Interrupt Controller and Integration

Learning Goal: Add interrupt capability to the multicycle RISC-V CPU

Requirements: Verilator, GTKWave, CS200 Extension

1 Introduction

In this lab you will extend the multicycle RISC-V CPU with the capability to handle interrupts. The

following schematic[l|shows the current state of the CPU.

CPU Controlle

clk
rst_n

rdat;

k=] clk

aw

wrdata

D Register

File

wdata

Figure 1: Original multicycle RISC-V CPU

The following figure [2] shows the modifications required for the architecture to handle interrupts. For
handling interrupts, a new unit, called CSR Controller, is added to the architecture. The irq input
signal captures the interrupt event. The Program Counter and Controller need to be modified in order
to handle the interrupt events. When an interrupt occurs, the normal program flow should be stopped
and the interrupt should be serviced by jumping to the appropriate interrupt service routine.

Version 1.0 of 30th August 2024, EPFL ©2024

10f|§]

Interrupt Controller and Integration

CPU

irq

Controller

sel_mtvec mepc mtvec
sel_mepc

clk
rst.n

o PC

sel_pc_base
add_imm

imm

sel_alu

alu addr

en

)
IR
>

clk q

o Register
o File " m,_.

wren
wrdata

Figure 2: Multicycle RISC-V CPU with interrupt handling

2 Adding CSR Instructions

To support interrupt handling, we need to add Control and Status Register (CSR) instructions to our
RISC-V CPU. The following schematic shows the signals of interest for this implementation:

CPU

irq

‘sel_imm o
s o
:iﬂ_. aaaaa CSR

Controller »

sel_mtvec mepc mtvec
sel_mepc

clk

rst.n

o PC

sel_pc_base
add_imm

clk

imm
sel_alu
alu addr

clk q

p ' e
a» Register

o File _.
wren b

wrdata

Figure 3: CPU schema focusing on CSR-related signals

g

CSR instructions are part of the SYSTEM instruction type in RISC-V. The layout for these instructions is
as follows:

2 of|§] Version 1.0 of 30th August 2024, EPFL ©2024

Interrupt Controller and Integration

31 20 19 15 14 12 11 7 6 0
] csr | rs1/uimm | funct3 [rd | opcode |

Figure 4: The SYSTEM instruction format for CSR operations in RV32L.

As a reminder, the opcode for SYSTEM instructions is 0x73 like EBREAK. The funct 3 field determines
the specific CSR operation to be performed:

Instruction funct3 Description

csrrw rd, csr, rsl 001 CSR Read /Write

csrrs rd, csr, rsl 010 CSR Read and Set Bits

esrre rd, csr, rsl 011 CSR Read and Clear Bits

csrrwi rd, csr, uimm 101 CSR Read /Write Immediate

esrrsi rd, csr, uimm 110 CSR Read and Set Bits Immediate
csrrei rd, csr, uimm 111 CSR Read and Clear Bits Immediate

Table 1: CSR instructions in RV321.

2.1 Register Write-back in CSR Instructions

It's important to note that CSR instructions always write to a destination register, even when that register
is x0. This behavior differs from other RISC-V instructions where writes to x0 are typically ignored. The
reasons for this are:

1. Consistency: CSR instructions always read the old value of the CSR before potentially modifying
it. This old value is written to the destination register, providing a consistent way to access the
previous state of the CSR.

2. Side-effect free reads: For the CSRs we're implementing (mtvec, mepc, mcause, etc.), reading
does not cause any side effects. This means it’s safe to always perform the read operation, even if
the result might be discarded when writing to x0.

3. Simplicity in hardware: Always writing the old CSR value to the destination register simplifies
the hardware implementation, as it doesn’t need to check whether the destination is x0 before
deciding to perform the write.

During the DECODE stage, if a SYSTEM type instruction is detected (different from a ebreak instruc-
tion), the controller should transition to a new CSR state in the next cycle. In the controller (controller.v),
the following signals should be toggled during the CSR state:

* sel_csr: Setto 1 to select CSR data for writeback.
e rf_we: Set to 1 to enable writing to the register file.
e csr_write, csr_set,or csr_clear: Set based on the funct3 field.
* sel_imm: Set to 1 if the instruction is an immediate type, 0 otherwise.

e imm: The immediate value for CSR instructions, zero-extended to 32 bits. Should be set to 0 if the
instruction is not an immediate type.

Version 1.0 of 30th August 2024, EPFL ©2024 3 of[q]

Interrupt Controller and Integration

After executing the CSR instruction, the controller should transition back to the FETCH?2 state to con-

tinue normal execution as shown in Figure

Figure 5: State machine for CSR instructions

2.2 Exercise

In this exercise, you will extend your RISC-V CPU implementation to support CSR instructions. This
will involve modifying several modules from your previous work.

e Import the following modules from your previous labs:

— add-_sub.v — decoder.v - mux4x32.v
- alu.v —ir.v - pc.v
— buttons.v - leds.v . .

)) — register_file.v
— comparator.v - logicunit.v
- controller.v — mem.sv - seven.seg-lcd.v
- Ccsr.v - mux2x32.v — shift unit.v

* Modify the controller.v module:

— Add a new CSR state to the state machine.

- Implement the logic to transition to the CSR state when a SYSTEM instruction (except ebreak)
is detected.

— In the CSR state, set the appropriate control signals as described earlier.
¢ Important: No testbenches are provided for this exercise. You must create your own testbenches

to verify your implementation. You can also create some simple assembly programs to test the
CSR instructions.

