=P-L

Exercise Book

Computer Architecture

1st October 2024

lap



Exercise Book Exercise 1
Computer Architecture Instruction Set Architecture

Part I: Instruction Set Architecture

[Exercise 1] Array Comparator

a) Write a function in RISC-V that compares two vectors of 32-bit signed numbers. The
function returns "0” if at least a pair of elements with the same index in both vectors
differ in absolute value by more than 1000 (decimal). Otherwise, the function returns
17

When the function is called, register a0 contains the address of the first vector in
memory, while register al contains the address of the second vector and register a2

contains the number of elements in each vector.

Note: to find the absolute value of the difference between two numbers, subtract the
smaller from the greater.

b) Briefly discuss when can an overflow occur in your function.
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[Solution 1] Array Comparator

a) The code of the solution is given below:

prog:
1i ¢
1li t

loop:
beq
1w
1w
slt
bne
sub

next:
sub

next2:
slt
bne
addi
addi
addi
J

err:
add

finish:
mv a
ret

5, 1

6, 1000

az,
t2,
t3,
t4,
t4,
t3,

zero, finish

0 (a0)
0(al)

t3, t2
zero, next
t3, t2

next?2

t3,

t4,
t4,
a0,
al,
az,

t2, t3

t6, t3
Zzero, err

loop

t5,

Zero, Zzero

0, t5

if(£3<t2)

if(t4=1) goto next

if(£3>1000)

if(td!=0) goto err

b) An overflow can occur when a negative value is subtracted from a positive one and

the difference is greater than the maximal positive value.

Example: 0000 0000-8000 0000; 7FFF FFFF -FFFF FFFF;
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[Exercise 2] Understanding RISC-V

Consider the following RISC-V program:

add tO0, a0, zero
add tl1, al, zero
add t2, a2, a2
add t2, t2, t2
add t3, t0, t2
loop:
1w t4d, 0(t0)
sSwW t4, 0(tl)
addi t0, tO0, 4
addi t1, tl1, 4
sltu t5, t0, t
bne t5, zero, loop

Assume that initially registers a0 and al store addresses in memory and register a2
stores an integer N. Registers t 0 to t 5 are used to store temporary values and zero is
a register that always has the value zero.

a) Briefly comment each line of the code.

b) Describe in one sentence what this program does (its purpose).

¢) Why did the instruction addi add 4 to registers t 0 and t1?

d) Why is the instruction s1tu (set less than unsigned) used instead of the instruction
slt?
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[Solution 2] Understanding RISC-V

a) Commented code:

add t0, a0, =zero t0 <- a0
add tl1, al, =zer tl <- al
add t2, a2, a2 t2 <— 2+%a?2

t2 <— 4xa?2
t3 <= a0 + =xa2

add t2, t2, t2
add t3, t0, t2
loop:

T

1w td4, 0(tO0) #
SW t4, 0(tl) #
addi t0, tO0, 4 # t0 <— t0+4

# (points on the next word)
addi tl1, tl1l, 4 # tl <— tl+4

# (points on the next word)
sltu t5, tO0, t3 # if (t0 < t3)

# t5 <— 1 else t5 <= 0

bne t5, zero, loop # 1if (£t5 != 0) go to loop

b) This RISC-V program copies the contents of the memory area that ranges from ad-
dress a0 to address a0+4N, to the memory area ranging from al to al+4N.

C) t0 and t1 are pointers on the source and destination memory areas, respectively.

The memory in a RISC-V system is Byte addressable and hence words of 32 bits (4

bytes) are aligned on an address that is a multiple of 4. The 1w and sw instructions ac-

cess 32-bit words. Thus to reach the following word, the current address must be incre-

mented by 4. This is done in instructions (addi t0, t0, 4)and(addi t1, t1, 4),
for each vector.

d) The codeline s1tu t5, tO0, t3comparesregisterst0 and t3 which are pointers.
The address space of the system resides between 0x0000°0000 and OxFFFF'FFFF. A
pointer is thus always unsigned and comparisons are made between two unsigned
values.
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[Exercise 3] Understanding RISC-V

Consider the following RISC-V program:

begin:
add tO0, a0, zero
add tl1, al, zero
add t2, a2, zero
add t3, zero, =zero
add t4, zero, =zero

outer:
lbu t5, 0(t0)
bne t3, a3, cont

inner:

lbu t6, 0(tl)

sb te, 0(t2)

addi t1, tl1, 1

addi t2, t2, 1

addi t4, t4, 1

bne t6, zero, inner
addi t2, t2, -1

addi t4, t4, -1

cont:

sb t5, 0(t2)

addi t0, t0, 1

addi t2, t2, 1

addi t3, t3, 1

bne t5, zero, outer
addi t3, t3, -1

add a0, t3, t4

fin:
ret

a) Describe in a sentence what this program does, knowing that it takes four arguments
stored in registers a0, al, a2 and a3. Arguments a0 and al contain each the memory
address of a string that ends with the NULL character, i.e. a zero byte (000070000).

b) Modify the program such that the 1bu instruction is replaced by 1w without altering
the functionality (behaviour). String addresses (i.e. beginning of the string) are always
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multiples of four and the processor is little-endian. The sb instruction is available.

¢) Should the program in the preceding point be modified if the processor were big-
endian? If so, briefly describe the necessary modifications.
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[Solution 3] Understanding RISC-V

a) The program returns (in a0) a pointer on a string that contains the string pointed by
a0 with the string pointed by al inserted at the position indexed by a3 as shown in
the figure below:

RS —

0123456

aOaJAhHMKWﬂAhd

1 e 4 L 7 10

b) The following subroutine does not use the 1bu instruction. Instead, it uses the 1w
instruction keeping in mind that the processor is little-endian.

begin:
add tO0, zero, a0
add tl, =zero, al
add t2, zero, a2
add t3, zero, =zero
add t4, zero, =zero
outer:
andi s0, t3, 0x3
bne s0, zero, no_1dl
1w t5, 0(tO0)
addi t0, tO0, 4

no_1dl:
andi s0, t5, Oxff #F ok
srli t5, t5, 8 # ok %k
bne t3, a3, cont

inner:

andi sl1, t4, 0x3

bne sl, zero, no_1d2
1w t6, 0(tl)

addi t1, tl1, 4

no_1d2:
andi sl, to6, Oxff # +++
srli t6, t6, 8 # +++

sb sl, 0(t2)
addi t2, t2, 1
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addi
bne
addi
addi
cont:

sb
addi
addi
bne
addi
add

t4,
sl,
t2,
t4,

s0,
t2,
t3,
s0,
t3,
a0,

fin:
ret

td, 1
zero,
t2, -1
td, -1

inner

0(t2)
tz2, 1
t3, 1
zero,
t3, -1
t3, t4

outer

C) Yes. Instead of the sequence of instructions andi and srli (marked by xxx and
+++) the following instruction sequence might be used instead (alternate solutions are

possible):
srl sO,
andi sO,
sll t5,
srl sli1,
andi sl1,
sll to,

t5, 24
s0, Oxff
t5, 8
te6, 24
sl, Oxff
t6, 8

.

S+

prepare byte
get byte
prepare next

prepare byte
get byte
prepare for next

Version 1.0 of 1st October 2024, EPFL ©2024
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[Exercise 4] Vector Difference

Write a RISC-V function that produces a vector C from two vectors A and B containing
32-bit signed numbers in Two’s complement representation, according to the following
relationship:

C=|A-B

Thus vector C contains the absolute value of the difference between vectors A and B.
These values are also 32-bit signed numbers.

Registers a0, al and a2 point on vectors A, B and C, respectively. Register a3 indicates
the number of elements in each vector.

a) Write the function described above, ignoring any possible overflows. Also, consider
a RISC-V version where subtraction and arithmetic negation are not available. How-
ever all logical operations are available (and, or, xor, not and so on).

b) Discuss the possible overflow cases. Which instructions in your program could
potentially generate an overflow? Briefly describe (without necessarily modifying the
program) how to detect such overflows.
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[Solution 4] Vector Difference

a) Since neither arithmetic negation nor subtraction are available, bitwise negation and
addition must be used instead to implement the requested function.

begin:
add t0, =zero, a0 # t0 <— ao
add tl1, zero, al # tl <- al
add t2, zero, a2 # t2 <- a2
add t3, zero, a3 # t3 <- a3
loop:
begq t3, zero, fin # if t3 = 0 then goto finish
1w t4, 0(t0) # t4 <— mem[t0]
1w t5, 0(tl) # t5 <— mem[tl]
not t5, tb5 # t5 <—- not tb5
addi t5, t5, 1 # th <= th + 1 (*xx%)
add t5, t4, tb5 # t5 <— td + t5 (+++)

slt t4, t5, zero # check the sign
beq t4, zero, skip #if positive goto skip

not t5, tb # t5 <— t5 (not not)
addi t5, t5, 1 # t5 <— th5 4+ 1 (x*x)
skip:
sSwW t5, 0(t2) # mem[t2] <- tb5
addi t0, tO, 4 # £t0 <— t0 + 4
addi t1, t1, 4 # tl <— tl + 4
addi t2, t2, 4 # t2 <—- t2 + 4
addi t3, t3, -1 # t3 <= t3 -1
j loop
fin:
ret

b) The instructions marked by » x x and +++ can cause an overflow.
In the xx« case, an overflow will occur if register t5 contains the smallest negative
number ("1 at the MSB followed by "0’s) before the not instruction is performed. Thus

we must detect this case in order to detect the overflow.

In the +++ case, there is a standard overflow treatment.
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[Exercise 5] Understanding RISC-V

Study the following RISC-V program:

begin
mv t0, a0
mv tl, al
mv t2, zero
addi a0, zero, -1

cont
lbu t4, 0(tl)
outer
lbu t3, 0(t0)
beq t3, zero, fin
bne t3, t4, skip

mv a0, t2
mv t5, tO
inner

addi t0, tO0, 1
addi t1, t1, 1

lbu t3, 0(t0)

lbu t4, 0(tl)

beq t4, zero, fin
beq t3, zero, fail
beq t3, t4, inner
addi t0, t5, 1

mv tl, al

addi a0, =zero, -1
j cont

skip
addi t0, tO, 1
addi t2, t2, 1

J outer
fail

addi a0, zero, -1
fin :

ret

a) Describe in a sentence what this program does, knowing that it takes two arguments
in registers a0 and al. Each of the two registers contains the memory address of a
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string ending with a NULL character, i.e. a zero byte.

b) Explain in a few words what the content of t 5 represents and the situation in which
this value is needed.

C) Suppose that the 1bu instruction is not available, but instead 1w is used to read
the memory. Write a function that provides the same functionality as the instruction
lbu v0, 0(a0), knowing that a0 contains the memory address of the byte to be
loaded, and a0 is the register where this byte must be stored at the end of the function
call. Consider a big-endian processor. Recall that the 1bu instruction does not perform
a sign extension. Make sure that the addresses that are passed to 1w are always aligned,
i.e. multiples of 4.
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[Solution 5] Understanding RISC-V

a) The subroutine returns the position (index) of the first appearance of a substring in
the input string. al points on the substring and a0 on the input string. If the substring
is not found, the negative position is returned (-1).

