Exercise 1 Processor and ISA Exercises
Computer Architecture

[Exercise 1] Image Convolution in Assembly

A digital image is a two-dimensional array (a matrix) of pixels, where each pixel is
characterized by its position in the image (row, column) and its value P,y cotumn-

Linear image processing operations such as blurring and edge detection are usually
performed by convolving the entire image with a small square matrix called kernel. De-
pending on the values of kernel elements, different effects may be obtained in the final
image. Image convolution for a kernel of size 3 x 3 is illustrated in Figures (1) and
It is performed by taking sub-images of the same dimension as the kernel, convolving
them with the kernel, and replacing the value of the center pixel of each sub-image
with the corresponding convolution result:

o Figure[l} convolution between a sub-image centered around pixel P; 5, and a kernel.
The result of the convolution replaces the old value of pixel P, 3 in the final image.

e Figure 2t convolution between a sub-image centered around pixel P, 7, and the ker-
nel. The result of the convolution replaces the old value of pixel P, 7 in the final
image. Note that all the pixels beyond the image boundaries (pixels that do not exist
in the image) are assumed to have a value equal to zero.

COLUMNS
3 4

INPUT [] 1 2 5 6 7 OUTPUT _ 0 1 2 5 6 7
IMAGE: IMAGE:
0| Poo | Pos [Poz | Pos | Poa | Pos | Pos | Po7 0| Poo | Pos | Poz | Pos | Poa | Pos | Pos | Poy
1| Pio | Pui | Pia | Pis b Pia | Pis | Pus | Piy 1| Puo | Pui | P2 P 1,3) Pua | Pus | Pus | Py
ROWS ROWS 3
2| Pao | Py | Poa | Pas | Poa | Pas | Pas | P2y 2| Pao | Py | P22 %’3 Paa | Pas | Pas | P2y
3| Pso | Psy | Psa | Pss\| Psa | Pss | Pss | P3y 3| Pso | Psg | Psa |[fPss | Psa | Pss | Pss | P37
KERNEL:
Koo Ko,1 Koz |0
ROWS
K K K 1 = 4
@ 1,0 1,1 1,2 = P 13
Ko | Koa | Kz |2

1 2
COLUMNS

Figure 1: Convolution applied to the image pixel P, 3.

The convolution between two square matrices having the same dimensions n x n is
calculated as follows:

AO,O AO,l s AO,n—l BO,O BO,l s BO,n—l el n—1
Al,O Al,l s Al,n—l Bl,O Bl,l S Bl,n—l _
® = Aij - Bi
=0 =0
Anfl,() Anfl,l s Anfl,nfl anl,O anl,l s anl,nfl

Version 1.0 of 12th September 2024, EPFL ©2024 1 of

Processor and ISA Exercises Exercise 1
Computer Architecture

COLUMNS
3 4

INPUT [1 2 5 6 7 OUTPUT _ 0 1 2 5 6 7
IMAGE: IMAGE:
0| Poo | Pos | Po2 | Pos | Pos | Pos | Pos | Po7] 0| Poo | Poyx | Poo | Pos | Poa | Pos | Pog | Po7
1| Puo | Pui | Piz | Pus | Pua | Pus | Pig | Piz 1 @ 1| Puo | Pus | Pua | Pus | Pus | Pus | Pie P77
ROWS ! ROWS]
2| Py P2y P22 P23 P2a P25 P2 P27] 2| Py P2 P2 P23 Pas Pas P2 '%’,7
3 P3,0 P3,1 PB,Z P3,3 P3,4 P3,5 P3,6 P3,7 3 P3,E| P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7

KERNEL:
Koo | Kou | Koz |0

® | Kio | Kig | Kig |2 =P,

Ko | Kon | K2 |2

1 2
COLUMNS

Figure 2: Convolution applied to the image pixel P, ;.

