
Interrupt Controller and Integration

Learning Goal: Add interrupt capability to the multicycle RISC-V CPU

Requirements: Verilator, GTKWave, CS200 Extension

1 Introduction

In this lab you will extend the multicycle RISC-V CPU with the capability to handle interrupts. The
following schematic 1 shows the current state of the CPU.

clk
rst_n

CPU

pc_sel_pc_base

Controller
branch_op

pc_en

pc_add_imm

rst_n

clk

instruction

sel_pc

rf_we
sel_addr
sel_b

sel_mem

immir_en

we
op_alu

IR
D Q
en

PC

clk

rst_n

addr

en

add_imm

imm

clk

rst_n

instr

Register
File

clk

aa
a

aw

ab

wren b

wrdata

rf_we

rf_we

5
320

1

sel_pc

0

1

32

sel_pc

1
1
..
7

sel_pc_base

pc_sel_alu

sel_alu
alu32

alu_res

32

32

0

1

alu_resALU

op_alu

6

32

5

1
9
..
1
5

clk

sel_imm

sel_imm

we
op_alu

6

sel_imm

sel_addr
sel_b
sel_mem

32

rdata

we

addr

wdata

we

32

32

imm

0

1

5

2
4
..
2
0

sel_addr

1

0

sel_b

sel_mem

alu_res0

Figure 1: Original multicycle RISC-V CPU

The following figure 2 shows the modifications required for the architecture to handle interrupts. For
handling interrupts, a new unit, called CSR Controller, is added to the architecture. The irq input
signal captures the interrupt event. The Program Counter and Controller need to be modified in order
to handle the interrupt events. When an interrupt occurs, the normal program flow should be stopped
and the interrupt should be serviced by jumping to the appropriate interrupt service routine.

Version 1.0 of 30th August 2024, EPFL ©2024 1 of 9



Interrupt Controller and Integration

clk
rst_n

CPU

sel_csr
csr_mret

csr_interrupt
csr_clear
csr_set
csr_write

ipending

pc_sel_mepc

pc_sel_mtvec

pc_sel_pc_base

Controller

branch_op

pc_en

pc_add_imm

rst_n

clk

instruction

sel_pc

rf_we
sel_addr
sel_b

sel_mem

immir_en

we
op_alu

IR
D Q
en

PC

clk
rst_n

addr

en

add_imm

imm

clk

rst_n

instr

Register
File

clk
aa

a

aw

ab

wren b

wrdata

rf_we

rf_we

5

320

1

sel_pc

0

1

32

sel_pc

11
..
7

sel_pc_base

pc_sel_alu

sel_alu
alu32alu_res

32

32

0

1

alu_resALU

op_alu

6

32

5

19
..
15

clk

sel_imm

sel_imm

we
op_alu

6

sel_imm

sel_addr
sel_b
sel_mem

32

rdata

we

addr

wdata

we

32

32

imm

0

1

5

24
..
20

sel_addr

1

0

sel_b

sel_mem

alu_res0

mtvec
mepc

pc

irq

rst_n
clk

CSR
Controller

sel_mtvec
sel_mepc

mtvecmepc

ipending

clk
rst_n

addrinstr31..20

wdata
0

1

ra

ra

imm

32

32
32

irq

write
set
clear
interrupt

sel_imm

sel_csr

mret

32

rdata csr_rdata32
32
32

ipending ipending

0

1csr_rdata

sel_csr

addr

Figure 2: Multicycle RISC-V CPU with interrupt handling

2 Adding CSR Instructions

To support interrupt handling, we need to add Control and Status Register (CSR) instructions to our
RISC-V CPU. The following schematic shows the signals of interest for this implementation:

clk
rst_n

CPU

sel_csr
csr_mret

csr_interrupt
csr_clear
csr_set
csr_write

ipending

pc_sel_mepc

pc_sel_mtvec

pc_sel_pc_base

Controller

branch_op

pc_en

pc_add_imm

rst_n

clk

instruction

sel_pc

rf_we
sel_addr
sel_b

sel_mem

immir_en

we
op_alu

IR
D Q
en

PC

clk
rst_n

addr

en

add_imm

imm

clk

rst_n

instr

Register
File

clk
aa

a

aw

ab

wren b

wrdata

rf_we

rf_we

5

320

1

sel_pc

0

1

32

sel_pc

11
..
7

sel_pc_base

pc_sel_alu

sel_alu
alu32alu_res

32

32

0

1

alu_resALU

op_alu

6

32

5

19
..
15

clk

sel_imm

sel_imm

we
op_alu

6

sel_imm

sel_addr
sel_b
sel_mem

32

rdata

we

addr

wdata

we

32

32

imm

0

1

5

24
..
20

sel_addr

1

0

sel_b

sel_mem

alu_res0

mtvec
mepc

pc

irq

rst_n
clk

CSR
Controller

sel_mtvec
sel_mepc

mtvecmepc

ipending

clk
rst_n

addrinstr31..20

wdata
0

1

ra

ra

imm

32

32
32

irq

write
set
clear
interrupt

sel_imm

sel_csr

mret

32

rdata csr_rdata32
32
32

ipending ipending

0

1csr_rdata

sel_csr

addr

Figure 3: CPU schema focusing on CSR-related signals

CSR instructions are part of the SYSTEM instruction type in RISC-V. The layout for these instructions is
as follows:

2 of 9 Version 1.0 of 30th August 2024, EPFL ©2024



Interrupt Controller and Integration

31 20 19 15 14 12 11 7 6 0
csr rs1/uimm funct3 rd opcode

Figure 4: The SYSTEM instruction format for CSR operations in RV32I.

As a reminder, the opcode for SYSTEM instructions is 0x73 like EBREAK. The funct3 field determines
the specific CSR operation to be performed:

Instruction funct3 Description

csrrw rd, csr, rs1 001 CSR Read/Write
csrrs rd, csr, rs1 010 CSR Read and Set Bits
csrrc rd, csr, rs1 011 CSR Read and Clear Bits
csrrwi rd, csr, uimm 101 CSR Read/Write Immediate
csrrsi rd, csr, uimm 110 CSR Read and Set Bits Immediate
csrrci rd, csr, uimm 111 CSR Read and Clear Bits Immediate

Table 1: CSR instructions in RV32I.

2.1 Register Write-back in CSR Instructions

It’s important to note that CSR instructions always write to a destination register, even when that register
is x0. This behavior differs from other RISC-V instructions where writes to x0 are typically ignored. The
reasons for this are:

1. Consistency: CSR instructions always read the old value of the CSR before potentially modifying
it. This old value is written to the destination register, providing a consistent way to access the
previous state of the CSR.

2. Side-effect free reads: For the CSRs we’re implementing (mtvec, mepc, mcause, etc.), reading
does not cause any side effects. This means it’s safe to always perform the read operation, even if
the result might be discarded when writing to x0.

3. Simplicity in hardware: Always writing the old CSR value to the destination register simplifies
the hardware implementation, as it doesn’t need to check whether the destination is x0 before
deciding to perform the write.

During the DECODE stage, if a SYSTEM type instruction is detected (different from a ebreak instruc-
tion), the controller should transition to a new CSR state in the next cycle. In the controller (controller.v),
the following signals should be toggled during the CSR state:

• sel csr: Set to 1 to select CSR data for writeback.

• rf we: Set to 1 to enable writing to the register file.

• csr write, csr set, or csr clear: Set based on the funct3 field.

• sel imm: Set to 1 if the instruction is an immediate type, 0 otherwise.

• imm: The immediate value for CSR instructions, zero-extended to 32 bits. Should be set to 0 if the
instruction is not an immediate type.

Version 1.0 of 30th August 2024, EPFL ©2024 3 of 9



Interrupt Controller and Integration

After executing the CSR instruction, the controller should transition back to the FETCH2 state to con-
tinue normal execution as shown in Figure 5.

FETCH1

FETCH2

CSR

DECODE

Figure 5: State machine for CSR instructions

2.2 Exercise

In this exercise, you will extend your RISC-V CPU implementation to support CSR instructions. This
will involve modifying several modules from your previous work.

• Import the following modules from your previous labs:

– add sub.v

– alu.v

– buttons.v

– comparator.v

– controller.v

– csr.v

– decoder.v

– ir.v

– leds.v

– logic unit.v

– mem.sv

– mux2x32.v

– mux4x32.v

– pc.v

– register file.v

– seven seg lcd.v

– shift unit.v

• Modify the controller.v module:

– Add a new CSR state to the state machine.

– Implement the logic to transition to the CSR state when a SYSTEM instruction (except ebreak)
is detected.

– In the CSR state, set the appropriate control signals as described earlier.

• Important: No testbenches are provided for this exercise. You must create your own testbenches
to verify your implementation. You can also create some simple assembly programs to test the
CSR instructions.