1 4 ... 7 .. 10

a0 > [AJUIMIOITIOITIONT [ATOl

VR
begin:
mv t0, a0l # t0 <— a0
mv tl, al # tl <- al
mv t2, zero # t2 <- 0
addi a0, =zero, -1 # a0 <- -1
cont:
lbu t4, 0(tl) # t4 <— mem[tl]
outer:

lbu t3, 0(t0)

begq t3, zero, fin
bne t3, t4, skip
mv a0, t2

mv t5, tO

t3 <— mem[t0]

if t3 = 0 goto fin

if £t3 <> t4 goto skip
remember index

S o o o e

wrong guess backup

inner:

addi t0, tO, 1 # t0 <— t0 + 1
addi t1, t1, 1 # £l <— tl + 1
lbu t3, 0(t0) # t3 <— mem[t0]
lbu t4, 0(tl) # t4 <— mem[tl]
beq t4, zero, fin # return found
beq t3, zero, fail # if t3 = 0 fail
begq t3, t4, inner # continue inner loop
addi t0, t5, 1 # recover wrong guess
mv tl, al # recover
j cont # goto continue
skip:
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addi t0, tO0, 1
addi t2, t2, 1
Jj outer

fail:
addi a0, zero, -1

fin:
ret

e

t0 <= t0 + 1
t2 <—- t2 + 1
goto outer

a0 <- -1

b) Register t 5 enables recovery from a “wrong guess”. It holds the address where the
matching started. If it does not succeed (the substring is not found), the matching is
restarted from the next potential match at the address t5 + 1.

c¢) The following subroutine provides the functionality of the 1bu instruction. Two
possible solutions are presented. Both of them assume a big-endian processor.

xlbu:
1li tl, Oxfffffffc
and tO0, a0, tl
1i tl, 0xff000000
andi t2, a0, 0x3
1w t3, 0(t0)

loop:
begq t2, zero, done
slli t3, t3, 8
addi t2, t2, -1
| loop

done:
and t3, t3, tl
srli a0, t3, 24
ret

tl <- Oxfffffffc

tl <= a0 & tl (align)

tl <- 0xff000000

t2 <- a0 & 0x3 (get offset)
t3 <— mem[t0]

if t2 = 0 done

t3 <= t3 << 8 (next byte)
t2 <= t2 -1

goto loop

t3 <— t3 & 0xf£f000000

a0 <= t3 >> 24
return

Another possible solution that uses sr1i:

x1bu:
1i tl, Oxfffffffc
and t0, a0, tl
andi t2, a0, 0x3
1w t3, 0(t0)

loop:

tl <- Oxfffffffc

tl <= a0 & tl (align)

t2 <- a0 & 0x3 (get offset)
t3 <— mem[t0]
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sltiu t1l, t2, 3 # check t2 < 3
beq tl, zero, done # if t2 = 3 done
srli t3, t3, 8 # t3 <— t3 >> 8 (next byte)
addi t2, t2, 1 # t2 <— t2 4+ 1
j loop # goto loop
done:
andi a0, t3, Oxff # v0 <= t3 & Oxff (get byte)
ret # return
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[Exercise 6] Binary Coded Decimal

Write a RISC-V program that converts from the BCD (Binary Coded Decimal) repres-
entation to the ordinary binary representation. In BCD representation, numbers are
encoded directly from their decimal representation and each decimal digit is represen-
ted in binary using 4 bits. For example, the value 1992 in decimal is encoded in BCD
using 16 bits as 0001'1001'1001'0010, while its ordinary binary representation is
0000'0111'1100'1000. Certain binary values such as 1111'1010"'1100"'1110
cannot represent BCD values; this happens whenever a group of 4 bits represents a
value greater than 9.

The unsigned 32-bit value to be converted is located in register a0 and the binary
result at the end of the conversion must be saved in register a0. If the value contained
in register a0 cannot represent a BCD value, the a0 register must contain -1 at the end
of the execution.

a) Write the conversion function ignoring any possible overflows. You can assume the
availability of multiplication instructions on 32-bit operands:

mul rd, rs, rt
muli rd, rs, imm

b) The mul and muli instructions do not exist in RISC-V. Modify the program such
that it no longer makes use of these multiplication instructions.

¢) Discuss the possible overflow cases. Modify the program, if necessary, to remedy
the situation.
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[Solution 6] Binary Coded Decimal

a) In order to simplify the computation, the conversion is done using the following
decomposition (as an example, a four digit BCD number is used - abcd):

abedyg = ax 103 + b 102+ cx 101 +d * 10° = (((a * 10+ b) * 10 + ¢) * 10 + d)

An eight digit BCD number is converted using the following procedure:

begin:
add t0, a0, zero # init tO
add to6, zero, =zero # init t6 to 0 (final result)
beq t0, zero, fin # finish if zero (optional)
addi tl, zero, 8 # number of digits
loop:
srli t2, tO, 28 # get the MS digit d
sltiu t3, t2, 10 # check d < 10
bne t3, zero, skip # skip if ok
addi t6, zero, -1 # 1if error,
j fin # finish
skip:
muli to6, to, 10 # t6 <— t6%x10
add t6, to, t2 # t6 <— t6 + d
slli tO0, tO0, 4 # prepare next digit
addi tl1, tl, -1 # decrement counter
bne tl, zero, loop # continue until O
fin:
addi a0, te6, O #final value
ret # return

b) Multiplication by 10 can be replaced by shifting and adding (the idea is X * 10 = X*8
+ X*2) as shown in the following RISC-V implementation:

skip:

slli t3, t6, 3 # mul t6 by 8
slli t4, t6, 1 # mul t6 by 2
add te, t3, t4 # t6 <— 10 % t6

c) It is not possible to have an overflow since the largest number in eight digit BCD
representation (32 bits) is smaller than the largest 32-bit unsigned number (or even the
largest number in two’s complement representation).
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[Exercise 7] ASCII Characters Transfer

We use a RISC-V processor to control the transmission of ASCII characters (8 bits per
character: 7 bits of information and 1 parity bit) on a serial line. The latter is particu-
larly exposed to “burst” errors (burst errors on the serial line affect several consecutive
bits). In order to improve error detection, we use a technique called “interleaving”
before transmission:

1. We group 4 characters to be transmitted in a 32-bit block (4 x8 bits). We can thus
assign an absolute position (i.e. 0..31) to each bit in the 32-bit block. For example,
bit 5 of byte 2 will have position 21 (5 + 2 x 8), while bit 0 of byte 3 will have the
position 24 (0 + 3 x 8).

2. We change the order of the bits and form a new 32-bit block for transmission in

the following way:

31 24 16 8 0

input ||B3|{|B2]|||B1|||BO

output

31 0

Figure 1: Bit interleaving

We can define from Figure|l|the interleaving function that determines the position
of a bit after interleaving (where i = 0..31 represents the original position):

newpos(i) =1 % 8 + (imod 8) - 4

The % operation represents the integer division and mod is the modulo (rest of an in-
teger division). For example, after interleaving is done, bit 23 (original position) will be
relocated to position 30 (23 % 8 + (23 mod 8) x 4 = 2+ 28), while bit 24 will be relocated
to position 3 (24 % 8 + (24 mod 8) x 4 = 3 +0).

a) Implement the newpos (1) function in a RISC-V program. Parameter i is passed to
the function using register a0 and the function returns the new position in register v0.

b) Using the newpos function, write a RISC-V program that carries out the interleaving
of a 4 byte block (32 bits). The source block is located in register a0. The result of the
program must be placed in register a0.
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c¢) Discuss the RISC-V convention regarding register saving between function calls.
Discuss their application to the functions written in the preceding points.

d) Suppose that we send information between a little endian source computer and a
big endian destination computer. Should the program that performs the interleaving
be modified ? If so, briefly discuss the necessary modifications. If not, explain why.
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[Solution 7] ASCII Characters Transfer

a)
newpos:
add t5, a0, zero # t5 <- a0
srli t6, t5, 3 # t6 <— t5 % 8
andi t5, tb5, 0x7 # t5 <— t5 mod 8
slli t5, t5, 2 # t5 <— t5 % 4
add a0, t5, to # v0 <— t5 + t6
ret
b)
prog:
add t0, a0, zero # t0 <- a0
add tl1, zero, zero # tl <- 0, result
add t2, zero, zero # t2 <- 0, index i
addi t3, =zero, 32 # t3 <= 32
loop:
andi t4, t0, O0x1 # test bit0
beq t4, zero, skip # skip if bit0 = 0
add a0, t2, zero # a0 <- 1
jal ra, newpos # call newpos (i)
addi t4, zero, Oxl1 # t4 <- 1
sll t4, t4, a0 # shift to newpos (i)
or tl, tl, t4 # set bit at newpos (i)
skip:
srli t0, t0O, 1 # shift to next bit
addi t2, t2, 1 # t2 <—- t2 + 1
bne t2, t3, loop # if t2 !'= t3 goto loop
fin

add a0, tl, zero # a0 <- t1l

c) One of the conventions stipulates that the called routine (function) must save the
callee-saved registers (registers s0 to s7) on the stack at the beginning of its execution.
The function then restores the saved registers from the stack at the end of its execu-
tion. The convention also stipulates that the caller of the routine (prog) must save
caller-saved registers (every other register) whose content is necessary before calling
the routine, as it might modify them.
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Applied to the functions in the preceding two points, we can see that despite a cor-
rect execution, the original contents of register ra in the main program is lost after
calling newpos. This is not a problem in the case of a stand-alone program, however
it becomes one if the program is called from elsewhere! Given a stack that grows to-
wards descending addresses and a pointer on the top of the stack, we could have the
following save and restore code:

prog:
addi sp, sp, -4 # sp <- sp - 4
sw ra, O0(sp) # mem[sp] <- ra
fin:
1w ra, 0(sp) # ra <—- mem[sp]
addi sp, sp, 4 # sp <— sp + 4
ret # return

d) The correction operation of the program depends on the endianness. If a big endian
destination computer receives the 4-byte packets form a little endian source computer
(order before interleaving is B3B2B1By) it must correctly interpret them. That is, it must
first deinterleave the packet, then restore the correct order B;B,B, B, before storing the
data in the memory. Having an elegant deinterleaving function at our disposal allows
us to avoid restoring the correct order. Write this function.
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[Exercise 8] Understanding RISC-V

Consider the following RISC-V program.

start:

addi tl1, al, -1
outer:

beq tl, zero, fin

add tO0, a0, zero

add t2, tl, zero
inner:

beq t2, zero, cont

1w t3, 0(t0)

1w td, 4(t0)

sltu t5, t4, t3

beq t5, zero, skip

SW t3, 4(t0)

sSwW td4, 0(t0)
skip:

addi t0, tO0, 4

addi t2, t2, -1

Jj inner
cont:

addi t1, t1, -1

Jj outer

fin:

a) Describe in a sentence what the program does, knowing that the two arguments in
registers a0 and al contain the address of an array in memory and the number of its
elements, respectively.

b) Explain in a few words the purpose of the two 1w and the two sw instructions in
this context.

c) What is the type of the processed values ? Justify your answer.

d) Explain in a few words what the contents of the three registers t0, t1 and t2 rep-
resent. Modify the program in order to correctly handle the case where a1 = 0.

e) The original program does not return any result. We want the function to return the
following values in register a0:
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* 0 in the case where no data in the memory has been changed.

* -1 in the case where some data has been changed in the memory.

Modity the program such that it is possible to call it as a standard RISC-V function.
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[Solution 8] Understanding RISC-V

a) This program sorts the elements of a vector in an ascending order.

b) The two 1w and two sw instructions are used to swap the locations of two elements
in memory.

c¢) The program processes unsigned integers as the comparison is done using the s1tu
(set less than unsigned) instruction.

d) Register t 0 is used as a pointer on the elements of the vector. Registers t1 and t2
are used as counters to control the two loops. t1 contains the remaining iterations of
the inner loop, in other words, the number of iterations of the outer loop. Register
t 2 contains the total number of iterations of the inner loop.

When al = 1 the program will not behave correctly (there is a risk of having the
program generate wrong addresses). The following case should thus be avoided:

start:
begq al, zero, fin
addi t1, al, -1

e) We present here possible changes.

start:
addi t6, zero, O # t6 <= 0
addi tl1l, al, -1

outer:
beq tl, zero, fin

# no changes

SW t3, 4(t0)
sSwW t4, 0(t0)
addi t6, zero, -1 # to6 <- -1

skip:
addi tO, tO0, 4
addi t2, tz2, -1
j inner

cont:
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addi t1, tl1, -1

j outer

fin:
mv a0, t6 # a0 <- to
ret
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[Exercise 9] Understanding RISC-V

Analyze the following RISC-V function:

func:
slli
add
addi

loop:
slt
beq
1w
1w
sw
sSw
addi
addi
J

fin:
ret

t0, al, 2
t0, a0, to0
t0, t0, -4

tl, a0, tO
tl, zero, fin
t2, 0(a0)

t3, 0(t0)

t2, 0(t0)

t3, 0(a0)

t0, t0, -4
a0, a0, 4
loop

When the function is called, a0 contains the memory address of a vector of 32-bit num-
bers and al contains an integer.

a) Describe in a sentence what the program does.

b) Must the numbers contained in the vector be either signed or unsigned? Or is it
possible to have both signed and unsigned numbers in the vector ? Briefly explain
your answer.

¢) We would like to change this program so that it can process (handle) bytes. To this
effect we need a function that receives four bytes in a0 and returns the same four bytes
in the reverse order in a0: byte Bj (bits 32-24) is swapped with byte By and B, with B;.