For example, convolution between a sub-image and a kernel of size 3 x 3 equals:

34 54 0 0 1 0
52 97 0| ® [1 —4 1
94 129 0 0 1 0

—(34-0454-1+0-0)+[52-1+97-(=4) +0-1] + (94-0+129-1+0-0) = —153.

(a) input (b) output

Figure 3: Example of the effects of the convolution: (a) input image and (b) image after
convolution with a 3 x 3 kernel given above.

In this exercise, you are required to write an assembly program that performs convo-
lution between an input image, starting from the memory address IMAGE_IN, and a
kernel, starting from the memory address KERNEL. The resulting image has the same
size and memory layout as the input image and should be stored in memory starting
from the address IMAGE_OUT. Images have ROWS rows and COLS columns. Kernel mat-
rix has KERNEL_SIZE rows and the same number of columns. KERNEL_SIZE is an odd
number, while ROWS and COLS are both a power of two.

An image is represented as a two-dimensional array of 8-bit signed integers. Each pixel
is identified by its row and its column. The memory layout of the image having ROWS

2 of Version 1.0 of 12th September 2024, EPFL ©2024

Exercise 1 Processor and ISA Exercises
Computer Architecture

rows and COLS columns is shown in Figured] In this figure, values inside rectangles
are the offsets of the corresponding image pixels with respect to the beginning of the
IMAGE_IN array in memory. For example, the pixel at (row, column) = (0, 0) is stored
at address IMAGE_IN, the pixel at (row, column) = (0, 1) at address IMAGE_IN+1, the
pixel at (row, column) = (1, 0) at address IMAGE_IN+COLS, etc.

Columns

0 1 2 COLs-1
0 0 1 2 COoLs -1
1 CoLs COLs +1 COLS + 2 2xCOLS - 1
1
g 2 2xCOLS 2xCOLS + 1 2xCOLS + 2 3xCOLS - 1
-4
ROWS-1 (ROWS-1)xCOLS (ROWS-1)xCOLS+1 | (ROWS-1)XCOLS + 2 ROWSXCOLS - 1

Figure 4: Memory layout of images and kernel.

A kernel is stored following the same data layout in memory. Kernel elements are 8-
bit numbers. You may assume that IMAGE_IN, IMAGE_OUT, KERNEL, KERNEL_SIZE,
ROWS, and COLS are all defined as constants (.equ) at the beginning of the program,
and that the input image and the kernel are already initialized in memory.

Instructions:

* Depending on the question, you may be allowed to use load-byte and store-
byte instructions, or you may have to use only load-word and store-word
instructions. This is one more reason to read each question carefully.

* You are NOT allowed to use any multiplication instruction.

* Your code should conform to the assembly coding conventions.

a) The convolution between a sub-image and the kernel, to produce a value of the
output image pixel at the coordinates (out_row, out_col), can be calculated by using
the following pseudo-code:

conv = 0;
for (ker_row = 0; ker_row < KERNEL_SIZE; ker_row++) {
for (ker_col = 0; ker_col < KERNEL_SIZE; ker_col++) {

in_row = out_row + ker_row — (KERNEL _SIZE - 1) / 2;

in_col = out_col + ker_col - (KERNEL _SIZE - 1) / 2;

if pixel coordinates within image boundary:
in_pixel = in_image(in_row, in_col);

else

Version 1.0 of 12th September 2024, EPFL ©2024 3 of

Processor and ISA Exercises Exercise 1
Computer Architecture

in_pixel = 0;
conv = conv + 1in_pixel x kernel (ker_row, ker_col);

}

out_image (out_row, out_col)

conv;

Write the function get_image_value that takes the coordinates of the output pixel,
out_row and out_col, of the current kernel coefficient, ker_row, ker_col, and re-
trieves the corresponding pixel from the input image (sign-extended). That is, the
function should implement the functionality of lines 4-9 in the above pseudo-code.
When writing this function, you are allowed to use the load-byte instructions. Addi-
tionally, you may also assume to have available constants LOG2ROWS and LOG2COLS,
equal to log,(ROWS) and log,(COLS), respectively. They should enable computing the
memory address of the image pixel without using any multiplication instruction (since
their use is not allowed). Inputs and output of get _image_value are defined as fol-
lows:

31 16 15 0

a0 ’ ignored | out_row ‘

Inputs: 31 16 15 0
al ’ ignored | out_col ‘

31 16 15 0

a2 ’ ignored | ker_row ‘

31 16 15 0

a3 ’ ignored | ker_col ‘

31 87 0

Output: a0 ’ pixel[7] | pixel ‘

b) Write the function update_image that takes the coordinates of the output pixel,
out_row and out_col, the result of the convolution, and updates the corresponding
pixel in the output image. In other words, the function implements the pseudo-code
line 13. When writing this function, you are allowed to use the store-byte instructions.
The function has no return value; its inputs are defined as follows:

31 16 15 0

a0| ignored | out_row |

Inputs: 31 16 15 0
a1| ignored | out_col |

31 87 0

a2| 0 [pixel |

c) Write the function get _kernel_value that takes the memory offset of a kernel
element and returns its value. For example, if offset=2, the function returns the
value of the kernel element at address KERNEL+2. Here, you are NOT allowed to
use the load-byte instructions. Instead, you have to use the load-word instructions.
Assume little-endian byte order. Note that KERNEL may not be aligned on a word
boundary. The input and the output of get _kernel_value are defined as follows:

4 of Version 1.0 of 12th September 2024, EPFL ©2024

Exercise 1 Processor and ISA Exercises
Computer Architecture

31 16 15 0
Input: a0 ’ ignored offset ‘

31 87 0
Output: a0 ’ 0 | kernel el. ‘

d) Write the function convolution that generates the entire output image. You can
assume a function kernel_conv is available, which performs a full convolution to
compute one output pixel. Essentially, this function performs the functionality of the
entire pseudo-code. The function kernel_conv has no return value; its inputs are
defined as follows:
31 16 15 0
a0 | ignored | out_row |

Inputs: 31 16 15 0
al | ignored | out_col |

The function convolution should call kernel_conv for each output pixel; it takes
no input arguments and has no return values.

e) Assume now that the kernel elements use the 8-bit encoding described in Figure
Such encoding can represent zero or power-of-two positive and negative values. As a
consequence, multiplication of an 8-bit signed pixel by a kernel element only requires
shifts, sign-inversions, and zeroing.

Implement the function mult that performs multiplication of an 8-bit signed integer
(image pixel), sign-extended on 32 bits, with an encoded 8-bit kernel element. The
resultis an 8-bit signed integer; ignore any overflows or underflows. Inputs and output
of mult are defined as follows:

31 87 0

a0 [pixel[7] | pixel }

Inputs: 31 87 0
al 0 | kernel el. }

31 87 0

Output: a0 [result[7] | result }

7 6 5 4 32 0
|S|Z|SE|RES| EXP |

—1)5. 2(—1)SE “EXP _
kernel element = (=1) %f Z =0
0 ifZ=1

S | sign: 0 = positive, 1 = negative

Z zero: 0 = non-zero, 1 = zero

SE | sign of the exponent: 0 = positive, 1 = negative
RES | reserved (to be ignored)
EXP | exponent

Figure 5: Encoding used for the kernel elements.

