
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE – LAUSANNE
POLITECNICO FEDERALE – LOSANNA
SWISS FEDERAL INSTITUTE OF TECHNOLOGY – LAUSANNE

Faculté Informatique et Communications
Cours de Programmation Orientée Système, sections IN et SC
Chappelier J.-C.

NOM : Hanon Ymous
(000000)
Place : 0

#0000

PROGRAMMATION ORIENTÉE SYSTÈME

Examen final

22 mai 2023

INSTRUCTIONS (à lire attentivement)

IMPORTANT ! Veuillez suivre les instructions suivantes à la lettre sous peine de voir
votre examen annulé dans le cas contraire.

1. Vous disposez d’une heure quarante-cinq minutes pour faire cet examen (8h15 – 10h00).

2. Vous devez écrire à l’encre noire ou bleu foncée, pas de crayon ni d’autre couleur.
N’utilisez pas non plus de stylo effaçable (perte de l’information à la chaleur).

3. Vous avez droit à toute documentation papier.
En revanche, vous ne pouvez pas utiliser d’ordinateur personnel, ni de téléphone portable, ni
aucun autre matériel électronique.

4. Répondez aux questions directement sur la donnée ; ne joignez aucune feuille supplémentaire ;
seul ce document sera corrigé.

5. Lisez attentivement et complètement les questions de façon à ne faire que ce qui vous est
demandé. Si l’énoncé ne vous paraît pas clair, ou si vous avez un doute, demandez des précisions
à l’un(e) des assistant(e)s.
Si la nature (par valeur ou par référence) d’un passage d’argument n’est pas précisée, c’est à
vous de faire le choix adéquat.
Si un comportement ou une situation donnée n’est pas définie dans la consigne, vous êtes libre de
définir le comportement adéquat. On considérera comme comportement adéquat toute solution
qui ne viole pas les contraintes données et qui ne résulte pas en un crash du programme.

6. L’examen comporte deux exercices indépendants, qui peuvent être traités dans n’importe quel
ordre, mais qui ne rapportent pas la même chose (les points sont indiqués, le total est de 96 points) ;
tous les exercices comptent pour la note finale :
— question 1 : 63.5 points ;
— question 2 : 32.5 points ;

N
e

p
as

éc
ri

re
d
an

s
ce

tt
e

zo
n
e.

Anonymisation : #0000
p. 2 question 1.2

Question 1 – Files de priorité [sur 63.5 points]

Le but de cet exercice est d’écrire des parties d’un programme permettant de gérer des files de priorité
(priority queue) contenant des chaînes de caractères.

Une file de priorité est simplement une liste doublement chaînée 1 où les chaînons/éléments ont une
valeur (chaîne de caractères ici) et une priorité (int ; on peut avoir des priorités négatives).

1.1 – Types de données [sur 6 points]

Les deux types principaux d’un tel programme sont les chaînons/éléments, que nous appellerons Node,
et la file de priorité elle-même, que nous appellerons PQueue.

Un Node contient :
— une valeur (chaîne de caractères), qui lui est propre (copie d’une autre) ;
— une priorité (int) ;
— le moyen d’accéder au Node précédent et au Node suivant dans la file.

Une PQueue est très simplement juste le moyen d’accéder au premier Node, que l’on appellera head, et
au dernier Node, que l’on appellera tail.

Définissez ici le type Node : Définissez ici le type PQueue :

1.2 – Créations et destructions [sur 15 points]

Il faut bien sûr pouvoir créer et supprimer des Node et des PQueue. On vous demande pour cela de
définir quatre fonctions :

— Node* create_new_node(const char* value, int priority)
qui crée un nouveau Node, non connecté, et l’initialise ; retourne NULL en cas d’erreur ;
ce nouveau Node doit contenir sa propre copie de value ;

— PQueue* create_priority_queue(void)
qui crée une nouvelle PQueue, vide (sans Node) ; retourne NULL en cas d’erreur ;

— void destroy_node(Node* node)
qui détruit un Node (mais pas ses voisins) ;

— void destroy_queue(PQueue* queue)
qui détruit une PQueue.

En guise d’illustration, une utilisation typique serait :
PQueue* queue = create_priority_queue();
// ...use queue (add nodes, etc.)
destroy_queue(queue); queue = NULL;
// not any leak here

1. chaque chaînon/élément peut accéder à son prédécesseur et à son successeur

POS Examen final – IN & SC
J.-C. Chappelier 22 mai 2023

question 1.2 Anonymisation : #0000
p. 3

N
e

p
as

éc
ri

re
d
an

s
ce

tt
e

zo
n
e.

Définissez ici les quatre fonctions demandées :

suite au dos ☞

POS Examen final – IN & SC
J.-C. Chappelier 22 mai 2023

N
e

p
as

éc
ri

re
d
an

s
ce

tt
e

zo
n
e.