Write such a function respecting ordinary RISC-V conventions.
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[Solution 9] Understanding RISC-V

a) This program inverts the order of elements in a vector in memory.

a0 points (starting from the beginning) on the vector’s element that must be
swapped next.

t0 points (starting from the end) on the vector’s (other) element that must be
swapped with the first.

func:
slli t0, al, 2 # t0 = Nb elements * sizeof (elem)
add t0, a0, toO t0 points to the end of the vector
addi t0, tO0, -4 t0 points to the last element
loop:
slt tl, a0, to

= =

beq tl, zero, end # if( a0 >= t0) go to end
1w t2, 0(a0) # Store in t2 mem(a0)
1w t3, 0(t0) # Store in t3 mem(t0)
swW t2, 0(t0) # Copy t2 to mem(tO0)
sSwW t3, 0(a0) # Copy t3 to mem(al)
addi tO0, tO, -4 # Update the end pointer
addi a0, a0, 4 # Update the start pointer
j loop # Continue the loop

end:
ret # Return of the function

b) The RISC-V function does not modify any of the vector’s elements, there is thus no
restriction on their type, they can be signed, unsigned or in any other representation.

c¢) The function that inverts the order of the bytes of a 32-bit input is given below.

Inv_byte:
1li t2, O
addi t0, zero, OxFF
and tl1, a0, tO
slli tl1, tl, 24
add t2, zero, tl

t2 will store the result

Mask byte 7-0 in tO

Byte 7-0 in t1l

Shift byte 7-0 to position 31-24
Byte 31-24 of the result is ready

S o o e e

slli t0, tO0, 8
and tl1, a0, tO

S+

Mask byte 15-8 in tO
Byte 15-8 in tl

.
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slli t1, t1, 8 # Shift byte 15-8 to position 23-16
or t2, t2, tl # Byte 23-16 of the result is ready
slli t0, tO, 8 # Mask byte 23-16 in tO
and tl1, a0, tO # Byte 23-16 in t1l
srli t1, tl1, 8 # Shift byte 23-16 to position 15-8
or t2, t2, tl # Byte 15-8 of the result is ready
slli t0, tO, 8 # Mask byte 31-24 in tO
and tl1, a0, tO # Byte 31-24 in t1
srli tl1, tl1, 24 # Shift byte 31-24 to position 7-0
or t2, t2, tl # Byte 7-0 of the result is ready

fin:

mv a0, t2
ret # return of the function
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[Exercise 10] Understanding RISC-V

Analyze the following RISC-V function:

func:
add t0, zero, =zero
add tl1l, zero, a0
1w t2, 0(a0)
1w t3, 0(a0)
label:
1w t5, 0(tl)
slt t4, t2, t5
bne t4, zero, contl
add t2, zero, tb5
contl:
slt t4, t5, t3
bne t4, zero, cont?2
add t3, zero, tb5
cont2:
addi t0, t0, 1
addi t1, t1, 4
bne al, t0, label
add t4, t2, t3
sra a0, t4, 1
fin:
ret

When the function is called, a0 contains the memory address of a vector containing 32-
bit numbers, a1l contains an integer and a0 contains the value returned by the function.

a) Describe in a sentence what the program does. What value is returned by the pro-
gram? Is this value always accurate (exact)?

b) Must the vector’s elements be either signed or unsigned? Or is it possible to have
both signed and unsigned values in the vector? Briefly explain your answer, but be
precise. If only a single type of numbers can be processed (handled) by the function
in its current form, indicate the necessary modifications so that it can process the other

type.

¢) Modify the function such that it can process a vector of 16-bit numbers instead of 32-
bit. The 16-bit half-words are located in memory as shown in Figure 2 Minimize the
number of memory accesses (use 1w to access the memory). Suppose that the processor
is big-endian and that a0 always contains a multiple of 4 when the function is called.
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1000

A[0]

1002

All]

1004

Figure 2: Location of vector’s 16-bit elements in memory
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[Solution 10] Understanding RISC-V

a) The purpose of the program is to find the arithmetic mean of the minimum and
maximum value of the vector’s elements (a0 points on the vector). The mean is the
value returned by the program. Since an integer division by two is performed in the
last instruction before returning, the resulting mean is not always accurate (exact). A
commented version of the code is given below:

func:
add t0, zero, =zero # Initialize element counter (tO0)
add tl1l, zero, a0 # tl points to the first element
1w t2, 0(a0) # Initialize the min (t2)
1w t3, 0(a0) # Initialize the max (t3)
label:
1w t5, 0(tl) # The next elemenent in tb5
slt t4, t2, tb5 # (£2 >=th5 ) => t4 =0
bne t4, zero, contl #
add t2, zero, tb5 # Update the min in t2
contl:
slt t4, t5, t3 # (th >>= t3 ) => t4 =0
bne t4, zero, cont2 #
add t3, zero, tb5 # Update the max in t3
cont2:
addi t0, tO, 1 i
addi tl1, tl, 4 # Go to next element
bne al, t0, label # Check if we reached the end
add t4, t2, t3 # Add the max and the min
srai a0, t4, 1 # Divide the sum by 2
fin:
ret # Return of the function

b) The elements of the vector pointed on by a0 must be signed because the comparis-
ons used to find the max and min are done on signed numbers using the s1t instruc-
tion. The mean calculations are also done using signed numbers. Thus the program
must be modified as follows to handle unsigned numbers:

slt

t4, t2, t5 => sltu t4, t2, t5
slt t4, t5, t3 => sltu t4, t5, t3
add t4, t2, t3 => add t4, t2, t3
srai a0, t4, 1 => srli a0, t4, 1

Version 1.0 of 1st October 2024, EPFL ©2024
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) In order to minimize memory accesses, each time the memory is accessed using 1w,
the 32-bit read value is stored in a register to avoid having to access the memory again
to read the second element of the vector, given that the values are encoded using 16
bits, register t 6 is used for this purpose.

func:
1w
add
srai
add
addi
add
loop:
andi
bne
1w
add
J
LSW:
slli
MSW:
srai
slt
bne
add
contl:
slt
bne
add
cont2:
addi
andi
bne
addi
cont3:
bne
add
srai
fin:
ret

t2,
te,
t2,
t3,
to,
tl,

t4,
t4,
t5,
te,
MSW

t5,

t5,
t4,
t4,
t2,

t4,
t4,
t3,

0,
t4,
t4,
t1,

al,
t4,
a0,

0 (a0)
zero, t2
t2, 16
zero, t2
zero,
zero, a0

t0, 1
zero,
0(tl)
zero, tb5

t6, 16

t5, 16
t2, tb
zero,

zero, tb

t5, t3
zero,
zero, tb

t0, 0x1
t0, 1
zero,
tl, 0x4

t0, loop
t2, t3
t4, 0Oxl1

0x1

LSW

contl

cont?2

cont3

S R

S o oS e o

ST

S TS

=

First 2 elements in t2

First 2 elements in to6

Initialize the min

Initialize the max

Initialize counter of elements tO
tl points on the 1lst element

If even element counter fetch new word
Read the 2 following elements

Copy t5 in t6

Next element on MSW

Shift on most significant word

Shift on LSW with sign
(t2 >= t5 ) => t4 = 0

Update the max in t2
(5 >= t3 ) =>

Update the max in t3

Go the next element
If even element counter,

Update the vector pointer
Check if we reached the end
Add the max and the min

Divide the sum by 2

Return
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[Exercise 11] CORDIC

The CORDIC algorithm (COordinate Rotation DIgital Computer) allows calculating
the length of a vector V(X,Y) using the following iterative relationships:

Tig1 =2 — d; - y; - 27" (1)

Yir1 =Yi+d; w27 )

Zitl = % — dl . tan*1(2*i) (3)
Where d; = { 1 otherwise

x,y, and z are initialized as follows: g = X, yo = Y, and z, = 0.

After n iterations (n large enough), z,, y,,, and z, can be expressed as follows:

ry A VX2 + Y2 (4)

Yn =0 )
Y

2n A tant (Y) (6)

If we neglect constant 4,, these iterative formulas allow calculating the length of a
vector as well as its angle with the x axis.

a) Suppose that initially 2o = —24, yo = 32, and 2z, = 0. Calculate by hand the value of
x9 and y,. Do not calculate zs.

b) Using the aforementioned iterative formulas, write a RISC-V function that computes
in 31 iterations the length and angle (with the x axis) of a vector whose z and y coordin-
ates are available in registers a0 and al. These values are 32-bit signed integer values
encoded in two’s complement. Register a2 points on an array of 32-bit words in the
main memory which contains the already computed tan~"(27*) coefficients (you do not
need to compute them). Element 0 in the array is the coefficient of iteration 0, element
1 in the array is the coefficient of iteration 1 and so on. Ignore possible overflows. The
length and angle should be returned in a0 and a1 respectively.
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[Solution 11] CORDIC

a) We can find z, and y, using the iterative formulas. Initially, we have:

.730:—24
y0:32
ZOZO

Iteration 1 will be:
Yo > 0=dy=—-1

2 =—-24—(—1)-32-20=—24+32=38
yr =324 (=1) - (=24) - 20 = 32 4 24 = 56

Then, iteration 2:

yp >0=d; = —1
Ty =8—(—1)-56-271 =8+ 28 =36
Yo =56+ (—1)-8-27' =56 —4 =52

b) The RISC-V function that calculates the length and angle of a vector using the
CORDIC formulas is given below:

cordic:
add t0, zero, a0 t0 <- x0
add tl, zero, al tl <- yO0

add t2, zero, zero

add t3, zero, a2

addi t4, =zero, 1
loop:

t2 <= z0 (init to 0)
t3 <— a2 (coef table)
t4d <- 1 (index)

.

sltiu t5, t4, 32 # if t4 = 32

beq t5, zero, end # then goto end

slt t5, zero, tl # if 0 < yi , t5=1 else t5=0

beqg t5, zero, dpos # then go to dpos, else
dneg:

sra th, tl, t4 # £S5 <= yi*2%*(—-1)

sra t6, t0, t4 # £6 <— xi1*x2%*(—1)

add t0, tO0, tb5 # compute next xi

sub tl, tl, t6 # compute next yi

1w t5, 0(t3) # t5 <— coeff[i]

add t2, t2, tb # compute next zi
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J
dpos:
sra
sra
sub
add
lw
sub
cont:
addi
addi
J
end:
add
add
ret

cont

t5,
te,
to,
tl,
t5,
t2,

t3,
t4,
loop

a0,
al,

tl, t4
t0, t4
t0, tb
tl, t6
0(t3)

t2, tb

t3, 4

t4, 1

zero,
zero,

to
t2

# goto cont

5 <= yix2x%(—1)
to <— Xi*x2#%%(—-1)
compute next xi
compute next vyi
t5 <= coeff[i]

compute next zi

S o S oS o

# t3 <— next coeff addr
# t4 <— next index
# goto loop

# a0 <— xn
# al <— zn
# return
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[Exercise 12] Division Rest

We want to write a function that calculates the rest of an integer division of a 32-bit
unsigned integer by 15 without performing the division per se. We can use the follow-
ing property: the division of a number by 15 is the recursive sum of the digits of its
hexadecimal representation. We thus start by summing all the digits (in hexadecimal
representation) of the given number. Suppose the hexadecimal representation of this
sum has more than one digit. In that case, we apply the same procedure recursively,
i.e., we sum the digits of the sum until we obtain a value that is represented by a single
hexadecimal digit. This value is the rest of the integer division by 15, except if it is
equal to 15, in which case the rest is 0 (and not 15).

For example, let N = 0x3204"1EF2 = 839"130'866. We calculate the rest of its division
by 15 as follows:

* We first sum the 8 digits of the hexadecimal representation of N:
§S3+2+0+4+1+E+F+ 2 =0x29 (41)§

¢ Since the obtained sum 0x29 has two digits, we compute their sum:
§2 + 9 = 0xB (11)§ which has only one digit.

This value 0xB is the result of the integer division of N by 15, as it has only one digit
and is different from 15 (no need to replace it with 0). It can easily be verified that
839130866 = 55'942'057 - 15 + 11.

a) Write a function that calculates and returns the rest of the division of a 32-bit number
N by 15. N is the only parameter supplied to the function through the a0 register. The
value of this register does not necessarily need to be preserved. Make use of the cal-
culation’s recursive structure by writing a recursive function. Your code must respect
RISC-V conventions.
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[Solution 12] Division Rest

a) We make the following choices:

* To isolate the 4 bits necessary to compute the partial sums we successively use
the s11 and srl instructions. Alternately we could also use a mask.

* To recursively compute the partial sums we can use the “jump” instruction (3j)
instead of “jump and link” (jal), as only the ra register must me preserved.