4 of|§] Version 1.0 of 30th August 2024, EPFL ©2024

Interrupt Controller and Integration

3 Program Counter

3.1 Description

The Program Counter (PC) module has been extended with four new inputs to support interrupt hand-
ling and returning from interrupts:

* selmtvec and mtvec: When sel_mtvec is set (and the PC is enabled), the PC should be up-
dated with the value of mtvec. It’s crucial to ensure that the two least significant bits (LSBs) of
this value are set to zero to maintain memory alignment.

* sel.mepc and mepc: These operate similarly to sel mtvec and mtvec. When sel_mepc is set
(and the PC is enabled), the PC should be updated with the value of mepc. Since mepc stores a
previous PC value, it’s already properly aligned and doesn’t require LSB adjustment.

These additions allow the PC to handle interrupt vector addresses and return addresses for interrupt
service routines.

3.2 Exercise

* Extend the pc interface to include the new signals: sel_mtvec, mtvec, sel mepc, and mepc.

¢ Implement the logic to update the PC based on these new inputs, ensuring proper alignment for
mtvec.

¢ Important: No testbenches are provided for this exercise. You must create your own testbenches
to verify your implementation.

4 Interrupt Handling

4.1 Description

When an interrupt occurs, the CPU needs to stop its current execution, save the necessary state, and
jump to the interrupt handler. This process is primarily handled in the FETCH2 state of the controller.

Version 1.0 of 30th August 2024, EPFL ©2024 5 of[q]

Interrupt Controller and Integration

CPU
irq
s
ear
,,,,, CSR
Controller
sel_mtvec mepc mtvec
sel_mepc
ing—>] lpending x| clk
clk ;s"u
PC
sel_pc_base
add_imm
imm
sel_alu
alu addr
Gl
D Q
IR
P clk A
2 .
a Register
a File
wren
wrdata

Figure 6: CPU schema focusing on interrupt handling signals

The interrupt handling process is triggered when the ipending signal is set. In the FETCH2 state, the
controller checks this signal and, if set, initiates the interrupt handling sequence.

ipending

Figure 7: State machine for interrupt handling

When an interrupt is detected, the following signals are toggled in the controller:

* csr_interrupt: Setto 1 to indicate an interrupt is being handled.
* pc_selmtvec: Setto 1 to select the interrupt vector address.

* pc_en: Set to 1 to enable updating the program counter.

These signals cause the CPU to save the current program counter to the mepc CSR, update the mcause
CSR with the interrupt cause, and jump to the interrupt handler address specified in the mt vec CSR.

4.2 Exercise

* Modify the controller.v module to handle the interrupt sequence in the FETCH?2 state.
¢ Implement the logic to set the appropriate signals when an interrupt is detected.

* Important: Create your own testbench to verify the interrupt handling implementation.

6 of[9] Version 1.0 of 30th August 2024, EPFL ©2024

Interrupt Controller and Integration

5 Returning from an Interrupt

5.1 Description

To return from an interrupt, the RISC-V architecture provides the mret (Machine-mode Return) instruc-
tion. This instruction is part of the SYSTEM instruction type and is encoded as an I-type instruction.

31 20 19 15 14 12 11 7 6 0
] imm][11:0] \ rsl \ funct3 \ rd | opcode |

Figure 8: The mret instruction format in RV32L

For the mret instruction, the fields have the following specific values:

Instruction Immediate funct3 opcode
mret 0x302 0x0 0x73

Table 2: Field values for the mret instruction.

It's important to note that while mret shares the same opcode (0x73) as CSR and EBREAK instructions,
it should be distinguished from these during the decode phase. This can be done by checking the specific
immediate value (0x302) and ensuring that funct3 is all zeros. This distinction allows the controller to
correctly identify and handle the mret instruction separately from other SYSTEM instructions.

When the mret instruction is decoded, the controller transitions to the INTERRUPT_RETURN state.

CPU
o
CSR
Controller ==
Controller j
o sel_mtvec mepc mtvec
el_mep
\\\\\\\\ x>k
rstn
clk o
PC
‘‘‘‘‘‘‘‘‘‘ .
add_imm
mm
el_alu
lu addr
=
D Q
IR
> clk
aa)
a» Register
v File
wren
wrdata

Figure 9: CPU schema focusing on interrupt return signals

Version 1.0 of 30th August 2024, EPFL ©2024 7 of|§]

Interrupt Controller and Integration

INTERRUPT
RETURN

Figure 10: State machine for returning from an interrupt

In the INTERRUPT_RETURN state, the following signals are toggled in the controller:

* csromret: Setto 1 to indicate an mret instruction is being executed.
® pc_sel_mepc: Set to 1 to select the return address stored in mepc.

* pc_en: Set to 1 to enable updating the program counter.

These signals cause the CPU to restore the program counter from the mepc CSR, restore the interrupt
enable bit in the mstatus CSR, and resume execution at the instruction that was interrupted.

After executing the mret instruction, the controller transitions back to the FETCHI1 state to continue
normal execution.

5.2 Exercise

¢ Extend the controller.v module to include the INTERRUPT_RETURN state.
* Implement the logic to detect the mret instruction and set the appropriate signals.

¢ Like the previous lab, you can debug the file gecko.v to run the program. s file with your own
program to help you debug your own implementation.

¢ Important: Create your own testbench to verify the interrupt return implementation.

8 of[g] Version 1.0 of 30th August 2024, EPFL ©2024

Interrupt Controller and Integration

Version 1.0 of 30th August 2024, EPFL ©2024 9 ofEl

	Introduction
	Adding CSR Instructions
	Register Write-back in CSR Instructions
	Exercise

	Program Counter
	Description
	Exercise

	Interrupt Handling
	Description
	Exercise

	Returning from an Interrupt
	Description
	Exercise

	Submission

