v, type_el val) {
if (v != NULL) {
while (v->size >= v->allocated) {
if (vector_enlarge(v) == NULL) {
Tableaux return 0;
dynamiques }
}
v->content [v->size] = val;
++(v->size) ;
return v->size;
}

return O;

}

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 39/42

Tableaux dynamiques : augmentation de taille

vector* vector_enlarge(vector* v) {
if (v != NULL) {
vector result = *v;
result.allocated += VECTOR_PADDING;
if ((result.allocated > SIZE_MAX / sizeof(type_el)) ||
((result.content = realloc(result.content,
result.allocated * sizeof(type_el)))
Tableaux == NULL)) {
dynamiques return NULL; /* retourne NULL en cas d'échec ;
* v n'a pas été modifié. x/
¥
// affectation finale, tout d'un coup
*vy = result;
}
return v;

}

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 40/42

SIZE_MAX

SIZE_MAX est défini dans la bibliothéque standard stdint.h depuis C99,

sinon :

Tableaux #ifndef SIZE_MAX

dynamiaues #define SIZE_MAX (~(size_t)0)
#endif

©EPFL 2024
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 41/42

W

Les pointeurs %ﬂ

Déclaration : typex identificateur;

Adresse d’une variable : &variable
Acces au contenu pointé par un pointeur : *pointeur

Pointeur sur une constante : type const* ptr;
Pointeur constant : typex const ptr = adresse;

. . .
e Allocation mémoire :
#include <stdlib.h>

pointeur = malloc(sizeof (type));
pointeur = calloc(nombre, sizeof(type));
pointeur = realloc(pointeur, sizeof(type));

Libération de la zone mémoire allouée : free(pointeur);

I Pointeur sur une fonction : type_retour (* ptrfct) (arguments...)
Jean-Cédric Chappelier

CS202—-Computer Systems — C02 — Pointers 1: basics — 42/42

	Utilité des pointeurs
	Pointeurs : définition
	Opérateurs
	Passage par référence
	const pointeurs
	Pointeurs et références
	Allocation dynamique
	Récapitulation
	Tableaux dynamiques