Version 1.0 of 12th September 2024, EPFL ©2024 5 of

Processor and ISA Exercises Solution 1
Computer Architecture

[Solution 1]

a)

#get_image_value

#a0 = out_row

#al = out_col

#a2 = ker_ row

#a3 = ker_col

#a0 = IMAGE_IN[out_row + ker row — (KERNEL_SIZE - 1) / 2]
[out_col + ker_col - (KERNEL_SIZE - 1) / 27,
zero 1f outside image size

get_image_value:

#Zero the ignored bits

1i t0, OxFFFF

and a0, a0, toO

and al, al, tO

and a2, a2, tO0

and a3, a3, toO0

1li t0, KERNEL_SIZE

addi t0, t0, -1

#t0 = (KERNEL_SIZE - 1) / 2

srli t0, tO, 1

#a0 = out_row + ker row

add a0, a0, a2

#al = out_col + ker_ col

add al, al, a3

#a0 = out_row + ker row - (KERNEL_ _SIZE - 1) / 2 —-> in_row
sub a0, a0, tO

#al = out_col + ker_col - (KERNEL_SIZE - 1) / 2 -> in_col

sub al, al, tO
#t6 = 0 (default wvalue)
add t6, zero, zero

#Check if a0 and al are within the image bounds
blt a0, zero, get_image_value_end
blt al, zero, get_image_value_end

1li t0, ROWS
bge a0, t0, get_image_value_end

6 of Version 1.0 of 12th September 2024, EPFL ©2024

Solution 1 Processor and ISA Exercises
Computer Architecture

1li t0, COLS
bge al, t0, get_image_value_end

#If yes, read the pixel

#a0 = in_row << LOG2COLS = in_row % COLS
slli a0, a0, LOG2COLS

#al = in_row * COLS + in_col

add al, al, a0

1b t6, IMAGE_IN(al)

#sign extension

andi t0, te6, 128

beq t0, zero, get_image_value_end

addi t0, zero, —-256
or t6, to6, tO0

get_image_value_end:
addi a0, te6, O

ret

b)

#update_image

#a0 = out_row

#al = out_col

#a2 = value to write to IMAGE_OUT[out_row] [out_col]

update_image:

#Zero the ignored bits
1i t0, OxXFFFF
and a0, a0, toO
and al, al, tO

slli a0, a0, LOG2COLS #a0 = out_row << LOG2COLS = out_row * COLS
add a0, a0, al #a0 = out_row * COLS + out_col

-> offset

sb a2, IMAGE_OUT (a0)

ret

Version 1.0 of 12th September 2024, EPFL ©2024 7 of

Processor and ISA Exercises
Computer Architecture

Solution 1

c)

#get_kernel_value

#a0 = offset
#a0 = KERNEL|[offset]
get_kernel_value:

#Zero the ignored bits
1li t0, OXFFFF
and a0, a0, toO

addi a0, a0,
lw t0, 0(a0)
andi a0, a0, 3
slli a0, a0, 3
srl t0, t0O, a0
andi t0, t0, OxFF
ret

KERNEL

d)

#convolution

#Iterate over ROWS rows and COLS columns,

#t0
#a0
#a0
#t0

word containing KERNEL[offset]
byte_addr_offset within 4-byte word
byte_addr_offset * 8 = shift

t0 >> shift

#clear all bits except for the LSByte

#and writing to IMAGE_OUT.

#No arguments,
convolution:
addi sp, sp,
sw ra, 0(sp)
sw s1, 4(sp)
sw s2, 8(sp)
add sl, zero,

-12

zero

#s1

convolution_row_loop_begin:

1i tO,
bgeu si1,

ROWS
to,
add s2,

Zero, Zzero

#s2

convolution_col_loop_begin:

1li tO,
bgeu s2,

COLS
to,

sl
zero, S2
kernel_conv

add a0,
add al,
jal ra,

zero,

starting from IMAGE_IN

no return values

out_row

convolution_row_loop_end

out_col

convolution_col_loop_end

8 of |18

Version 1.0 of 12th September 2024, EPFL ©2024

Solution 1 Processor and ISA Exercises
Computer Architecture

addi s2, s2, 1
j convolution_col_loop_begin

convolution_col_loop_end:
addi s1, s1, 1
j convolution_row_loop_begin

convolution_row_loop_end:
1w ra, O(sp)

1w s1, 4(sp)

1w s2, 8(sp)

addi sp, sp, 12

ret

kernel conv:
#Not defined

ret

e)