4 of 9 Version 1.0 of 30th August 2024, EPFL ©2024



Interrupt Controller and Integration

3 Program Counter

3.1 Description

The Program Counter (PC) module has been extended with four new inputs to support interrupt hand-
ling and returning from interrupts:

• sel mtvec and mtvec: When sel mtvec is set (and the PC is enabled), the PC should be up-
dated with the value of mtvec. It’s crucial to ensure that the two least significant bits (LSBs) of
this value are set to zero to maintain memory alignment.

• sel mepc and mepc: These operate similarly to sel mtvec and mtvec. When sel mepc is set
(and the PC is enabled), the PC should be updated with the value of mepc. Since mepc stores a
previous PC value, it’s already properly aligned and doesn’t require LSB adjustment.

These additions allow the PC to handle interrupt vector addresses and return addresses for interrupt
service routines.

3.2 Exercise

• Extend the pc interface to include the new signals: sel mtvec, mtvec, sel mepc, and mepc.

• Implement the logic to update the PC based on these new inputs, ensuring proper alignment for
mtvec.

• Important: No testbenches are provided for this exercise. You must create your own testbenches
to verify your implementation.

4 Interrupt Handling

4.1 Description

When an interrupt occurs, the CPU needs to stop its current execution, save the necessary state, and
jump to the interrupt handler. This process is primarily handled in the FETCH2 state of the controller.

Version 1.0 of 30th August 2024, EPFL ©2024 5 of 9



Interrupt Controller and Integration

clk
rst_n

CPU

sel_csr
csr_mret

csr_interrupt
csr_clear
csr_set
csr_write

ipending

pc_sel_mepc

pc_sel_mtvec

pc_sel_pc_base

Controller

branch_op

pc_en

pc_add_imm

rst_n

clk

instruction

sel_pc

rf_we
sel_addr
sel_b

sel_mem

immir_en

we
op_alu

IR
D Q
en

PC

clk
rst_n

addr

en

add_imm

imm

clk

rst_n

instr

Register
File

clk
aa

a

aw

ab

wren b

wrdata

rf_we

rf_we

5

320

1

sel_pc

0

1

32

sel_pc

11
..
7

sel_pc_base

pc_sel_alu

sel_alu
alu32alu_res

32

32

0

1

alu_resALU

op_alu

6

32

5

19
..
15

clk

sel_imm

sel_imm

we
op_alu

6

sel_imm

sel_addr
sel_b
sel_mem

32

rdata

we

addr

wdata

we

32

32

imm

0

1

5

24
..
20

sel_addr

1

0

sel_b

sel_mem

alu_res0

mtvec
mepc

pc

irq

rst_n
clk

CSR
Controller

sel_mtvec
sel_mepc

mtvecmepc

ipending

clk
rst_n

addrinstr31..20

wdata
0

1

ra

ra

imm

32

32
32

irq

write
set
clear
interrupt

sel_imm

sel_csr

mret

32

rdata csr_rdata32
32
32

ipending ipending

0

1csr_rdata

sel_csr

addr

Figure 6: CPU schema focusing on interrupt handling signals

The interrupt handling process is triggered when the ipending signal is set. In the FETCH2 state, the
controller checks this signal and, if set, initiates the interrupt handling sequence.

ipending

FETCH1

FETCH2

Figure 7: State machine for interrupt handling

When an interrupt is detected, the following signals are toggled in the controller:

• csr interrupt: Set to 1 to indicate an interrupt is being handled.

• pc sel mtvec: Set to 1 to select the interrupt vector address.

• pc en: Set to 1 to enable updating the program counter.

These signals cause the CPU to save the current program counter to the mepc CSR, update the mcause
CSR with the interrupt cause, and jump to the interrupt handler address specified in the mtvec CSR.

4.2 Exercise

• Modify the controller.v module to handle the interrupt sequence in the FETCH2 state.

• Implement the logic to set the appropriate signals when an interrupt is detected.

• Important: Create your own testbench to verify the interrupt handling implementation.

6 of 9 Version 1.0 of 30th August 2024, EPFL ©2024



Interrupt Controller and Integration

5 Returning from an Interrupt

5.1 Description

To return from an interrupt, the RISC-V architecture provides the mret (Machine-mode Return) instruc-
tion. This instruction is part of the SYSTEM instruction type and is encoded as an I-type instruction.

31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode

Figure 8: The mret instruction format in RV32I.

