
Exercise 1 Processor and ISA Exercises
Computer Architecture

[Exercise 1] Image Convolution in Assembly

A digital image is a two-dimensional array (a matrix) of pixels, where each pixel is
characterized by its position in the image (row, column) and its value Prow,column.

Linear image processing operations such as blurring and edge detection are usually
performed by convolving the entire image with a small square matrix called kernel. De-
pending on the values of kernel elements, different effects may be obtained in the final
image. Image convolution for a kernel of size 3 × 3 is illustrated in Figures 1 and 2.
It is performed by taking sub-images of the same dimension as the kernel, convolving
them with the kernel, and replacing the value of the center pixel of each sub-image
with the corresponding convolution result:

• Figure 1: convolution between a sub-image centered around pixel P1,3, and a kernel.
The result of the convolution replaces the old value of pixel P1,3 in the final image.

• Figure 2: convolution between a sub-image centered around pixel P1,7, and the ker-
nel. The result of the convolution replaces the old value of pixel P1,7 in the final
image. Note that all the pixels beyond the image boundaries (pixels that do not exist
in the image) are assumed to have a value equal to zero.

K0,0 K0,1 K0,2

K1,0 K1,1 K1,2

K2,0 K2,1 K2,2

KERNEL:

COLUMNS

ROWS

0

1

2

0 1 2

= P´1,3

P0,0 P0,1 P0,2 P0,3 P0,4 P0,5 P0,6 P0,7

P1,0 P1,1 P1,2 P1,4 P1,5 P1,6 P1,7

P2,0 P2,1 P2,2 P2,3 P2,4 P2,5 P2,6 P2,7

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

COLUMNS
0 71 2 3 4 5 6OUTPUT

IMAGE:

P´1,3

2

0

1

ROWS

3

P0,0 P0,1 P0,2 P0,3 P0,4 P0,5 P0,6 P0,7

P1,0 P1,1 P1,2 P1,3 P1,4 P1,5 P1,6 P1,7

P2,0 P2,1 P2,2 P2,3 P2,4 P2,5 P2,6 P2,7

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

COLUMNS
0 71 2 3

4
5 6

3

0

1

2

ROWS

INPUT
IMAGE:

✶

Figure 1: Convolution applied to the image pixel P1,3.

The convolution between two square matrices having the same dimensions n × n is
calculated as follows:

A0,0 A0,1 . . . A0,n−1

A1,0 A1,1 . . . A1,n−1

... ... ... ...
An−1,0 An−1,1 . . . An−1,n−1

⊛


B0,0 B0,1 . . . B0,n−1

B1,0 B1,1 . . . B1,n−1

... ... ... ...
Bn−1,0 Bn−1,1 . . . Bn−1,n−1

 =
n−1∑
i=0

n−1∑
j=0

Ai,j ·Bi,j

Version 1.0 of 12th September 2024, EPFL ©2024 1 of 18



Processor and ISA Exercises
Computer Architecture

Exercise 1

K0,0 K0,1 K0,2

K1,0 K1,1 K1,2

K2,0 K2,1 K2,2

KERNEL:

ROWS

0

1

2

= P´1,7

P0,0 P0,1 P0,2 P0,3 P0,4 P0,5 P0,6 P0,7

P1,0 P1,1 P1,2 P1,4 P1,5 P1,6 P´1,7

P2,0 P2,1 P2,2 P2,3 P2,4 P2,5 P2,6 P2,7

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

COLUMNS
0 71 2 3 4 5 6

3

0

1

2

ROWS

OUTPUT
IMAGE:

P1,3

P0,0 P0,1 P0,2 P0,3 P0,4 P0,5 P0,6 P0,7

P1,0 P1,1 P1,2 P1,3 P1,4 P1,5 P1,6 P1,7

P2,0 P2,1 P2,2 P2,3 P2,4 P2,5 P2,6 P2,7

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

COLUMNS
0 71 2 3 4 5 6

3

0

1

2

ROWS

INPUT
IMAGE:

0

0

0

COLUMNS
0 21

✶

Figure 2: Convolution applied to the image pixel P1,7.