#mult

#a0 = image pixel (8-bit signed)

#al = kernel value (8-bit custom encoding)

#a0 = image pixel * kernel value (8-bit signed)
mult:

andi t0, al, 64 #7

bne t0, zero, mult_clear

andi t0, al, 32 #SE
andi tl1l, al, 7 #EXP
bne t0, zero, mult_right

sll t6, a0, tl
j mult_flip

mult_right:
sra t6, a0, tl

mult_flip:
andi t0, al, 128 #S
beq t0, zero, mult_end

sub t6, zero, to6
J mult_end

Version 1.0 of 12th September 2024, EPFL ©2024 9 of

Processor and ISA Exercises
Computer Architecture

Solution 1

mult_clear:
add t6, zero, zero

mult _end:
addi a0, toe, O
ret

10 of[18

Version 1.0 of 12th September 2024, EPFL ©2024

Exercise 2 Processor and ISA Exercises
Computer Architecture

[Exercise 2] Encryption in Assembly

Consider the encryption algorithm shown in Figure] It takes a 32-bit input word W,y
and an array of keys K;, 0 < i < Nk, to produce a 32-bit encrypted word Wy after
Ny iterations.

31 16 15 0
W, =W, L, R,
i
6% 116 f(R, K) 2 K,
15..0
b (xoRr)
16
w, L | R |
)y
6% 116 f(R, K) 2 K,
15..0
€D (XOR)
16
W, | L, | R, |
31 16 15 0
WOUT= W Ly | Ry |

Figure 6: Encryption of one 32-bit word. L, and R, denote the upper 16 bits (the left
part) and the lower 16 bits (the right part) of the 32-bit word W;. The input word Wy
is considered encrypted after Nx cycles of computation, where Ny is the number of
32-bit keys. The result Wy is therefore equal to . XOR stands for exclusive-or.

The function f(R, K) is defined as follows:
f(R, K) = (OXOOOO & R) + (OXOOOO & K23_.16 & K7_.0)

where & denotes the binary concatenation operator (as in Verilog) and K,, , selects
bits m downto n of K (equivalent to K [m:n] in Verilog). Note that the input R is on 16
bits, K is on 32 bits, and the function returns a 32-bit value.

For example, given Nx =4, Ky =0x33221100, K; =0x77665544, Ky = 0xBBAA9988,
and K3 = 0xFFEEDDCC, and for W;y = 0x12345678, the algorithm proceeds as fol-
lows:

Version 1.0 of 12th September 2024, EPFL ©2024 11 of

Processor and ISA Exercises Exercise 2
Computer Architecture
i | Wiq L; 4 R4 K; 4 f(R,K) Wi = Ri1 &
(f(R,K)15.0 XOR
Li—1)
1| 0x12345678 | 0x1234 | 0x5678 | 0x33221100 | 0x5678 + 0x5678 &
0x2200 = 0x6A4C =
0x00007878| 0x56786A4C
2 | 0x56786A4C | 05678 | Ox6RA4C | 0x77665544 | Ox6A4C + 0x6A4C &
0x6644 = 0x86E8 =
0x0000D090 | Ox6A4C86ES
3 | 0x6A4C86ES | 0x6A4C | 0x86E8 | OxBBAA9988 | Ox86ES8 + 0x86E8 &
OxAA88 = 0x5B3C =
0x00013170| 0x86E85B3C
4 | 0x86E85B3C | 0x86E8 | 0x5B3C | OXFFEEDDCC | 0x5B3C + 0x5B3C &
OxEECC = 0xCCEQ =
0x00014A08| 0x5B3CCCEQ

and eventually returns Woyr = W, = 0x5B3CCCEO.

In this exercise, you are to write an assembly program that reads an array of 8-bit ASCII
chars in groups of four, i.e., word by word, encrypts every loaded word, and stores the
result to memory, which is byte addressed. You may assume that the number of chars
in the array is a multiple of four.