Anonymisation : #0000
p. 4 question 1.3

1.3 – Insertion d’une valeur [sur 18 points]

On souhaite maintenant pouvoir ajouter des valeurs à la file, avec leur priorité. On vous demande pour
cela de définir une fonction

int insert_value(PQueue* queue, const char* label, int priority)

qui insère (nouveau Node) la valeur label après le dernier Node de priorité supérieure ou égale à
priority. On supposera queue proprement ordonnée 2.

Par exemple, si l’on insère la valeur "Koala" de priorité 6 dans la file contenant :

(head) [9] Kangaroo
[8] Elephant
[6] Cormorant

(tail) [5] Penguin

alors la file contiendra :

(head) [9] Kangaroo
[8] Elephant
[6] Cormorant
[6] Koala

(tail) [5] Penguin

Bien sûr, l’insertion d’une valeur de priorité strictement plus grande que toutes les priorités déjà
présentes se fera en tête (head) de file, et l’insertion d’une valeur de priorité plus petite ou égale à
toutes les priorités déjà présentes se fera en queue (tail) de file.

La recherche de la position (priorité) où ajouter la nouvelle valeur se fera simplement de façon linéaire
depuis head.

La fonction insert_value() retourne 0 si elle n’a pas pu insérer et 1 si c’est tout bon.

Définissez ici la fonction insert_value() :

2. Vous n’avez pas à vérifier cette propriété.

POS Examen final – IN & SC
J.-C. Chappelier 22 mai 2023

question 1.3 Anonymisation : #0000
p. 5

N
e

p
as

éc
ri

re
d
an

s
ce

tt
e

zo
n
e.

suite au dos ☞

POS Examen final – IN & SC
J.-C. Chappelier 22 mai 2023

N
e

p
as

éc
ri

re
d
an

s
ce

tt
e

zo
n
e.

Anonymisation : #0000
p. 6 question 1.4

1.4 – Fusion des chaînes de même priorité [sur 10.5 points]

On souhaite aussi offrir une fonctionnalité qui créée une nouvelle chaîne de caractères (valeur de retour,
totalement hors de la PQueue) qui est la concaténation 3 de toutes les valeurs (chaînes de caractères)
de même priorité.

Par exemple, si la file contient :

(head) [18] Unicorn
[10] Elephant
[10] Bear
[10] Duck
[7] Penguin

(tail) [5] Seagull

et que l’on demande la concaténation des chaînes de priorité 10, la fonction merge_priority() re-
tournera la nouvelle chaîne "ElephantBearDuck" (dans cet ordre), sans modifier la file de priorité. Si
l’on demande celle des chaînes de priorité 15, on obtiendra la chaîne vide et si l’on demande celle des
chaînes de priorité 5, on obtiendra "Seagull".

Définissez ici la fonction merge_priority() correspondant à la description ci-dessus (à vous de proposer
son prototype) :

3. c.-à-d. la mise bout à bout

POS Examen final – IN & SC
J.-C. Chappelier 22 mai 2023

question 1.5 Anonymisation : #0000
p. 7

N
e

p
as

éc
ri

re
d
an

s
ce

tt
e

zo
n
e.

1.5 – Échanges [sur 14 points]

Techniquement, il peut être nécessaire de pouvoir échanger un Node avec son prédécesseur dans la file
(sans se préoccuper de leur priorité, juste les échanger).

Définissez ici la fonction void swap_with_previous(PQueue* queue, Node* node) qui pour un Node
donné dans une PQueue donnée, effectue cet échange (avec son prédécesseur, lorsqu’il existe) ; on ne
vous demande pas de vérifier que le Node est effectivement bien présent dans la PQueue :

suite au dos ☞

POS Examen final – IN & SC
J.-C. Chappelier 22 mai 2023

N
e

p
as

éc
ri

re
d
an

s
ce

tt
e

zo
n
e.

Anonymisation : #0000
p. 8 question 2.2

Question 2 – Petites questions [32.5 points]

2.1 H? Tag?? [3 points]

À quoi sert un fichier .h ?

Réponse :

2.2 Qu’est-ce qu’il me dit? [4 points]

Lors de la création d’un projet de programmation, vous obtenez l’erreur suivante :

/usr/bin/ld : polonaise.o : dans la fonction « eval » :
polonaise.c:33 : référence indéfinie vers « construct_vector »
/usr/bin/ld : polonaise.c:39 : référence indéfinie vers « vector_push »
collect2: error: ld returned 1 exit status

➀ Est-ce une erreur de compilation ou d’édition de liens ?

➁ Que signifie-t-elle (clairement, en français) ?

➂ Comment la corriger ? (quel fichier modifier et comment ?)