For example, convolution between a sub-image and a kernel of size 3× 3 equals:34 54 0
52 97 0
94 129 0

⊛

0 1 0
1 −4 1
0 1 0


= (34 · 0 + 54 · 1 + 0 · 0) + [52 · 1 + 97 · (−4) + 0 · 1] + (94 · 0 + 129 · 1 + 0 · 0) = −153.

(a) input (b) output

Figure 3: Example of the effects of the convolution: (a) input image and (b) image after
convolution with a 3× 3 kernel given above.

In this exercise, you are required to write an assembly program that performs convo-
lution between an input image, starting from the memory address IMAGE IN, and a
kernel, starting from the memory address KERNEL. The resulting image has the same
size and memory layout as the input image and should be stored in memory starting
from the address IMAGE OUT. Images have ROWS rows and COLS columns. Kernel mat-
rix has KERNEL SIZE rows and the same number of columns. KERNEL SIZE is an odd
number, while ROWS and COLS are both a power of two.

An image is represented as a two-dimensional array of 8-bit signed integers. Each pixel
is identified by its row and its column. The memory layout of the image having ROWS

2 of 18 Version 1.0 of 12th September 2024, EPFL ©2024



Exercise 1 Processor and ISA Exercises
Computer Architecture

rows and COLS columns is shown in Figure 4. In this figure, values inside rectangles
are the offsets of the corresponding image pixels with respect to the beginning of the
IMAGE IN array in memory. For example, the pixel at (row, column) = (0, 0) is stored
at address IMAGE IN, the pixel at (row, column) = (0, 1) at address IMAGE IN+1, the
pixel at (row, column) = (1, 0) at address IMAGE IN+COLS, etc.

Columns
0 1 2 COLS-1

R
o
w
s

0

1

...

2

...

ROWS-1

... COLS - 1

...COLS + 1 COLS + 2

...

0

COLS

...

...

1 2

ROWS×COLS - 1

2×COLS - 1

2×COLS 2×COLS + 1 2×COLS + 2 3×COLS - 1

(ROWS-1)×COLS (ROWS-1)×COLS+1 (ROWS-1)×COLS + 2

Figure 4: Memory layout of images and kernel.

A kernel is stored following the same data layout in memory. Kernel elements are 8-
bit numbers. You may assume that IMAGE IN, IMAGE OUT, KERNEL, KERNEL SIZE,
ROWS, and COLS are all defined as constants (.equ) at the beginning of the program,
and that the input image and the kernel are already initialized in memory.

Instructions:

• Depending on the question, you may be allowed to use load-byte and store-
byte instructions, or you may have to use only load-word and store-word
instructions. This is one more reason to read each question carefully.

• You are NOT allowed to use any multiplication instruction.

• Your code should conform to the assembly coding conventions.

a) The convolution between a sub-image and the kernel, to produce a value of the
output image pixel at the coordinates (out row, out col), can be calculated by using
the following pseudo-code:

1 conv = 0;
2 for (ker_row = 0; ker_row < KERNEL_SIZE; ker_row++) {
3 for (ker_col = 0; ker_col < KERNEL_SIZE; ker_col++) {
4 in_row = out_row + ker_row - (KERNEL_SIZE - 1) / 2;
5 in_col = out_col + ker_col - (KERNEL_SIZE - 1) / 2;
6 if pixel coordinates within image boundary:
7 in_pixel = in_image(in_row, in_col);
8 else

Version 1.0 of 12th September 2024, EPFL ©2024 3 of 18



Processor and ISA Exercises
Computer Architecture

Exercise 1

9 in_pixel = 0;
10 conv = conv + in_pixel * kernel(ker_row, ker_col);
11 }
12 }
13 out_image(out_row, out_col) = conv;

Write the function get image value that takes the coordinates of the output pixel,
out row and out col, of the current kernel coefficient, ker row, ker col, and re-
trieves the corresponding pixel from the input image (sign-extended). That is, the
function should implement the functionality of lines 4–9 in the above pseudo-code.
When writing this function, you are allowed to use the load-byte instructions. Addi-
tionally, you may also assume to have available constants LOG2ROWS and LOG2COLS,
equal to log2(ROWS) and log2(COLS), respectively. They should enable computing the
memory address of the image pixel without using any multiplication instruction (since
their use is not allowed). Inputs and output of get image value are defined as fol-
lows:

Inputs:

Output: pixel[7]
31 8 7 0

 a0 out_row
31 16 15 0

ignored

out_col
31 16 15 0

ignored

ker_row
31 16 15 0

ignored

ker_col
31 16 15 0

ignored

pixel

 a1

 a2

 a3

 a0

b) Write the function update image that takes the coordinates of the output pixel,
out row and out col, the result of the convolution, and updates the corresponding
pixel in the output image. In other words, the function implements the pseudo-code
line 13. When writing this function, you are allowed to use the store-byte instructions.
The function has no return value; its inputs are defined as follows:

Inputs:

a0

a1

out_row
31 16 15 0

ignored

out_col
31 16 15 0

ignored

0
31 8 7 0

pixela2

c) Write the function get kernel value that takes the memory offset of a kernel
element and returns its value. For example, if offset=2, the function returns the
value of the kernel element at address KERNEL+2. Here, you are NOT allowed to
use the load-byte instructions. Instead, you have to use the load-word instructions.
Assume little-endian byte order. Note that KERNEL may not be aligned on a word
boundary. The input and the output of get kernel value are defined as follows:

4 of 18 Version 1.0 of 12th September 2024, EPFL ©2024



Exercise 1 Processor and ISA Exercises
Computer Architecture

Input:

a0Output: 0
31 8 7 0

a0 offset
31 16 15 0

ignored

kernel el.

d) Write the function convolution that generates the entire output image. You can
assume a function kernel conv is available, which performs a full convolution to
compute one output pixel. Essentially, this function performs the functionality of the
entire pseudo-code. The function kernel conv has no return value; its inputs are
defined as follows:

Inputs:

out_row
31 16 15 0

ignored

out_col
31 16 15 0

ignored

a0

a1

The function convolution should call kernel conv for each output pixel; it takes
no input arguments and has no return values.

e) Assume now that the kernel elements use the 8-bit encoding described in Figure 5.
Such encoding can represent zero or power-of-two positive and negative values. As a
consequence, multiplication of an 8-bit signed pixel by a kernel element only requires
shifts, sign-inversions, and zeroing.

Implement the function mult that performs multiplication of an 8-bit signed integer
(image pixel), sign-extended on 32 bits, with an encoded 8-bit kernel element. The
result is an 8-bit signed integer; ignore any overflows or underflows. Inputs and output
of mult are defined as follows:

Inputs:

Output:

a0 pixel[7]
31 8 7 0

pixel

a1 0
31 8 7 0

kernel el.

a0 result[7]
31 8 7 0

result

S Z SE EXPRES
7 6 5 4 3 2 0

kernel element =

{
(−1)S · 2(−1)SE · EXP if Z = 0

0 if Z = 1

S sign: 0 = positive, 1 = negative
Z zero: 0 = non-zero, 1 = zero
SE sign of the exponent: 0 = positive, 1 = negative

RES reserved (to be ignored)
EXP exponent

Figure 5: Encoding used for the kernel elements.

Version 1.0 of 12th September 2024, EPFL ©2024 5 of 18



Processor and ISA Exercises
Computer Architecture

Solution 1

[Solution 1]

a)

1 #get_image_value
2 #a0 = out_row
3 #a1 = out_col
4 #a2 = ker_row
5 #a3 = ker_col
6 #a0 = IMAGE_IN[out_row + ker_row - (KERNEL_SIZE - 1) / 2]
7 # [out_col + ker_col - (KERNEL_SIZE - 1) / 2],
8 # zero if outside image size
9 get_image_value:

10
11 #Zero the ignored bits
12 li t0, 0xFFFF
13 and a0, a0, t0
14 and a1, a1, t0
15 and a2, a2, t0
16 and a3, a3, t0
17
18 li t0, KERNEL_SIZE
19 addi t0, t0, -1
20 #t0 = (KERNEL_SIZE - 1) / 2
21 srli t0, t0, 1
22 #a0 = out_row + ker_row
23 add a0, a0, a2
24 #a1 = out_col + ker_col
25 add a1, a1, a3
26 #a0 = out_row + ker_row - (KERNEL_SIZE - 1) / 2 -> in_row
27 sub a0, a0, t0
28 #a1 = out_col + ker_col - (KERNEL_SIZE - 1) / 2 -> in_col
29 sub a1, a1, t0
30 #t6 = 0 (default value)
31 add t6, zero, zero
32
33 #Check if a0 and a1 are within the image bounds
34 blt a0, zero, get_image_value_end
35 blt a1, zero, get_image_value_end
36
37 li t0, ROWS
38 bge a0, t0, get_image_value_end
39