A possible solution is given below:

start:
addi t0, zero, 28
addi tl, zero, 28
add t2, zero, zero # intermediary sum
addi t3, zero, 8 # 32-bit hex digits
sum
beq t3, zero, rec # end partial sums test
sll t4, a0, tO
srl t4, t4, tl
add t2, t2, t4 # partial sum

addi t0, tO, -4 # shift left wvalue
addi t3, t3, -1 # loop counter update
Jj sum
rec :
add t5, t2, zero
1i t6, OxXFFFO
and tb5, t5, to
beq t5, zero, fin # recursion test
add a0, t2, zero # update a0
j start # recursion
fin :
addi t0, =zero, 15 # Edge case

bne t2, t0, skip

addi t2, zero, O
skip

add a0, =zero, t2

ret

Note that we can also use the jal instruction for recursion, but in this case the ra re-
gister must be saved on the stack as each new (recursive) call of the function overwrites
the previous value (of ra).
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[Exercise 13] Run-Length Encoding

Write a RISC-V function that performs Run-Length Encoding. This encoding is effi-
cient for representing a string containing characters that are often repeated consecut-
ively. Each character, repeated or not, is represented using two bytes, the first being the
character itself, and the second the number of times this character is repeated consec-
utively. For example, the string ’ aaaabccc’ will be encoded into the RLE sequence
"a’,4,’'b’,1,’c’, 3.

Some specifications of the RISC-V function that performs the RLE encoding are given
below:

* Characters are in ASCII format (an unsigned byte whose value ranges from 0 to
127).

¢ The function receives in register a0 a pointer on a string that ends with a null
character, i.e., the last byte of the string is zero.

¢ The result of the function is a list of bytes representing the encoded string. The
memory address where the function must write the encoded string is given in
register al. The encoded list of bytes also ends with a null byte.

Figure 3| below shows the input string and the output encoded list of bytes:

Input Iist| 'a' | ‘a’ | 'b' | 'c' | 'c' | ‘c' | 0 |

Outputlistl'a'l 2 |b| 1 |c| 3 | 0 |

Figure 3: Example of RLE encoding

a) Write a RISC-V function that performs RLE encoding. Assume that a character is
never repeated consecutively more than 255 times. Your code should conform to RISC-
V conventions.

b) Give a simple way of modifying the encoding in the event of a character being
repeated more than 255 times. Modify the code of the function accordingly.

¢) Modify the function to implement a more efficient encoding as follows:

¢ If a character has a single occurrence and is not repeated, the ’ 1’ is omitted.
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e If a character is repeated (consecutive occurrences), the encoding is essentially
the same as before. However, in order to determine whether an element (byte)
represents a character or a number of repetitions, the most significant bit (MSB) is
set to "1” in the latter case (i.e., 128 is added to the value representing the number
of repetitions).

The example string * aaaabccc’ is now encoded into the sequence ” a’, 132 (4 + 128),
"b’,’c’,131. Note that since the MSB is now used to distinguish between characters
and repetitions, the maximum number of repetitions that can be handled is now 127
instead of 255 (we lose the MSB).
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[Solution 13] Run-Length Encoding

a) The code of the RISC-V function that performs RLE encoding is given below with
appropriate comments. t0 contains the last read character, t 1 contains the repeated
character, and t 2 the number of repetitions.

rle: 1lbu t0, 0(a0) # Initialisations
beq t0, zero, fin
add tl, =zero, tO
add t2, zero, zero

loop: bne t0, tl, diff # Check if char is different
addi t2, t2, 1 # If similar, increment counter
j meme

# Write the repeated char and the number of repetitions
# on the output list. Update the pointer of the output list
diff: sb tl, 0(al)

sb t2, 1(al)

addi al, al, 2

# If the input list is completed, terminate the function
beq t0, zero, fin

# Update the repeated char and the number of repetitions
add tl1, t0, zero
addi t2, zero, 1

meme: addi a0, a0, 1 # Go to next char
lbu t0, 0(a0) # Read the next char
Jj loop

fin: sb zero, 0(al) # Ends the output list with O
ret # return

b) The simplest way of modifying the code is to interpret a character that is repeated
more than 255 times as a new character. For example, if a character repeats 256 times,
it will be encoded as ”"a’, 255, a’, 1. This only requires adding a simple control
sequence after the Loop label to implement the desired new functionality. The modi-
fication is thus:

loop: bne tO0, tl, diff
addi t3, zero, 255 # Verify the 255 limit
beq t2, t3, diff # If the limit is reached
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# consider the next repeated
# char as different

addi t2,t2,1
j meme

Note that in order to increase the performance of the code, we can move instruction
addi t3, zero, 255 within the initialization part of the function.

c) We only need to slightly modify the part that writes the encoded sequence: i.e., the
tirst two lines after the diff label. If there are no repetitions, we simply increment the
pointer on the output (encoded) sequence of bytes and continue, otherwise we add 128
to the number of repetitions and write it to the encoded string.

The modified code is given below.

diff:
sb tl, 0(al)
addi t4, zero, 1
beq t2, t4, ignore # Repeated char ?
addi t2, t2, 128 # yes, add 128
sb t2, 1l(al) # write on the output encoded string
addi al, al, 1 # increment pointer

ignore:
addi al, al, 1 # increment pointer
beq t0, zero, fin
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[Exercise 14] Understanding RISC-V

Consider the following RISC-V function:

func: sll1li t0, a0, 16
srli t0, tO, 16
slli tl1, al, 16
srli tl1, tl, 16
add a0, zero, =zero
loop: beq tl, zero, end
andi t2, tl, 1
beq t2, zero, cont
add a0, a0, tO
cont: slli tO, tO, 1
srli tl1, t1, 1
j loop
end: ret

Two input parameters are passed to the function via registers a0 and a1, and the result
is returned through register a0.

a) Describe in a single sentence what the function does.

b) What is the maximum effective size (in bits) of the input and output parameters? Is
there an overflow risk? Explain.

) Are the input parameters signed or unsigned numbers? Explain.

d) If we replaced (only!) the first instruction srli by srai, would this function still
perform a useful but eventually different action? If so, describe the new action and
explain the result. If not, precisely explain why modifying the function in this manner
makes no sense.

e) If we replaced the first and second srli instructions by srai, would this function
still perform a useful but eventually different action? If so, describe the new action and
explain the result. If not, precisely explain why modifying the function in this manner
makes no sense.

f) If we replaced all three srl instructions by sra, would this function still perform a
useful but eventually different action? If so, describe the new action and explain the
result. If not, precisely explain why modifying the function in this manner makes no
sense.
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[Solution 14] Understanding RISC-V

a) The function performs the multiplication of two 16-bit unsigned numbers.

The product of the two numbers is calculated using the shift and add algorithm. The
solution with comments is given below:

# Initialize the inputs and outputs.
# Set the 16 most significant bits of a0 and al to zero.
func:

slli t0, a0, 16

srli t0, tO, 16

slli t1, al, 16

srli tl1, tl, 16

# Initialize the product
add a0, zero, =zero

#If the operand in tl is zero, we end the loop
loop:
beq tl, zero, end

#The least significant bit of tl determines if
#the value must be added in t0. If this bit is
#zero, we continue without making the addition,
#otherwise we add to aO.

andi t2, tl, 1 # We make the addition if the
beq t2, zero, cont # least significant bit of tl is 1.
add a0, a0, tO # do the addition
# Prepare the two operands by shifting them by 1 bit
# The operand added to the result (t0) is shifted
# to the left. The operand that controls if the addition
# for the actual weight (tl) must be made, is shifted
# to the right.
cont:
slli t0, t0, 1 # Shift t0 to the left
srli t1, t1, 1 # Shift tl to the right
j loop # return to loop
end:
ret # return
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b) As both 16-bit operands are initialized to zero at the beginning of the program,
their maximum effective size is 16 bits. The result is 32-bit wide, as a result, there
can be no overflow since multiplying two 16-bit numbers yields a number that can be
represented using 32 bits.

(216 —1)(2"0 —1) =2 -2 1+ 1 <232 1

c) The 16 most significant bits of the operands are set to zero by the srli instructions
and no sign extension is performed. These operands are thus interpreted as unsigned.

d) If we replace the first srli instruction by srai this means that we interpret this
operand as being signed, while the other remains unsigned. The question is whether
this has any effect on the proper execution of the function. There are two cases to
consider:

¢ The first operand is positive. This case is not different than the original program.
Thus using srai has no effect and the function returns a valid result.

e The first operand is negative. In this case a value -0xC is represented as 22 -
0xC, and thus multiplying this value with a positive number e.g., 0xB yields:
(22 -C)-B=2.B-C-B=0-C-B=(-C)-B

Which is correct if we interpret the result as being signed. Note that 232 B cannot
be represented on 32 bits and becomes zero.

Thus the function still returns a valid result if we replace srli with srai aslong as it
is interpreted as being signed.

e) If we replace the first two srli instructions by srai, then the function still returns
a valid result. There are four cases to consider:

* Both operands are positive. This case is the same as the original program. No
problems.

* The first operand is negative. This case is similar to the one discussed in the
previous point.

* The second operand is negative. This case is similar to the preceding one. If
the first operand has a value of 0xA and the second operand a value of -0xC
represented as 2°? - 0xC), then:
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A (22 -C)=22%A-A.C=A.-(-C)
Which yields a correct result if it is interpreted as being signed.

* Both operands are negative. Suppose the first operand has a value of —0xC (2% -
0xC) and the second a value of —0xD (2% - 0xD), then:

(232—C)<232—D) — (264—232-0—232~D—|—C-D)
= 2®22® -C-D)+C-D
= 0+C-D
= C-D

This is the expected and correct value.

Hence, replacing the first two instructions does not alter the behaviour of the function
as long as the result is interpreted as being signed.

f) The function does not yield correct results if all three srli are replaced by srai.
Indeed, if register t 1 contains a negative value then shifting it will extend the sign, the
value in t 1 will never reach zero and the program will not terminate.

46 ofﬁ Version 1.0 of 1st October 2024, EPFL ©2024



Exercise 15 Exercise Book
Instruction Set Architecture Computer Architecture

[Exercise 15] Floating Point Larger-Than

Floating point formats in computer science are similar to the common scientific nota-
tion, with a mantissa and an exponent. For example —9.062 - 10? or 3.87 - 10~*. Usually
we want to represent numbers with a mantissa bound between 10° and 10" in which
case it is considered as normalized. If a given number is not normalized it is mul-

tiplied by an appropriate power of 10 to adapt the exponent so that the mantissa is
within normalized bounds. For example :

—0.0041-10* = —4.1-10"
9760.1-107® = 9.7601 - 107°

Now consider the following 32-bit binary floating point format:

31 24 23 22 0
e ms mV

m
ms: sign of the mantissa m
m,: absolute value of the mantissa m
e : exponent (signed, 2s complement)

Figure 4: 32-bit floating point format

Bits 31 to 24 represent the exponent e in Two’s Complement, while bits 23 to 0 represent
the mantissa m in sign and magnitude, i.e. bit 23 represents the sign and bits 22 to 0 the
absolute value. A value in floating point format can thus be represented as:

(=)™ -m, - 2°

The point in the mantissa is implied after the most significant bit MSB, and thus bit
22 has a weight of 1, bit 21 a weight of 1, bit 20 a weight of ; and so on. Moreover,
numbers are normalized, i.e. 2° < m, < 2!, meaning that the mantissa is aligned in a
way such that bit 22 is always ’ 1’ and the exponent is adjusted accordingly. Of course
in a real application this would be implied because it is useless, except to represent the
value zero whose existence we will ignore in what follows.

As an example we represent some values in normalized floating point notation:

14 = 1.75-23 = (0000'0011’0111’0000’0000’0000’0000'0000)
—0.312 = —1.25-272 = (1111’1110'1101’0000’0000’0000’0000’0000)
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a) Write a RISC-V function 1arger-than that receives two numbers in the aforemen-
tioned floating point format and yields an unsigned integer number. This function
compares the two numbers and returns 1 if the first number is strictly greater than the
second one, if not the function returns 0. Usual RISC-V conventions must be respected.

b) Write a RISC-V function normalize that converts a non-normalized number into
a normalized one, according to the floating point format presented earlier. The zero
number must be ignored as well as potential overflows of the floating point format.
This function must also respect RISC-V conventions.
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[Solution 15] Floating Point Larger-Than

a) To perform the required comparison, we can use the algorithm illustrated below:

Initialize RetVal to 0

Return RetVal -

Initialize Sign to 0

Invers the value
of RetVal

Y

Equal numbers ?

YES

Extract the signes

Y

Y

Equal signs ?

First positif
number ?

Store the sign

Extract the exponents RetVal=1

Y

Equal exponents ?

NO

First number's
exponent is greater ?

Extract the mantissas RetVal=1

First number's NO

mantissa is greater ?