Instructions:

* To access the memory you are allowed to use only load-word and store-word
instructions.

* Your code should conform to the assembly coding conventions.

a) Write the function FRK that computes f(R, K). Inputs and output of FRK are defined
as follows:

31 16 15 0
0x0000 R \
Inputs: 31 0

Output: f(R, K) ‘

12 of |18

Version 1.0 of 12th September 2024, EPFL ©2024

Exercise 2 Processor and ISA Exercises
Computer Architecture

b) Write the function ENC_STEP that calls FRK and performs one iteration of the en-
cryption algorithm. Inputs and output of ENC_STEP are defined as follows:

31 16 15 0

ao | L R \

Inputs: 31 0
al | K ‘

31 16 15 0

Output: a0 | R | f(R, K)o XOR L ‘

c) Write the function ENC_WORD that encrypts a single 32-bit word by calling ENC_STEP
N times (Ng equals the number of 32-bit keys K). Inputs and output of ENC_WORD
are defined as follows:

31 0

ao | W,
31 0
Inputs: at | KEYS |
31 0
a2 | Ny ‘
31 0
Output: a0 | Wour ‘

d) Write the main function of the encryption program. The program encrypts word by
word of an array of N_C 8-bit ASCII chars that starts at the address CHARS_IN, where
CHARS_IN is word-aligned. The program writes the encrypted words in an output ar-
ray starting from address CHARS_OUT, where CHARS_OUT is also word-aligned. The N_K
32-bit keys are in memory starting from the address KEYS, which is also word-aligned.
You may assume that CHARS_IN, N.C, CHARS_OUT, KEYS, and N_K are all defined as
constants at the beginning of the program, and that the input arrays of chars and keys
are already initialized in memory.

For example, given the following preamble at the beginning of the code:

number of chars in the input array

.equ N_C 64

number of keys in the array of keys

.equ N_K 4

.data

starting address of the array of input chars
CHARS_IN:

starting address of the array of 32-bit keys
KEYS:

starting address of the array of encrypted chars
CHARS_OUT:

Version 1.0 of 12th September 2024, EPFL ©2024 13 of

Processor and ISA Exercises Exercise 2
Computer Architecture

The figure below illustrates a possible state of the memory just before reaching the
main function:

8b
0x1000| 'E' = 0x45
'P' = 050
'F' = 0x46
'L = 0x4C

=% =+

CHARS_IN[63]

=% =+

0x1100
K[0]

K[1]

K[2]

K[3]

e) Assuming the memory state shown above and a big-endian processor, what is the
content of register t 0 after executing the following instruction in RISC-V assembly:

1w t0, 0x1000(zero)

You may use ASCII chars to represent values of individual bytes. Here is an example
of the drawing that you should do and fill in:

31 24 23 16 15 87 0

to

14 of Version 1.0 of 12th September 2024, EPFL ©2024

Solution 2 Processor and ISA Exercises
Computer Architecture

[Solution 2] Encryption in Assembly

number of chars in the input array

.equ N_C 4

number of keys in the array of keys

.equ N_K 4

.data

starting address of the array of input chars
CHARS_IN:

.word 0x12345678

starting address of the array of 32-bit keys
KEYS:

.word 0x33221100

.word 0x77665544

.word OxBBAA9988

.word OxFFEEDDCC

starting address of the array of encrypted chars
CHARS_OUT:

.word 0x0, 0x0, 0x0, 0xO

.text

encryption:
jal ra, main
1li a0, 10 # triggers an ecall to end
ecall # (exit system call)

(a)

FRK:
andi t0, al, OxFF # t0 = K(7 .. 0)
srli tl, al, 16 # tl = K(31 .. 106)
andi tl, tl, OxFF # tl = K(23 .. 16)
slli tl, t1, 8 # tl = K(23 .. 16) && "00000000"
or t0, t0, tl # t0 = K(23 .. 16) && K(7 .. 0)
add a0, a0, toO # v0O = R + K(23 .. 16) && K(7 .. 0)
ret