6 of 18 Version 1.0 of 12th September 2024, EPFL ©2024



Solution 1 Processor and ISA Exercises
Computer Architecture

40 li t0, COLS
41 bge a1, t0, get_image_value_end
42
43 #If yes, read the pixel
44 #a0 = in_row << LOG2COLS = in_row * COLS
45 slli a0, a0, LOG2COLS
46 #a1 = in_row * COLS + in_col
47 add a1, a1, a0
48 lb t6, IMAGE_IN(a1)
49 #sign extension
50 andi t0, t6, 128
51 beq t0, zero, get_image_value_end
52
53 addi t0, zero, -256
54 or t6, t6, t0
55
56 get_image_value_end:
57 addi a0, t6, 0
58 ret

b)

1 #update_image
2 #a0 = out_row
3 #a1 = out_col
4 #a2 = value to write to IMAGE_OUT[out_row][out_col]
5 update_image:
6
7 #Zero the ignored bits
8 li t0, 0xFFFF
9 and a0, a0, t0

10 and a1, a1, t0
11
12 slli a0, a0, LOG2COLS #a0 = out_row << LOG2COLS = out_row * COLS
13 add a0, a0, a1 #a0 = out_row * COLS + out_col
14 # -> offset
15 sb a2, IMAGE_OUT(a0)
16 ret

Version 1.0 of 12th September 2024, EPFL ©2024 7 of 18



Processor and ISA Exercises
Computer Architecture

Solution 1

c)

1 #get_kernel_value
2 #a0 = offset
3 #a0 = KERNEL[offset]
4 get_kernel_value:
5
6 #Zero the ignored bits
7 li t0, 0xFFFF
8 and a0, a0, t0
9

10 addi a0, a0, KERNEL
11 lw t0, 0(a0) #t0 = word containing KERNEL[offset]
12 andi a0, a0, 3 #a0 = byte_addr_offset within 4-byte word
13 slli a0, a0, 3 #a0 = byte_addr_offset * 8 = shift
14 srl t0, t0, a0 #t0 = t0 >> shift
15 andi t0, t0, 0xFF #clear all bits except for the LSByte
16 ret

d)

1 #convolution
2 #Iterate over ROWS rows and COLS columns, starting from IMAGE_IN
3 #and writing to IMAGE_OUT.
4 #No arguments, no return values
5 convolution:
6 addi sp, sp, -12
7 sw ra, 0(sp)
8 sw s1, 4(sp)
9 sw s2, 8(sp)

10 add s1, zero, zero #s1 = out_row
11
12 convolution_row_loop_begin:
13 li t0, ROWS
14 bgeu s1, t0, convolution_row_loop_end
15
16 add s2, zero, zero #s2 = out_col
17
18 convolution_col_loop_begin:
19 li t0, COLS
20 bgeu s2, t0, convolution_col_loop_end
21
22 add a0, zero, s1
23 add a1, zero, s2
24 jal ra, kernel_conv

8 of 18 Version 1.0 of 12th September 2024, EPFL ©2024



Solution 1 Processor and ISA Exercises
Computer Architecture

25 addi s2, s2, 1
26 j convolution_col_loop_begin
27
28 convolution_col_loop_end:
29 addi s1, s1, 1
30 j convolution_row_loop_begin
31
32 convolution_row_loop_end:
33 lw ra, 0(sp)
34 lw s1, 4(sp)
35 lw s2, 8(sp)
36 addi sp, sp, 12
37 ret
38
39 kernel_conv:
40 #Not defined
41 ret

e)

1 #mult
2 #a0 = image pixel (8-bit signed)
3 #a1 = kernel value (8-bit custom encoding)
4 #a0 = image pixel * kernel value (8-bit signed)
5 mult:
6 andi t0, a1, 64 #Z
7 bne t0, zero, mult_clear
8
9 andi t0, a1, 32 #SE