Y

RetVal=1

Figure 5: Algorithm for the comparison
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The corresponding RISC-V program is given below with comments:

compare:
add t4,
add tO,
beq a0,
sign_check:
slli t1,
srli t1,
slli t2,
srli t2,
beqg t1,
beq t1,

j smaller_eq

set_sign:
add tO,

exp_check:
srai tl,
srai t2,
beqg t1,
slt t3,
beq t3,

Jj smaller_eq

mantissa_chk:
slli t1,
slli t2,
sltu t3,
beqg t3,

greater:
addi t4,

smaller_eq:
xor t4,
mv a0,
ret

zero,
zero,
al,

ao,
tl,
al,
t2,
t2,
zero,

zero,

ao,
al,
t2,
tl,
zero,

ao,
al,
t2,
zero,

zZero,

t4, tO0
t4

Zero
Zero
smaller_eq

8

31

8

31
set_sign
greater

tl

24

24
mantissa_chk
t2

greater

9

9

tl
smaller_eq

1

+=

Extract RetVal
Initialize sign
Equal numbers?

Extract the signs

Same signs ?
lst pos number?

Store the sign
Extract the exponent

same exponent?

Extract the mantissa

RetVval=1
Adjust RetVal

Return

b) The idea is to shift the mantissa to the left until the MSB is 1’ and adjust the
exponent accordingly. The RISC-V code is given below:

normalize:
slli tO,
srai tl,

test_nrm:
slt t2,
beq t2,
slli tO,

a0, 9
a0, 2
zero,t

# Extract the mantissa
4 # Extract the exponent
0 # If MSBR is 1

zero,reformat # end loop
# Left shift mantissa

to, 1
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addi t1, t1,

J
reformat:

srli
slli
srli
add
srli
slli
add
ret

test_nrm

t2,
t2,
t0,
t2,
t2,
tl1,
ao,

ao,
t2,
to,
t2,
t2,
tl,
t2,

-1

23

31

t0

24
tl

=

H= oS S S o o

Decrement exponent
Stay in the loop

Sign of MSB

Shift mantissa by 1 bit
Mantissa and sign

Shift mantissa and sign
Shift exponent

The format is correct
return
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[Exercise 16] Understanding RISC-V

Consider the following RISC-V function:

func: add tO, zero, a0
add t1, zero, al
add t2, zero, a2
add ao0, zero, zero
loop: beqg t2, zero, fin
1w t3, 0(t0)
1w t4, 0(tl)
addi tb5, zero, 32
slt to, t2, t5
beqg te¢, zero, contl
add tb5, zero, t2
contl: xor to, t3, t4
cont2: andi t3, to, 1
add a0, a0, t3
srli to, to, 1

addi t2, t2, -1
addi t5, t5, -1
bne =zero, t5, cont?2

addi tO, to, 4
addi t1, tl, 4
Jj loop

fin: ret

Input parameters are passed to the function via registers a0, al, and a2. Registers a0
and al contain each the start address of a list of bytes and a2 contains an unsigned
number.

a) Explain in a sentence what the above RISC-V code does.

b) Is the given code written for a little-endian or big-endian processor? Clearly state
the reason.

¢) The above code makes use of the xor instruction. Suppose this instruction does not
exist. Write a sequence of instructions that replace the xor instruction.
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[Solution 16] Understanding RISC-V

a) The supplied RISC-V code counts the number of bits that are different in the two
input lists. The beginning of each list is given in registers a0 and al, while a2 contains
the number of bits in each list. A commented version of the RISC-V code is given
below:

# Initializations

func: add t0, zero, a0
add tl1, zero, al
add t2, zero, a2
add a0, zero, =zero

Addresses of the lists
in t0 et t1l

The number of bits in t2
Initialize the result

# The loop takes 32 bits of each list and counts the number of
# different bits for each pair of 32 bits. It finds the total
# number of different bits in the lists
loop:
beq t2, zero, fin
lw t3, 0(t0)
lw td, 0(tl)
addi t5, =zero, 32
slt t6, t2, t5
beq t6, zero, contl
add t5, zero, t2

All the bits have been checked?
Put the 32 following bits of
each list in t3 and 4

Init. counter at 32 (bits)

If less than 32 bits remain

set counter value to the number
of remaining bits

= oS oS S o 3

contl:
xor to6, t3, t4

e

The different bits of the 32 bit
# pair are stored in t6

# The loop cont2 counts the number of bits set to 1 in the
# register t6 (the number of different bits in the current
# comparison)
cont2:
andi t3, t6, 1
add a0, a0, t3
srli to6, t6, 1
addi t2, t2, -1
addi t5, t5, -1
bne zero, tb, cont?2
addi t0, tO0, 4
addi t1, t1, 4
j loop

Extract the last bit

Add this bit to a0l

Right shift t6 by 1

Decrement the counter of total bits
Decrement the counter of the loop
Check the end of the loop

Increment pointer

to read the next 32 bits

Jumps to the top of the loop

S e e

fin:
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ret # Function returns

b) The RISC-V code is written for a little-endian processor. This can be deduced from
the fact that counting the bits that are different starts from the least significant bit (in-
struction andi t3, t6, 1. Thatis, it is assumed that the least significant byte is
stored at the smallest address in memory, which characterizes little-endian processors.

Figure[f|shows how the bytes are organized in the memory and the difference between
little and big-endian processors.

1
000 The actual 32 bits word
1001 on the register $t6
The previous Fmmmmmmmmmm e e e m o .
1002 32 bits word 1 For a little-endian processor '
] ]
1003 : :
] ]
1004
00 The actual : E bi di :
1005 32 bits word : or a big-endian processor :
End of the list 1 !
1006 of bits ' X
ieo7 { )} 0 FTTTTTTTEETEEEETESSS !
Part of the words where the bits are valid.

Figure 6: Words in memory for little /big5-endian processors

¢) The xor operation can be expressed logically as follows:

AxorB=A-B+A-B (1)

We can thus replace instruction xor t6, t3, t4 with the following sequence of in-
structions, the result is stored in t 6 as in the original instruction.

not t6, t3 # not (A) in t6

not s0, t4 # not (B) in sO

and sl1, s0, t3 # A.not (B) in sl

and s0, to, t4 # B.not (A) in sO

or t6, sl, sO # A.not (B) + B.not (A) in t6
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[Exercise 17] Multiplication in Finite Fields

We would like to create a RISC-V routine that implements elementary operations for
tinite fields modular arithmetic, in binary representation. A finite field F(2") is the set
of integers that can be represented on n bits.

When performing an addition in a finite field, each pair of bits is added independ-
ently, i.e., the carry is not propagated to the adjacent higher weight pair as done in an
ordinary addition.

Therefore, an addition corresponds to a simple bit-wise xor operation. The following
example compares an ordinary addition to one carried out in a finite field F(2*):

Ordinary Addition Addition in Finite Field F(2")

0101 0101
+ 0011 + 0011
1000 0110

Multiplication in a finite field F(2") is carried out in two phases. The first phase consists
in multiplying the two numbers similarly to an ordinary multiplication, i.e., by gener-
ating partial products then summing them. The addition of these partial products will
yield a different result because this operation is defined differently in finite fields. This
is illustrated by the following example:

Ordinary Multiplication Multiplication in Finite Field F(2")

1011 1011
X 1110 X 1110
0000 0000
1011 1011
1011 1011
+ 1011 + 1011
10011010 1100010

a) Write a RISC-V procedure that implements the first phase of the multiplication in a
finite field. The procedure’s arguments are two 16-bit operands in registers a0 and a1l.
The 31-bit result is returned in register v0. Conventions regarding register use must be
respected.

It can be observed that the result of the multiplication’s first phase cannot be correct
as it generally does not belong to the finite field F(2*). This is why the second phase is
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necessary. The second phase of a multiplication in a finite field F(2*) consists in finding
a result on n bits. To this effect we use a property of finite fields: in each finite field, a
value m € F(2") is associated to 2". For example, in the finite field F(2*), we can have
2 = m = 3. Thanks to this property, all bits whose weight is greater or equal to n can
be rewritten as a function of m and added to the result.

In the example we have F(2*) and 2* = 3:

24 — 3 = 0011
25 =24 << 1 = 0110
26 = 2% << 2 = 1100

Starting from a certain power that depends on m, many iterations are necessary before
having a result on n bits:

2T =2 <<3 = 11000 = 2*+8 = 0011+ 1000 = 1011
28 = 2" << 4 = 110000 = 2° 4 2% = 01104 0011 = 0101
29 = 2% << 5 = 1100000 = 2° 4 2° = 1100 + 0110 = 1010

Note that all sums are done according to the definition of the addition in the finite field.
Given this property, we can replace each bit of the first phase’s result whose weight lies
between n and 2n — 1 with values obtained from m, so as to obtain a value that belongs
to the finite field F(2"). In the preceding multiplication example, if 2* = 3, we obtain:

1100010 = 2% + 2° +2 = 1100 + 0110 4 0010 = 1000

Thus, in the finite field F(2*), with 2* = 3, the result of the multiplication of 11 by 14 is
8.

b) In the finite field F(2*), with 2* = 3, multiply 5 by 13 giving all steps of the calcula-
tion.

) In order to reduce the result to n bits, we can go through all bits whose weight
lies between n and 2n — 1 and if their value is " 1’ we set it to ' 0’ and add a value
depending on m. Does it seem wiser to go through the bits starting from the one with
the most significant weight or from the one with the least significant weight ? Why ?
How should be generated the value that you will add ?
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d) Create a RISC-V procedure that reduces a 32-bit number in a given finite field. The
number is supplied as a parameter in register a0 and could be the result of the multi-
plication’s first phase returned by the routine created in the preceding question. The
size n of the finite field is given as a parameter in register al. The value m to be asso-
ciated to 2" is given as a parameter in a2. Register a0 is used to return the result. Care
must be taken to respect all conventions regarding register use.
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[Solution 17] Multiplication in Finite Fields

a) Multiplication’s first phase:

phasel: add t3, zero, zero # partial sum
add t0, =zero, a0
add tl1, zero, al
loop: beq tl, zero, return
andi t2, tl, 1
beq t2, zero, next
xor t3, t3, tO0

next: slli t0, tO, 1
srli tl1, tl, 1
Jj loop

return: addi a0, t3, O
ret

b) The result of 5 times 13 in the finite field is given below:

1101
X 0101

1101

0000
1101
+ 0000

0111001

111001 =2° +2* +9=0110 + 0011 + 1001 = 1100

) By going through the bits from right to left we run the risk of reintegrating bits with
an index greater than n—1, and thus having to test the same bits several times. By going
through them them from left to right this problem no longer exists, as there is no way
of re-injecting new bits into already visited slots. The value to be added is initialized as
follows: r = (2" +m) << (31 —n). Thus for the first iteration, if the most significant bit
of the value to convert is ' 1’, performing a xor between this value and » will allow
inverting the most significant bit and adding m (shifted to the right position). Then, r
must be shifted by 1 bit to the right for the next iteration.

d) The code for the second phase is given below:

phase2: add t3, zero, a0
addi t0, =zero, 1
slli t1, t0, 31
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sll t0, t0, al
add t0, t0, a2 # t0
addi t2, =zero, 31 ¥ t2
sub t2, t2, al # t2
sll +tO0, tO0, t2

loop: srl t2, t3, al
begq t2, zero, return
and t2, t3, tl
beq t2, zero, next
xor t3, t3, tO0

next: srli t1, tl, 1
srli t0, tO, 1
Jj loop

return: addi a0, t3, O
ret

=2"n + m
= 31
= t2 - al

t0 is the replacement value for the most significant bits. t1 is the mask used to go
through the bits whose index (weight) is greater than n — 1.
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[Exercise 18] Square Root

We want to write a function in assembly that performs an integer square root opera-
tion. The algorithm to be implemented is represented with the control flow diagram
shown in Figure[7} In the figure, the diamonds represent conditions and the rectangles
represent operations. All operations are on integers and produce integer results.

remain := input;
res :=0;
bits := 230;

Yes J
bits > remain ? >——>| bits : = bits / 4;

No

res:=res/2;
bits := bits / 4;

bits==0? remainres+bits

Yes

remain := remain
- (res + bits);
res :=res + 2 * bits;

return res;

Figure 7: Control flow diagram of the algorithm

a) Perform the given algorithm with the input 100 by showing the values of remain,
res and bits at each step (square boxes) of the algorithm. Show the results as a n x 3
table, where the rows represent the steps and columns represent remain, res, and bits,
respectively.

b) Write an assembly function sqrt which implements the given algorithm. input is
an unsigned integer and is passed to the function in the register a0. You should return
the result of the function in the register a0. The usual conventions of the assembly
should be respected.

c) Let us use this sqrt function to calculate the distance of a point from the origin
in 2-dimensional space. Each coordinate of the points is represented by 16-bit half-
word in sign-and-magnitude format. The x and y coordinates of the points are stored
sequentially at the memory address pointed by a0. The result should be stored to the
memory address pointed by al in the same format. Assume a big-endian machine.