(b)

ENC_STEP:
push on the stack
addi sp, sp, —-12

Version 1.0 of 12th September 2024, EPFL ©2024 15 of

Processor and ISA Exercises

Computer Architecture

Solution 2

SW
SW
SW

1i
and
srli

addi
addi

jal

Xor
1i
and
slli
or

ra,
s0O,
sl,

t0,
s0,
sl,

a0,
al,

ra,

ao,
t0,
ao,
s0,
a0,

0 (sp)
4 (sp)
8 (sp)

OxXFFFF
a0, to
a0, 16

sO, O
al, O

FRK

sl, a0
OXFFFF
a0, to
s0, 16
a0, sO0

pop from the stack

lw ra,
1w s0,
1w sl,
addi sp,
ret

(c)

ENC_WORD:
push the
addi sp,
sSw ra,
sw s0O,
sw sl,
sw s2,
addi s0,
add sl,
addi s2,

ENC_WORD_loop:

lw

al,

0 (sp)
4 (sp)
8 (sp)
sp, 12

stack

sp, —1
0 (sp)
4 (sp)
8 (sp)
12 (sp)

al, O

zero,
zero,

0(s0)

6

a2

al
al

S,

s0

sl

=

al

)

R
K

f (R, K)
f(R,K) xor L
(f(R,K) xor L) (15

R && "Ox0000"
R && (f(R,K) xor L)

KEYS

= N_K

K = MEMORY [s0]

0)

(15 .. 0)

16 of 18

Version 1.0 of 12th September 2024, EPFL ©2024

Solution 2 Processor and ISA Exercises
Computer Architecture

jal ra, ENC_STEP # a0 = enc_step (al)

addi s2, s2, 1 # s2 = s2 + 1

beq s2, sl, ENC_WORD_end # if (s2 == N_K) goto ENC_WORD_end
addi s0, s0, 4 # sO0O = s0 + 4

j ENC_WORD_loop

ENC_WORD_end:
pop the stack

1w ra, 0(sp)
lw s0, 4(sp)
1w sl, 8(sp)
1w s2, 12 (sp)
addi sp, sp, 16
ret
(d)
main:
#push the stack
addi sp, sp, —20
sw ra, 0(sp)
SwW s0, 4(sp)
sSwW sl, 8(sp)
sw s2, 12 (sp)
sw s3, 16 (sp)

sO = N_C / 4 (number of 32-bit words)

addi sO, zero, N_C

srli s0, s0, 2

addi sl, zero, O # s1 =0

la s2, KEYS # s2 = KEYS

1li s3, N_K # s3 = N_K
main_loop:

beq s0, zero, main_end # 1f (s0 == 0) goto main_end

la t2, CHARS_IN

add t2, t2, sl

1w a0, 0(t2) # a0 = CHARS_IN[s1]

addi al, zero, s2

Version 1.0 of 12th September 2024, EPFL ©2024 17 of

Processor and ISA Exercises Solution 2
Computer Architecture

addi a2, zero, s3

jal ra, ENC_WORD

la t2, CHARS_OUT

add t2, t2, sl

sSwW a0, 0(t2) # CHARS OUT[sl] = a0
addi s0, s0, -1 # sO0 = s0 - 1

addi sl, s1, 4 # s1 = sl + 4

j main_loop

main_end:
#pop the stack

1w ra, 0(sp)
lw s0, 4(sp)
1w sl, 8(sp)
1w s2, 12 (sp)
1w s3, 16 (sp)
addi sp, sp, 20
ret

e)

31 24 23 16 15 87 0
t0 E’ | ‘P | ‘B’ L

18 of Version 1.0 of 12th September 2024, EPFL ©2024

	Chapter I -
	Exercise 1 Image Convolution in Assembly
	Exercise 2 Encryption in Assembly