10 andi t1, a1, 7 #EXP
11 bne t0, zero, mult_right
12
13 sll t6, a0, t1
14 j mult_flip
15
16 mult_right:
17 sra t6, a0, t1
18
19 mult_flip:
20 andi t0, a1, 128 #S
21 beq t0, zero, mult_end
22
23 sub t6, zero, t6
24 j mult_end

Version 1.0 of 12th September 2024, EPFL ©2024 9 of 18



Processor and ISA Exercises
Computer Architecture

Solution 1

25
26 mult_clear:
27 add t6, zero, zero
28
29 mult_end:
30 addi a0, t6, 0
31 ret

10 of 18 Version 1.0 of 12th September 2024, EPFL ©2024



Exercise 2 Processor and ISA Exercises
Computer Architecture

[Exercise 2] Encryption in Assembly

Consider the encryption algorithm shown in Figure 6. It takes a 32-bit input word WIN

and an array of keys Ki, 0 ≤ i < NK , to produce a 32-bit encrypted word WOUT after
NK iterations.

WIN = W0 L0 R0

f(R, K) K0

W1 L1 R1

(XOR)

15..0

16 16
32

16

f(R, K) K1

W2 L2 R2

(XOR)

15..0

16 16
32

16

31 16 15 0

...
WOUT = W N LN RN

31 16 15 0

Figure 6: Encryption of one 32-bit word. Li and Ri denote the upper 16 bits (the left
part) and the lower 16 bits (the right part) of the 32-bit word Wi. The input word WIN

is considered encrypted after NK cycles of computation, where NK is the number of
32-bit keys. The result WOUT is therefore equal to WN . XOR stands for exclusive-or.

The function f(R,K) is defined as follows:

f(R,K) = (0x0000 & R) + (0x0000 & K23..16 & K7..0)

where & denotes the binary concatenation operator (as in Verilog) and Km..n selects
bits m downto n of K (equivalent to K[m:n] in Verilog). Note that the input R is on 16
bits, K is on 32 bits, and the function returns a 32-bit value.

For example, given NK = 4, K0 = 0x33221100, K1 = 0x77665544, K2 = 0xBBAA9988,
and K3 = 0xFFEEDDCC, and for WIN = 0x12345678, the algorithm proceeds as fol-
lows:

Version 1.0 of 12th September 2024, EPFL ©2024 11 of 18



Processor and ISA Exercises
Computer Architecture

Exercise 2

i Wi−1 Li−1 Ri−1 Ki−1 f(R,K) Wi = Ri−1 &
(f(R,K)15..0 XOR
Li−1)

1 0x12345678 0x1234 0x5678 0x33221100 0x5678 +
0x2200 =
0x00007878

0x5678 &
0x6A4C =
0x56786A4C

2 0x56786A4C 0x5678 0x6A4C 0x77665544 0x6A4C +
0x6644 =
0x0000D090

0x6A4C &
0x86E8 =
0x6A4C86E8

3 0x6A4C86E8 0x6A4C 0x86E8 0xBBAA9988 0x86E8 +
0xAA88 =
0x00013170

0x86E8 &
0x5B3C =
0x86E85B3C

4 0x86E85B3C 0x86E8 0x5B3C 0xFFEEDDCC 0x5B3C +
0xEECC =
0x00014A08

0x5B3C &
0xCCE0 =
0x5B3CCCE0

and eventually returns WOUT = W4 = 0x5B3CCCE0.

In this exercise, you are to write an assembly program that reads an array of 8-bit ASCII
chars in groups of four, i.e., word by word, encrypts every loaded word, and stores the
result to memory, which is byte addressed. You may assume that the number of chars
in the array is a multiple of four.

Instructions:

• To access the memory you are allowed to use only load-word and store-word
instructions.