Réponses :

POS Examen final – IN & SC
J.-C. Chappelier 22 mai 2023

question 2.3 Anonymisation : #0000
p. 9

N
e

p
as

éc
ri

re
d
an

s
ce

tt
e

zo
n
e.

2.3 Ça fait quoi (1)? [5 points]
1 #include <stdio.h>
2 #include <stdlib.h>
3
4 typedef struct {
5 double* array[]; // dynamically allocated array of pointers to double
6 size_t nb; // number of pointers in the array
7 } Container;
8
9 int main(void)

10 {
11 double x = 98.7;
12 Container c;
13 c.nb = 3;
14 c.array = calloc(c.nb, sizeof(double*));
15 c.array[2] = &x;
16 for (size_t i = 0; i < c.nb; ++i)
17 if (c.array[i] != NULL)
18 printf("%zu: %g\n", i, *c.array[i]);
19 return 0;
20 }

➀ Le code ci-dessus compile-t-il ? Si oui, s’exécute-t-il correctement ?

➁ Si vous répondez « non » à l’une des questions de ➀, proposez, directement sur le code (ou à sa
droite), un minimum de corrections pour qu’il puisse compiler et s’exécuter correctement.

➂ Qu’affiche alors ce code ? Justifiez brièvement pourquoi.

Réponses :

suite au dos ☞

POS Examen final – IN & SC
J.-C. Chappelier 22 mai 2023

N
e

p
as

éc
ri

re
d
an

s
ce

tt
e

zo
n
e.

Anonymisation : #0000
p. 10 question 2.4

2.4 Ça fait quoi (2)? [14 points]
1 #include <stdio.h>
2 #include <stdlib.h>
3
4 void f(char*** a, char* b, size_t* c) {
5 char** d = realloc(*a, (*c + 1) * sizeof(void*));
6 if (!d) return;
7 *a = d;
8 d[*c] = b;
9 ++*c;

10 }
11
12 char** g(char* a, size_t* b) {
13 char** ret = NULL;
14 for (char* c = a; *c; c++) {
15 if (*c == 'y') {
16 *c++ = '\0';
17 f(&ret, a, b);
18 a = c;
19 }
20 } // voir (4) : faire dessin à ce stade
21 f(&ret, a, b);
22 return ret;
23 }
24
25 void h(char** a) { printf("%s ", *a); }
26
27 int main(void)
28 {
29 char str[] = "quidyeratydemonstrandum";
30 size_t s = 0;
31 char** what = g(str, &s);
32 for (size_t i = 0; i < s; ++i) h(what + i);
33 putchar('\n');
34 free(what);
35 return 0;
36 }

➀ Le code ci-dessus compile-t-il ? Si oui, s’exécute-t-il correctement ?

➁ Si vous répondez « non » à l’une des questions de ➀, proposez, directement sur le code (ou à sa
droite), un minimum de corrections pour qu’il puisse compiler et s’exécuter correctement.

➂ Qu’affiche alors ce code ? Expliquer en français pourquoi (mais voir aussi point ➃ suivant).

➃ Dessinez une image illustrative de la mémoire correspondant à la situation atteinte à la ligne 20
du code ci-dessus. Votre dessin doit comprendre toutes les variables de la fonction g() et toutes
les variables de la fonction main(), sauf i.

Réponses :

POS Examen final – IN & SC
J.-C. Chappelier 22 mai 2023

question 2.4 Anonymisation : #0000
p. 11

N
e

p
as

éc
ri

re
d
an

s
ce

tt
e

zo
n
e.

suite au dos ☞

POS Examen final – IN & SC
J.-C. Chappelier 22 mai 2023

N
e

p
as

éc
ri

re
d
an

s
ce

tt
e

zo
n
e.

Anonymisation : #0000
p. 12 question 2.5

2.5 Ça fait quoi (3)? [6.5 points]
1 #include <stdio.h>
2 #include <stdlib.h>
3
4 char* first_two(const char* input)
5 {
6 char str[3] = "";
7 if (input != NULL) {
8 str[0] = input[0];
9 if (input[0] != '\0') str[1] = input[1];

10 }
11 return str;
12 }
13
14 void g(int i)
15 {
16 int a = 2*i;
17 printf("%d\n", a);
18 }
19
20 int main(void)
21 {
22 char* s = first_two("Relax");
23 s[1] = 'a';
24 g(3);
25 printf("%s\n", s);
26 return 0;
27 }

➀ Le code ci-dessus compile-t-il ? Si oui, s’exécute-t-il correctement ?

➁ Si vous répondez « non » à l’une des questions de ➀, proposez, directement sur le code (ou à sa
droite), un minimum de corrections pour qu’il puisse compiler et s’exécuter correctement.

➂ Qu’affiche alors ce code ? Justifiez brièvement pourquoi.

Réponses :

POS Examen final – IN & SC
J.-C. Chappelier 22 mai 2023