Reminder: Distance of a point (z,y) from the origin is /22 + 2.
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Write a function vectorlen which works as described above. Suppose that we don’t
have access to load-word and load-half-word instructions and can use signed and un-
signed versions of load-byte instruction (1b and 1lbu). Similarly, you have access to
store-byte instruction (sb) to write into the memory. To simplify the access to the stack,
you can use the macros push rAand pop rA, which adds an element to the stack and
removes the last element from the stack, respectively. You can use mul rC, rA, rB
instruction which stores the result of the multiplication of rA and rB into rC.

d) Is it possible to have overflow by the vectorlen function? If yes, explain which
instructions can cause the overflow and why using an example.
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[Solution 18] Square Root

a)

remain res bits

100 0 2%
100 0o 2%

100 0 26
36 128 26
36 64 24
36 32 2?

0 40  2?
0 20 2°
0 10 O

b) The procedure is written in RISC-V. Note the unsigned comparisons.

sgrt:
add t3, zero, zero
add t0, a0, =zero
addi tl, zero, 1
slli +t1, tl, 30
align:
bgeu t0, tl, loop
srli tl1, tl, 2
Jj align
loop:
beq tl, zero, end
add t2, t3, tl
bltu t0, t2, skip
sub t0, t0, t2
slli t2, tl1, 1
add t3, t3, t2
skip:

srli t3, t3, 1
srli tl1, tl, 2
Jj loop

end:
addi a0, t3, O
ret

#
#

S o oS e o oo

+

result
remain = input

bits

bits /= 4

bits==0 -> end

t2 = results+bits
remain < t2 -> skip
remain —-= t2

t2 = 2xbits

res+=t2

res/=2
bits/=4

¢) Before using the mul instruction to get the square of the coordinates, we would need
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to convert them in 2’s complement format. Yet, because we know that the square of =
or —z is the same, we can simply square the absolute value of the coordinates, which
is extremely simple to find in sign and magnitude: we can simply mask out the sign
and retain the mantissa before squaring.

vectorlen:
addi sp, sp, -4 # sp=sp-4
sw ra, 0(sp) # save ra on the stack
lbu t0, 0 (a0) # t0=xMSB
slli tO, tO0, 8 # t0=t0<<=8
lbu tl, 1 (a0) # t1=xLSB
or t0, t0, tl # t0=x
1i t3, Ox7FFF
and t0, t0, t3 # tO=magnitude (x)
lbu tl, 2 (a0) # we do the same for
slli t1, t1, 8 # the 2nd coordinate
lbu t2, 3 (a0)
or tl, tl1, t2
1i t3, Ox7FFF
and tl, tl, t3 # tl=magnitude (y)
mul t0, t0, tO0 # t0=x"2
mul tl, tl, tl # tl=y~2
add a0, to, tl # a0=t0+t1l
jal ra, sqrt # alO=sqgrt (a0)
sb a0, 1 (al) # we store the result
srli a0, a0, 8 # in memory
sb a0, 0 (al)
1w ra, 0(sp) # load ra from the stack
addi sp, sp, 4 # sp=sp+4
ret

d) The only place where an overflow can occur is when we convert the result back into
the sign-magnitude format on 16 bits. If we consider the maximum values possible of
the coordinates (2'° — 1) we will get a vector length of /2 - (215 — 1)2 = /2 - (215 — 1)
whose magnitude cannot fit on 15 bits.

There is no other possible overflow. The sum of the maximum squares (2 - (2'> — 1)? <
231) fits on 32 bits.
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[Exercise 19] Matrix multiplication

In this question, you will implement the standard matrix multiplication algorithm in
assembly and analyse the implementation from different perspectives. Some useful
information about the matrices and matrix multiplication is given as Appendix at the
end of question. Please refer to the section for relevant definitions.

The multiplication of two matrices is only defined when the number of columns of
the first matrix equals to the number of rows of the second matrix. We calculate the
multiplication of two matrices A and B as given in Algorithm [1} Basically, to get the
element C; ; we get the inner product of i row of A and ;% column of B.

Algorithm 1 Calculate the multiplication of two matrices: C' = AB

Require: A: n x m matrix
Require: B: m x s matrix
Ensure: C: n x s matrix
1: fori =0tondo
2. forj=0tosdo

3 sum = 0;

4 fork =0tom do

5: sum += A; i, - By
6: end for

7 C;; = sum;

8 end for

9: end for

Using the given algorithm you can verify that

4
‘ -2 3 0 . 13
if A= 1 _5 4 and B = . then C = AB = ol

You will implement a RISC-V assembly procedure to multiply two square matrices
using the given algorithm. Assume that we have two NV x N integer (32-bit signed)
matrices, A and B, stored consecutively in the memory. You can see how two 3 x 3
matrices are stored in memory starting from the address 0x1040 in Figure |8, Also
assume that the size of the matrices, i.e., IV, is loaded into the register a0 and the start
address of the first matrix, i.e.,, A, is loaded into the register al before calling your
procedure.

a) First, implement a procedure called innerProduct which will calculate the inner
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Address | +0 +4 +8 +C
ox1040| 1 7 9 | 8
0x1050| 3 2 6 5
ox1060| 4 | 1 6 0
ox1070| 5 4 3| 2
ox1080| -7 8 |
. . ) 1 7-9 1 071 .
Figure 8: Organization of the matrices A = [ 8,32 } and B = [—25 4 —3] in the
memory.

product of a given row of the first matrix with a given column of the second matrix.
Assume that the address of the first element of the row (of the first matrix) is given
in the register a2 and the address of the first element of the column (of the second
matrix) is given in the register a3. For example, if the caller wants to calculate the
inner product of the second row of A with the third column of B in Figure |8, then
it will load 0x104c into a2 and 0x106c into a3 before calling your procedure. You
should return the result of the inner product in the register a0.

Note that you should push and pop the necessary registers to the stack to avoid over-
writing the existing data. To simplify the access to the stack, you can use the macros
push rA and pop rA, which adds an element to the stack and removes the last ele-
ment from the stack, respectively.

You can use mul rC, rA, rB instruction which stores the least significant 32-bit of the
result of the multiplication of rA and rB into rC.

b) Using the procedure you implemented in part a), write a procedure called
matrixMultiplication which stores the result of the multiplication, i.e., matrix C,
into the memory area immediately following the second matrix. Before calling the
procedure innerProduct do not forget to assign the values correctly to the registers
a2 and a3.

c¢) Discuss whether it is possible to have overflow in your code. If yes, indicate which
instructions of your code could cause the overflow and why.

d) Assume that you are given another implementation of matrix multiplication which
multiplies the first matrix A with the second matrix B which is now already stored in
transposed form, i.e., BY, in the memory. In order to multiply these two matrices, as
opposed to the Algorithm I} instead of calculating the inner products of rows of A with
columns of B, we calculate the inner products of rows of A with rows of B7, i.e., the
line 5 of Algorithmchanges to “sum += A, , - B}:k”.

Consider a system with 2-way set-associative cache with an LRU (Least Recently Used)
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replacement policy. The cache is initially empty, has a capacity of 1024 bytes (256
words) and a four word block size. You have two 128 x 128 integer matrices stored
consecutively starting from the address 0x1000 in the memory. Will the new imple-
mentation will perform better than the original implementation of Algorithm [1? Ex-
plain your answer by roughly comparing the number of cache hits/misses for each
implementation.

Appendix:
Ann x m integer matrix A is a rectangular array of integers, i.e., elements, represented

in the form A; ;, where 0 < i < n shows the row and 0 < j < m shows the column of
the element. Here is an example of a 2 x 3 matrix:

-2 3 0
1 =5 4|

From the definition, Ay = —2, A; 2 = 4, etc.

A=

If n = m, then we call A a square matrix.

The inner product of two vectors v and w of length [ is given by

P:Z%”wi- (1)

1=0

-1

For example, if v = [1 3 5] and w = [ 4 ], then the inner product of v and w, i.e.,
—2

p=v-w,iscalculated as (1-—1)+ (3-4)+ (5- —2) = 1.

The transpose of the matrix A4, represented by A7, is obtained by writing the rows of
A as columns of A" and vice versa, i.e., A], = A;;. For example, the transpose of the
matrix A is given by
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[Solution 19] Matrix multiplication

a)
innerProduct:
add to6, zero, zero # t6 will hold the result
add t0, zero, a2 # iterator for the row
add tl, zero, a3 # iterator for the column
add t2, zero, =zero # counter (counts until t2 = n)
slli t5, a0, 2 # t5 = 4xn
loopInner:
lw t3, 0(t0) # loads the row element
1w t4, 0(tl) # loads the column element
mul t4, t3, t4 # multiplies the two elements
add t6, to6, t4 # adds to the result
add tl1, tl1, t5 # column iterator incremented by 4%*n
addi tO0, tO0, 4 # row iterator incremented by 4
addi t2, t2, 1 # increment the counter
bne t2, a0, loopInner # loops until t2=n
addi a0, te6, O
ret
b)

matrixMultiplication:

# PUSH TO THE STACK
addi sp, sp, —24

sSw ra, 0 (sp)

sSwW s0, 4(sp)

sSw sl, 8(sp)

sSw s2, 12 (sp)

sSw s3, 16 (sp)

sSwW s4, 20 (sp)

slli s0, a0, 2 # s0 = 4xn

mul sl1, sO0, a0 # sl = 4xn=*n

add s2, al, sl

add s4, s2, zero # s4 <- end of row iterator

add s3, s2, sO # s3 <— end of column iterator

add s2, s2, sl # s2 <— result iterator (al + 8xn=*n)
add a2, al, zero # a2 <- row iterator
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matrixOuterLoop:

add a3, al, sl # a3 <— column iterator
matrixInnerLoop:

addi sp, sp, -4 # Push a0 as it will be modified

sSwW a0, 0(sp) # Dby innerProduct

jal ra, innerProduct

sSw a0, 0(s2) # update the memory with result

1w a0, 0 (sp)

addi sp, sp, 4

addi s2, s2, 4 # increment result iterator by 4
addi a3, a3, 4 # increment column iterator by 4
bne a3, s3, matrixInnerLoop # inner loop

add a2, a2, sO # increment row iterator by 4+*n
bne a2, s4, matrixOuterLoop # outer loop

# POP FROM THE STACK
lw ra, 0 (sp)
4 (sp

1w s0, )
1w sl, 8(sp)
1w s2, 12 (sp)
1w s3, 16 (sp)
lw s4, 20 (sp)
addi sp, sp, 24
ret

c) The possible instructions that can cause an overflow are the instructions given in
11" and 12" lines of innerProduct procedure. On line 11, if the result of the mul-
tiplication of two elements is greater than 2*! — 1 or lower than —2*!, we will have an
overflow. On line 12, if the accumulated sum of the multiplications exceeds 231 — 1, or
is under —23!, we will have an overflow. Note that, since the matrices could fit into the
memory, the instructions used for address calculation can not cause an overflow.

d) We can approximately count the number of misses for each implementation. Let’s
start with the first implementation. When we are accessing the first matrix, i.e., A, 1—11 of
the first accesses to a row are miss, since each cache line is 4 words and only the access
to the first word of a line is a miss. Then, the whole row will remain in the cache, thus
all the other accesses to the same row will be hit. Hence, in total, i - 128 - 128 accesses
to A are miss. Note that, there are 128 - 128 - 128 accesses to A in total.

For the second matrix, i.e., B, since each element of a column of B will go to the same
line on the cache (note that the cache is 2-way and one is already occupied by the
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elements of first matrix), all the accesses will be miss, resulting in 128 - 128 - 128 misses.