• Your code should conform to the assembly coding conventions.

a) Write the function FRK that computes f(R,K). Inputs and output of FRK are defined
as follows:

Inputs:

 a0

K
31 0

 a1

 a0Output: f(R, K)
31 0

0x0000 R
31 16 15 0

12 of 18 Version 1.0 of 12th September 2024, EPFL ©2024



Exercise 2 Processor and ISA Exercises
Computer Architecture

b) Write the function ENC STEP that calls FRK and performs one iteration of the en-
cryption algorithm. Inputs and output of ENC STEP are defined as follows:

Inputs:

 a0

K
31 0

 a1

 a0Output: R f(R, K)15..0 XOR L
31 16 15 0

L R
31 16 15 0

c) Write the function ENC WORD that encrypts a single 32-bit word by calling ENC STEP
NK times (NK equals the number of 32-bit keys K). Inputs and output of ENC WORD
are defined as follows:

Inputs: KEYS
31 0

 a1

 a0Output: WOUT

31 0

 a0 WIN

31 0

NK

31 0

 a2

d) Write the main function of the encryption program. The program encrypts word by
word of an array of N C 8-bit ASCII chars that starts at the address CHARS IN, where
CHARS IN is word-aligned. The program writes the encrypted words in an output ar-
ray starting from address CHARS OUT, where CHARS OUT is also word-aligned. The N K
32-bit keys are in memory starting from the address KEYS, which is also word-aligned.
You may assume that CHARS IN, N C, CHARS OUT, KEYS, and N K are all defined as
constants at the beginning of the program, and that the input arrays of chars and keys
are already initialized in memory.

For example, given the following preamble at the beginning of the code:

1 # number of chars in the input array
2 .equ N_C 64
3 # number of keys in the array of keys
4 .equ N_K 4
5
6 .data
7 # starting address of the array of input chars
8 CHARS_IN:
9 ...

10 # starting address of the array of 32-bit keys
11 KEYS:
12 ...
13 # starting address of the array of encrypted chars
14 CHARS_OUT:
15 ...

Version 1.0 of 12th September 2024, EPFL ©2024 13 of 18



Processor and ISA Exercises
Computer Architecture

Exercise 2

The figure below illustrates a possible state of the memory just before reaching the
main function:

K[0]

K[1]

K[2]

'P' = 0x50
'F' = 0x46

CHARS_IN[63]

0x1000 'E' = 0x45

'L' = 0x4C
...

...

0x1100

K[3]

8b

e) Assuming the memory state shown above and a big-endian processor, what is the
content of register t0 after executing the following instruction in RISC-V assembly:

1 lw t0, 0x1000(zero)

You may use ASCII chars to represent values of individual bytes. Here is an example
of the drawing that you should do and fill in:

 t0
31 16 15 0782324

14 of 18 Version 1.0 of 12th September 2024, EPFL ©2024



Solution 2 Processor and ISA Exercises
Computer Architecture

[Solution 2] Encryption in Assembly

1 # number of chars in the input array
2 .equ N_C 4
3 # number of keys in the array of keys
4 .equ N_K 4
5
6 .data
7 # starting address of the array of input chars
8 CHARS_IN:
9 .word 0x12345678

10 # starting address of the array of 32-bit keys
11 KEYS:
12 .word 0x33221100
13 .word 0x77665544
14 .word 0xBBAA9988
15 .word 0xFFEEDDCC
16 # starting address of the array of encrypted chars
17 CHARS_OUT:
18 .word 0x0, 0x0, 0x0, 0x0
19
20 .text
21 encryption:
22 jal ra, main
23 li a0, 10 # triggers an ecall to end
24 ecall # (exit system call)
25
26 ## (a)
27
28 FRK:
29 andi t0, a1, 0xFF # t0 = K(7 .. 0)
30 srli t1, a1, 16 # t1 = K(31 .. 16)
31 andi t1, t1, 0xFF # t1 = K(23 .. 16)
32 slli t1, t1, 8 # t1 = K(23 .. 16) && "00000000"
33 or t0, t0, t1 # t0 = K(23 .. 16) && K(7 .. 0)
34 add a0, a0, t0 # v0 = R + K(23 .. 16) && K(7 .. 0)
35 ret
36
37 ## (b)
38
39 ENC_STEP:
40 # push on the stack
41 addi sp, sp, -12