For the mret instruction, the fields have the following specific values:

Instruction Immediate funct3 opcode

mret 0x302 0x0 0x73

Table 2: Field values for the mret instruction.

It’s important to note that while mret shares the same opcode (0x73) as CSR and EBREAK instructions,
it should be distinguished from these during the decode phase. This can be done by checking the specific
immediate value (0x302) and ensuring that funct3 is all zeros. This distinction allows the controller to
correctly identify and handle the mret instruction separately from other SYSTEM instructions.

When the mret instruction is decoded, the controller transitions to the INTERRUPT RETURN state.

clk
rst_n

CPU

sel_csr
csr_mret

csr_interrupt
csr_clear
csr_set
csr_write

ipending

pc_sel_mepc

pc_sel_mtvec

pc_sel_pc_base

Controller

branch_op

pc_en

pc_add_imm

rst_n

clk

instruction

sel_pc

rf_we
sel_addr
sel_b

sel_mem

immir_en

we
op_alu

IR
D Q
en

PC

clk
rst_n

addr

en

add_imm

imm

clk

rst_n

instr

Register
File

clk
aa

a

aw

ab

wren b

wrdata

rf_we

rf_we

5

320

1

sel_pc

0

1

32

sel_pc

11
..
7

sel_pc_base

pc_sel_alu

sel_alu
alu32alu_res

32

32

0

1

alu_resALU

op_alu

6

32

5

19
..
15

clk

sel_imm

sel_imm

we
op_alu

6

sel_imm

sel_addr
sel_b
sel_mem

32

rdata

we

addr

wdata

we

32

32

imm

0

1

5

24
..
20

sel_addr

1

0

sel_b

sel_mem

alu_res0

mtvec
mepc

pc

irq

rst_n
clk

CSR
Controller

sel_mtvec
sel_mepc

mtvecmepc

ipending

clk
rst_n

addrinstr31..20

wdata
0

1

ra

ra

imm

32

32
32

irq

write
set
clear
interrupt

sel_imm

sel_csr

mret

32

rdata csr_rdata32
32
32

ipending ipending

0

1csr_rdata

sel_csr

addr

Figure 9: CPU schema focusing on interrupt return signals

Version 1.0 of 30th August 2024, EPFL ©2024 7 of 9



Interrupt Controller and Integration

FETCH1

FETCH2

INTERRUPT
RETURN

DECODE

Figure 10: State machine for returning from an interrupt

In the INTERRUPT RETURN state, the following signals are toggled in the controller:

• csr mret: Set to 1 to indicate an mret instruction is being executed.

• pc sel mepc: Set to 1 to select the return address stored in mepc.

• pc en: Set to 1 to enable updating the program counter.

These signals cause the CPU to restore the program counter from the mepc CSR, restore the interrupt
enable bit in the mstatus CSR, and resume execution at the instruction that was interrupted.

After executing the mret instruction, the controller transitions back to the FETCH1 state to continue
normal execution.

5.2 Exercise

• Extend the controller.v module to include the INTERRUPT RETURN state.

• Implement the logic to detect the mret instruction and set the appropriate signals.

• Like the previous lab, you can debug the file gecko.v to run the program.s file with your own
program to help you debug your own implementation.

• Important: Create your own testbench to verify the interrupt return implementation.

8 of 9 Version 1.0 of 30th August 2024, EPFL ©2024



Interrupt Controller and Integration

6 Submission

Submit all Verilog files related to the exercises in this lab, including:

• add_sub.v

• alu.v

• buttons.v

• comparator.v

• controller.v

• cpu.v

• csr.v

• decoder.v

• ir.v

• leds.v

• logic_unit.v

• mem.sv

• mux2x32.v

• mux4x32.v

• pc.v

• register_file.v

• seven_seg_lcd.v

• shift_unit.v

Additionally, submit the program.s file from the previous assignment containing the interrupt
handler implementation.

Ensure that all files are included in your submission, as they are necessary for the complete system
evaluation.

Once you submit the files, you will receive a report describing the tests that were applied to your
design and the results of those tests (success or failure). This submission is a final one, so you will
not receive any other feedback. At then end of the results you will get a score that will be used to
grade your submission.

Version 1.0 of 30th August 2024, EPFL ©2024 9 of 9


	Introduction
	Adding CSR Instructions
	Register Write-back in CSR Instructions
	Exercise

	Program Counter
	Description
	Exercise

	Interrupt Handling
	Description
	Exercise

	Returning from an Interrupt
	Description
	Exercise

	Submission