For the second implementation, the hits/misses for the first matrix, A, will have similar
behaviour. However, the number of misses will be less for the second matrix, B. When
we are multiplying the i"* row of A with j* row of B, 1 of the accesses to B” will be
miss because the cache is 2-way and the first one occupied by the i*" row of A while
the second one is occupied by j* row of B'. As a result, ; - 128 - 128 - 128 misses will
occur for accessing B

After a simple calculation, we could conclude that the overall performance has in-
creased, since the number of misses are reduced by approximately 4 times. Note that
we ignored the accesses to the result matrix, i.e., C, in calculations, since it has min-
imal impact on the result (in total, we have 128 - 128 accesses to the matrix C, which is
negligible compared to the number of accesses to the matrix B).
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[Exercise 20] Polynomial Multiplication

In this question, you will implement a univariate polynomial (a polynomial in one
variable) multiplication algorithm in assembly. A univariate polynomial is expressed
as a sum of non-negative integral powers of a variable multiplied by coefficients. For
example, P(z) = c,2" + ¢,12™ 1 + ... 4+ ©a® + c12 + ¢ is a univariate polynomial of
degree n. The product of two polynomials is obtained by multiplying the monomials
term by term and combining the results of the same degree—e.g.,

(52° =T —2)B8r+7)=(5-8)a* + (5-7)a® + (=7-8)2” + ((=7-7) + (=2-8)x + (=2-7)
= 40z* + 352° — 562° — 652 — 14.

A simple polynomial multiplication algorithm is given below.

Algorithm 2 Calculate the multiplication of two polynomials: R = PQ)

Require: P: a polynomial of degree n, i.e., P = p,z" + ... + p1z + po.

Require: (): a polynomial of degree m, i.e., Q) = ¢, 2™ + ... + 12 + qo.

Ensure: R: a polynomial of degree n +m,ie., R =P -Q = rpipnx™ + ..+ iz + 10.
1: fori = 0ton + m do {initialization of coefficients of R}

2: r; = 0

3: end for

4: fori = 0 to n do {calculate all coefficients of R}
5. forj=0tomdo

6: Titj ¥=Di " Gj

7 end for

8: end for

Implementation specifications:

¢ A polynomial is represented as an array of 32-bit signed integers corresponding
to the coefficients, preceded by a 32-bit unsigned integer corresponding to the
degree of the polynomial—i.e., P(x) = ¢, 2" + cp12™ ' + ... 4+ 22 + 12 + ¢ 18
represented as [n, ¢y, ¢1, Ca, ..., Cy_1, ¢|. For example, 52 — 7z — 2 is represented
with words [3, —2, -7, 0, 5], stored consecutively in memory.

* The starting addresses of the input polynomials in memory are given in registers
a0and al.

¢ The starting address of the output polynomial in memory is given in register a2.
The result of the multiplication should be written in the n + m + 2 words starting
from the address a2.
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* You can use the instruction mul rC, rA, rB; it places in rC the least significant
32 bits of the result of the multiplication of rA and rB.

* Your procedures should not modify the value of any memory locations except
the output array.

An example is given in Figure @

Address | +0 +4 +8 +C

0x1040| 3 -2 -7 0
0x1050

0x1060 1 7 8
0x1070 4 -14 | -65

0x1080| -56 35 40

Figure 9: Multiplication of the two polynomials P = 5z — 72 — 2 and Q = 8z + 7 (both
shown in white with a dark border). The inputs to the procedure are a0 = 0x1040, al
= 0x1064 and a2 = 0x1074. Your procedure should write the result in the memory as
shown in the grey area.

a) First, implement a RISC-V assembly procedure called initialize, which will ini-
tialize all elements of the output array to zero (see lines 1-3 of Algorithm [2)), consider-
ing the implementation specifications given above.

b) Now, implement another RISC-V assembly procedure called mulPoly which will
perform the polynomial multiplication, again considering the implementation specifications

given above. This procedure should be self-contained, so it should make a proper call
to the initialize procedure written in the previous question.

c) Is it possible to have an arithmetic overflow in your code? If so, explain when
(referencing precise instructions in your code) and why.
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[Solution 20] Polynomial Multiplication

a)
initialize:
1w
1w
add
swW

addi

slli
add

addi
initialize_

sSwW

addi

bne

ret

b)

mulPoly:
addi
swW
sSw
sw

lw
lw
jal

addi
slli
add

addi
slli
add

addi
addi

t0,
tl,
a0,
ao,

a0,

a0,
a0,

t2,

0 (a0)
0(al)
t0, t1
0(a2)

a0, 2

a0, 2
a0, a2

a2, 4

loop:
zero, 0(t2)

t2,
t2,

SPr
ra,
s0O,
sl,

sO,
sl1,
ra,

s0O,
sO,
s0,

sl,
sl,
sl,

to,
tl,

t2, 4

t0 = degree P
tl = degree Q
a0 = degree R
store a0 to beginning of R

H o e

=

calculate end address of R
(a0 = a2 + (a0+2) * 4)

=

# iteration address of R

# store 0
# increment

a0, initialize_loop

sp, —-12
0 (sp)
4 (sp)
8 (sp)

0 (a0)
0(al)
initialize

s0, 2
s0, 2
s0, a0

sl, 2
sl, 2
sl, al

a0, 4
al, 4

# push to the stack

# s0 = degree P
sl = degree Q
# call the initialization

=

# calculate end address of P

# calculate end address of Q

# iteration address of P
# iteration address of O
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addi t2, a2z, 4 # iteration address of R
addi t3, a2, 4 iteration address of R for
# outer loop

=

mulPoly_outer:

1w td, 0(t0) # load coefficient from P
mulPoly_inner:

1w t5, 0(tl) # load coefficient from Q

mul t5, t5, t4 # multiply coefficients

1w to, 0(t2) # load existing coefficients
# from R

add t5, t5, to # add them

sSw t5, 0(t2) # store back the calculated
# coefficient

addi tl, tl1l, 4 # increment tl

addi t2, t2, 4 # increment t2

bne tl, sl, mulPoly_inner

addi t0, t0, 4 # increment tO0

addi tl, al, 4 # tl = al + 4 (tl goes to the
# beginning of Q)

addi t3, t3, 4 # increment t3

add t2, t3, zero # t2 = t3 (t2 goes to the iterated
# beginning of R)

bne t0, s0, mulPoly_outer

1w sl, 8(sp) # pop from the stack

1w s0, 4(sp)

1w ra, 0(sp)

addi sp, sp, 12

ret

C) Yes, lines 28 and 32 of the mulPoly procedure can cause an arithmetic overflow.
These instructions are the multiplication of two coefficients and the addition of its res-
ult to the previous multiplications, respectively. If the coefficients are sufficiently large,
an overflow is possible. The other arithmetic operations in the code do not cause an
overflow since they are used for address calculations and we can assume that there is
no memory overflow (i.e., all the arrays can fit into the memory).
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[Exercise 21] Least Common Multiple

The Least Common Multiple (LCM) of two positive integers a and b is the smallest pos-
itive integer that is divisible by both a and b. Similarly, the LCM of a given array z, ...,
x, is the smallest positive integer that is divisible by each z;, where 1 < i < n.

Consider the following algorithm for computing the LCM of an array. Start from the
smallest prime number p = 2, and try to divide all numbers of the array by p in the first
iteration. For each element of the array, if the remainder of the division is 0, then you
substitute that element with the integer quotient (the result of the division). Otherwise,
if the remainder is not 0, then you keep the original value. If at least one number was
divisible by p, then you try to divide by p again. Otherwise, you take the next prime
number and you iterate with it. The iterations end when all numbers in the array are
equal to 1, meaning that they were all factorised using their divisors. The LCM is
computed as a product of the prime numbers used in the iterations in which at least
one successful division was performed.

For example, consider the following array.

[2]84[12[18] 14

The different execution steps of the algorithm are shown with the following table:

Iteration | Divided by Array

2184|112 |18| 14
1 2 114216 |9 |7
2 2 11211319 |7
3 2 11211319 |7
4 3 1171113 ]7
5 3 117111117
6 3 1171|117
7 5 1171117
8 7 11 (1 ]1]|1

Since the LCM is computed as the product of the numbers with which we performed
at least one division in each iteration, the LCM of the given arrayis2-2-3-3 -7 = 252.
For instance, the prime number 5 is not included in the product, because none of the
numbers was divisible by 5.

In this exercise, you will incrementally implement a RISC-V assembly procedure that
computes the LCM of a given array A with n elements. Assume that A contains un-
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signed 32-bit numbers stored on consecutive locations in the memory. Although it is
atypical for a RISC-V processor, assume that in this implementation the memory is
word-addressed. Make sure that your code respects all conventions regarding register
use.

Assume that the quotient and the remainder of the division can be computed using the
div instruction. This instruction saves the integer quotient and the remainder in two
dedicated registers, Lo and Hi, respectively. To obtain the values saved in Lo and Hi
use the instructions mfhi and mflo, respectively, as shown in this example:

div tl, t2 # Lo = tl / t2 (integer quotient)
# Hi = tl mod t2 (remainder)

mfhi t3 # t3 = Hi

mflo t4 # t4 = Lo

Similarly, for the multiplication, you can use the pseudo instruction mul, which oper-
ates on two 32-bit numbers and stores the result in a given 32-bit register:

mul t5, tl, t2 # t5 = tl » t2 (multiplication)

a) First, implement a procedure called divide_all, which receives, as input, the fol-
lowing parameters:

¢ The starting address of an array A using the register a0;
¢ The number of elements, n, using the register al;
* A positive integer p using the register a2.
This procedure divides each element of A by p and it replaces the element with its

quotient only if the remainder of the division is 0. For example, assume that p = 3 and
the array A before calling the procedure divide_all is as follows:

[1[25]9]11[63]385[3][93]

Then, at the end of the procedure, A has the following elements:

|1]25[3[11[21|385]|1]31]

This procedure returns two values:
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¢ In the register a0, it returns 1 if at least one element in the array was changed.
Otherwise, it returns 0.

¢ In the register al, it returns 1 if, at the end of the procedure, all elements of A are
equal to 1. Otherwise, it returns 0.

b) Now, implement the main procedure, called 1cm, which computes the LCM of a
given array of numbers A, using the described algorithm. The computed LCM is re-
turned using the register a0. The main procedure receives as input the following para-
meters:

¢ The starting address of an array A, given in the register a0.
¢ The number of elements n, of A, given in the register al.

¢ The starting address of an array P, which contains the prime numbers saved in
ascending order, given in the register a2.

¢ The number of elements of the array P, given in the register a3. If P does not
have a sufficient number of elements to compute the LCM of A, then the 1cm
procedure returns -1 using the register a0.

For implementing the procedure 1cm you should use the procedure divide_all from
part |1 and remember that both procedures must obey all conventions regarding re-
gister use and register saving between function calls.

c) Is it possible to have an arithmetic overflow in your code? If yes, indicate which
instruction(s) could cause the overflow and explain why.

76 ofﬁ Version 1.0 of 1st October 2024, EPFL ©2024



Solution 21 Exercise Book
Instruction Set Architecture Computer Architecture

[Solution 21] Least Common Multiple

a) Following is the RISC-V code of the procedure divide_all.

divide_all:

addi t5, zero, O # nothing is changed

addi t6, zero, 1 # all elements are 1

addi t0, zero, O # counter = 0

addi tl, a0, O # get the start address

addi t4, zero, 1 # t4d =1
da_loop:

beq t0, al, da_end # end of array?

1w t2, 0(tl) # t2 = mem[tl]

beq t2, t4, da_inc_counters

div t2, a2

mfhi £3 # get the remainder

bne t3, zero, da_check_one

mflo t2 # get the guotient

swW t2, 0(tl) # mem[tl] = t2

addi t5, zero, 1 # save that a change is made
da_check_one:

beq t4, t2, da_inc_counters

addi t6, zero, O # found an element different than 1
da_inc_counters:

addi t0, t0, 1 # increment counter

addi tl, t1, 1 # increment address (word—addressed)

Jj da_loop
da_end:

addi a0, t5, 0
addi al, to, O
ret

b) Following is the RISC-V code of the procedure 1cm, which computes the least com-
mon multiple.

lcm:
addi sp, sp, -6
sSwW ra, O0(sp)
sw s0, 1(sp)
sw sl, 2(sp)
sSw s2, 3(sp)
sSw s3, 4(sp)
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SW

addi
addi
addi
addi
addi

lcm _loop:

beq
addi
addi
1w
jal
beqg
mul

j

s4,

s0,
sl,
s2,
s3,
s4,

s2,
ao,
al,
az,
ra,
ao,
s0,

lcm_

5 (sp)

zero, 1
a2, 0
zero, O
a0, O
al, O

a3, lcm_error
s3, 0

sd4, O

0(sl)
divide_all

H= S S 3

for computing the LCM

get the start address of P
counter = 0

Remember a0 and al as it will
be modified by function calls

not enough prime numbers?
Prepare function arguments

get the prime number

zero, lcm_no_change

sO, a2
check_one

lcm_no_change:

addi
addi

sl,
s2,

sl, 1
s2, 1

lcm_check_one:

beqg
3

al,

lem

lcm_error:

addi

lcm_end:
addi
1w
1w
1w
lw
1w
1w
addi

ret

s0,

a0,
ra,
s0,
sl,
s2,
s3,
s4,
Spy

zero, lcm_loop

end

zero, -—1

s0O,

0 (sp
1(sp
2 (sp
3(sp
4 (sp
5(sp
Sp,

o) — — — — — — O

#

sO = sO0 » a2

increment address

increment counter

check 1f all elements are one

error: return -1

get the return value

¢) The instruction mul is the only instruction that can cause overflow. An overflow can
occur when the LCM of the numbers in the given array is greater than 2°* — 1.
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[Exercise 22] Palindrome binary humbers

A palindrome binary number is a binary number that reads the same backwards as
forwards. For example, the following two 8-bit numbers are palindromes: 01100110
and 10111101.