Version 1.0 of 12th September 2024, EPFL ©2024 15 of 18



Processor and ISA Exercises
Computer Architecture

Solution 2

42 sw ra, 0(sp)
43 sw s0, 4(sp)
44 sw s1, 8(sp)
45
46 li t0, 0xFFFF
47 and s0, a0, t0 # s0 = R
48 srli s1, a0, 16 # s1 = L
49
50 addi a0, s0, 0 # a0 = R
51 addi a1, a1, 0 # a1 = K
52
53 jal ra, FRK # a0 = f(R,K)
54
55 xor a0, s1, a0 # a0 = f(R,K) xor L
56 li t0, 0xFFFF
57 and a0, a0, t0 # a0 = (f(R,K) xor L) (15 .. 0)
58 slli s0, s0, 16 # s0 = R && "0x0000"
59 or a0, a0, s0 # a0 = R && (f(R,K) xor L) (15 .. 0)
60
61 # pop from the stack
62 lw ra, 0(sp)
63 lw s0, 4(sp)
64 lw s1, 8(sp)
65 addi sp, sp, 12
66
67 ret
68
69 ## (c)
70
71 ENC_WORD:
72 # push the stack
73 addi sp, sp, -16
74 sw ra, 0(sp)
75 sw s0, 4(sp)
76 sw s1, 8(sp)
77 sw s2, 12(sp)
78
79 addi s0, a1, 0 # s0 = KEYS
80 add s1, zero, a2 # s1 = N_K
81 addi s2, zero, 0 # s2 = 0
82
83 ENC_WORD_loop:
84 lw a1, 0(s0) # a1 = K = MEMORY[s0]
85

16 of 18 Version 1.0 of 12th September 2024, EPFL ©2024



Solution 2 Processor and ISA Exercises
Computer Architecture

86 jal ra, ENC_STEP # a0 = enc_step(a0)
87
88 addi s2, s2, 1 # s2 = s2 + 1
89 beq s2, s1, ENC_WORD_end # if (s2 == N_K) goto ENC_WORD_end
90
91 addi s0, s0, 4 # s0 = s0 + 4
92 j ENC_WORD_loop
93
94 ENC_WORD_end:
95 # pop the stack
96 lw ra, 0(sp)
97 lw s0, 4(sp)
98 lw s1, 8(sp)
99 lw s2, 12(sp)

100 addi sp, sp, 16
101
102 ret
103
104 ## (d)
105
106 main:
107 #push the stack
108 addi sp, sp, -20
109 sw ra, 0(sp)
110 sw s0, 4(sp)
111 sw s1, 8(sp)
112 sw s2, 12(sp)
113 sw s3, 16(sp)
114
115 # s0 = N_C / 4 (number of 32-bit words)
116 addi s0, zero, N_C
117 srli s0, s0, 2
118
119 addi s1, zero, 0 # s1 = 0
120 la s2, KEYS # s2 = KEYS
121 li s3, N_K # s3 = N_K
122
123 main_loop:
124 beq s0, zero, main_end # if (s0 == 0) goto main_end
125 la t2, CHARS_IN
126 add t2, t2, s1
127
128 lw a0, 0(t2) # a0 = CHARS_IN[s1]
129 addi a1, zero, s2

Version 1.0 of 12th September 2024, EPFL ©2024 17 of 18



Processor and ISA Exercises
Computer Architecture

Solution 2

130 addi a2, zero, s3
131
132 jal ra, ENC_WORD
133
134 la t2, CHARS_OUT
135 add t2, t2, s1
136 sw a0, 0(t2) # CHARS_OUT[s1] = a0
137
138 addi s0, s0, -1 # s0 = s0 - 1
139 addi s1, s1, 4 # s1 = s1 + 4
140
141 j main_loop
142
143 main_end:
144 #pop the stack
145 lw ra, 0(sp)
146 lw s0, 4(sp)
147 lw s1, 8(sp)
148 lw s2, 12(sp)
149 lw s3, 16(sp)
150 addi sp, sp, 20
151
152 ret

e)

 t0
31 16 15 0782324

´E´ ´P´ ´F´ ´L´

18 of 18 Version 1.0 of 12th September 2024, EPFL ©2024


	Chapter I - 
	Exercise 1 Image Convolution in Assembly
	Exercise 2 Encryption in Assembly