In this exercise, you are to write an assembly program that reads an array of 8-bit
numbers (array of bytes), detects the bytes that are palindromes, and creates a bit-
vector in which a bit in the position i is set only if the byte i of the array is a palindrome
(Figure[10). For an array of N bytes, the output bit-vector is N-bit long.

Array The result
of 4 bytes (bit-vector)
array element 0—> 0x47 0 <«—bit 0 (LSB)
array element 1— Ox5A \ 1 <«—bitl
array element 2— 0x3C P —nbit2
array element 3— 0x16 0 <« bit 3 (MSB)

Figure 10: An example of an array of four bytes and its corresponding bit-vector. Array
elements 1 and 2 are palindromes. Consequently, bits 1 and 2 in the output bit-vector
are set to one.

The array starts at address ARRAY. The number of bytes in the array is always a mul-
tiple of 32 and it is stored in a 32-bit word located at address ARRAY_SIZE. The result-
ing bit-vector should be stored in memory, starting from address RESULT. The values
of these three symbolic constants are smaller than 0xFFFF.

Instructions:

¢ Assume a little-endian machine.

* To access the memory you are allowed to use only load-word and store-word
instructions.
These access 32-bit words.

* Your code should conform to the assembly coding conventions.

a) Consider the following array of 32 bytes (ARRAY_SIZE = 32), with palindrome
numbers appearing in bold:

0x12, 0xFF, 0x3C, 0x11, 0x54, 0x42, 0xA0, 0xAA,
0x00, 0xDE, 0xAD, 0xBE, OxEF, 0xA5, 0x5A, 0x13,
0x00, 0x00, ..., 0x00
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Draw the two tables shown in Figure (11} strictly respecting the given format.

Mse ., LsB 8b
ARRAY RESULT
ARRAY + 0x04 RESULT + 0x01
ARRAY + 0x08 RESULT + 0x02
ARRAY + 0x0C RESULT + 0x03

ARRAY + 0x10

ARRAY + 0x14

ARRAY + 0x18

ARRAY + 0x1C

Figure 11: A view on the memory.

In the table on the left, show the content of memory from address ARRAY to ARRAY + 0x1C,
assuming that the above sequence is stored in memory in the exact same order as
above and starting from address ARRAY.

In the table on the right, show the content of memory from address RESULT to RES-
ULT + 0x03 after the execution of the program.

b) An easy way to detect whether a binary number is a palindrome is to first reverse it
and then compare it with the original binary number. If the original and the reversed
binary numbers are the same, then the original binary number is a palindrome. Write
a function invert_byte, which takes as its argument an 8-bit binary number and
returns this number reversed. For example, if the function argumentis 11010000, the
function should return 00001011.

¢) Write the program’s main function, which traverses the array of bytes, identifies if
a byte is palindrome using the invert byte function, and creates a corresponding
bit-vector as described above.
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[Solution 22] Palindrome binary numbers

a)

ARRAY

ARRAY + 0x04

ARRAY + 0x08

ARRAY + 0x0C

ARRAY + 0x10

ARRAY + 0x14

ARRAY + 0x18

ARRAY + 0x1C

0x113CFF12

RESULT

0xAAA04254

RESULT + 0x01

OxBEADDEOO

RESULT + 0x02

O0x135AA5EF

RESULT + 0x03

0x00000000

0x00000000

0x00000000

0x00000000

b) # symbolic constants

.equ LSB.MASK

O0xFF

# storing data in memory

.data

ARRAY SIZE:

.word 96

ARRAY:

.byte 0x12 # 0

.byte OxFF # 1, palindrome
.byte 0x3C # 2, palindrome
.byte 0x11 # 3

.byte 0x54 # 4

.byte 0x42 # 5, palindrome
.byte OxA0 # 6

.byte OXAA # 7

.byte 0x00 # 8, palindrome
.byte OxDE # 9

.byte OxXAD # A

.byte OXBE # B

.byte OXxEF # C

.byte 0xA5 # D, palindrome
.byte 0x5A # E, palindrome
.byte 0x13 # F

.byte 0x54 # 10

.byte 0x42 # 11, palindrome
.byte OxA0 # 12

.byte OxAA # 13

.byte 0x12 # 14

.byte OxFF # 15, palindrome
.byte 0x3C # 16, palindrome
.byte 0x11 # 17

.byte OxEF # 18

.byte 0xA5 # 19, palindrome
.byte O0x5A # 1A, palindrome

# mask to extract the

«—8b—>

0x26

0x61

OxFF

OxFF

LSB
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.byte
.byte
.byte
.byte
.byte

0x13
0x00
0xDE
0xAD
0xBE

RESULT:

.word 0x0000
.word 0x0000
.word 0x0000

1B
1C, palindrome
1D
1E
1F

H H H H H*

# storing program

text
#
main:
#

Iw s0, ARRAYSIZE(zero) # s0: array size

add sl, zero, zero # sl: current array index, initialized to zero
loop:

bge sl, s0, end # if current array index == array size,

# we're done traversing the array

load_word:

Iw s2, ARRAY(s1) # s2: word currently processed

add s3, zero, zero # s3: byte counter, initialized to 0.

loop_over_bytes_within_word:
slli

srl
andi
addi

jal

bne

t0, s3, 3

s4,
s4,
a0,

s2, t0
s4 , LSB.MASK
s4, 0

invert_byte

s4, a0, next_byte

palindrome_found:
srli

slli

Iw

tl, s1, 5

t1, t1, 2
t2 , RESULT(t1)

H oH o H H H 3

H o

H o H H H*

H o H H*

The correct range is [0-3].

the number of bits to shift right to move
this byte to the LSB position

t0 = s3 = 8 = 83 << 3

shift right for t0 bits

keep only the LSB the word currently processed
Prepare function arguments

call the function that will invert this byte.
Function takes argument in a0 and stores the
result in v0

once the byte is inverted, check if v0 and
a0 are the same.

If yes, we found a palindrome and the result
needs to be updated.

Else, the next byte should be looked into.
tl: s1 / 32 = index of the word in RESULT
array

align the word address offset on word boundary
t2 = load current word from RESULT array
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andi
addi

sll
or
SW

next_byte:
addi
addi

1i
bne

next_word :

t3, s1, 31
t4, zero, 1
t4, t4, t3

2, t2, t4
t2 , RESULT(t1)

sl, s1, 1
s3, s3, 1

to, 4

HoH H H H H H

HH

location of bit within the word = array
index modulo 32

t4: one bit mask, used to set one bit in
the RESULT array

t4: all zeros but one '1' at the position t3
set one bit in result array

store the new value of the word

increment array index
increment byte counter

s3, t0, loop-over_bytes_within_word

j loop
end:
1i a0, 10 # END
ecall
#
invert_byte:
#
add t0, a0, =zero # BEGIN invert_byte. tO: initialized to a0
add a0, zero, zero # a0: output
addi tl, zero, 8 # t1: bit counter, initialized to 8

loop_over_bits_within_byte:

beq

andi
slli
or

srli
addi

next_bit:
j

return:
ret

tl, zero, return

t2, t0, 1
a0, a0, 1
a0, a0, t2

to, t0, 1
t1, t1, -1

loop_over_bits_within_byte

HH

H+

count down

t2: lowest—order bit from the input
shift output left by 1 bit
append the extracted bit (t2) to the result

consume lowest—order bit of input
decrement bit counter

# END invert_byte
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[Exercise 23] The Game of Life

The Game of Life is a cellular automaton devised by British mathematician John Con-
way in 1970. The game requires no players: its evolution is determined by its initial
state (also called the seed of the game). The playing field of the game is an infinite two-
dimensional grid of cells, where each cell is either alive or dead. At each time step, the
game evolves following a set of rules:

Underpopulation: any living cell dies if it has (strictly) fewer than two live neigh-
bours.

Overpopulation: any living cell dies if it has (strictly) more than three live neigh-
bours.

Reproduction: any dead cell becomes alive if it has exactly three live neighbours.

Any live cell remains alive if it has two or three live neighbours.

Every cell has eight neighbours (cells that are horizontally, vertically, or diagonally
adjacent).

31 30 29 28 ... 5 4 3 2 1 0 31 30 29 28 ... 5 4 3 2 1 0
0 ‘ 0

HE 1 HE - ]
| > owe | |- HE -
ROWS ]

3 UPDATED . 3

>
4 4
30 30
31 31
(a) (b)

Figure 12: Game evolution between two successive time steps: (a) current time step
and (b) next time step. Live cells are black. Dead cells are white.

Figure (12| illustrates the game in two subsequent time steps: (a) current state and (b)
next state.

Current state: there are eight alive cells, marked in black, at the following (row, column)
coordinate pairs: (1, 2), (1, 29), (1, 30), (2, 2), (2, 29), (2, 30), (3, 2), and (3, 4). All the
other cells are dead (in white).
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Next state: Cells (1, 29), (1, 30), (2, 29), and (2, 30) remain living as they all have three
living neighbors. Cell (2, 2) has two living neighbors, which is sufficient for it to remain
alive. Cell (3, 4) has no living neighbor, so it dies. Cells (1, 2) and (3, 2) have only one
living neighbor, which is insufficient to continue living and so they die. Dead cells (3,
3) and (2, 1) have exactly three living neighbors, so they become alive. As a result, the
game state in the next time step (also called the next state) contains seven living cells:
(1,29),(1, 30), (2,29), (2,30), (2,1), (2,2), and (3, 3).

Note that the next game state is determined solely based on the current game state.
The transition from the current to the next game state is completed once the decision
whether a cell should live or die is made for all the game cells.

Your task is to write a program in assembly that plays this game on a 32x32 game
tield. To imitate an infinite size of game field, you should assume that all border cells
(leftmost column, rightmost column, top row, and bottom row) are dead and can never
become alive. As a consequence, the active cells (those that can live or die) are to be
limited to a 30x30 field.

The state of the game is kept in memory as an array of words (game array), each word
being a 32-bit value representing one row of the game field. If a bit i of the word is set
(1), the cell at the corresponding row and the column i is considered alive. Otherwise,
that cell is considered dead. The game array is stored starting from the address 0x1000.
The row indices grow towards higher addresses. See Figure

Memory

Starting ~——
address: 0x1000 | Row 0

GAME
ARRAY

Addresses
increase

Figure 13: Game array in memory.
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Instructions:

* Memory is byte addressed.

¢ To access memory, you are allowed to use only load word and store word
instructions.

* Assume a little-endian machine.
* You are not allowed to use any multiplication instruction.

* Your code should conform to the assembly calling conventions.

a)

Assuming that the first four words in the game state array are 0OxAOBOC0DO, 0xB1C1D1A1,
0xC2D2A2B2, and 0xD3A3B3C3, write the values of bytes (in hexadecimal) stored at
the following memory addresses: 0x1003, 0x1004, 0x1007, 0x1008, 0x100B, and 0x100C.
Your answer must be of the formatmem [0x1003] = value, mem[0x1004] = value,
etc.

Memory

Starting ———

address: 0x1000 0xAOBOCODO

0xB1C1D1A1

0xC2D2A2B2
0xD3A3B3C3

GAME
ARRAY

~——
C~————

b) Write the function cel1_fate which tells if a cell should live or die, following the
game rules. The function takes the number of living neighboring cells and the state of
the cell itself (1 if alive, 0 if dead), to return 1 if the cell should live in the next game
iteration or 0, if the cell should die.

31 0

a0 ’ number of live neighboring cells |

Inputs: 31 0
al current cell state I

31 0

Output: a0 ’ next cell state |

Figure 14: Inputs and outputs of cel1l_fate function.

c) Write the function update_row, which takes as arguments three subsequent rows
of the game array (upper, middle, lower), to compute the next value of the middle
row and return it. To update the value of individual cells in one row, you should call
cell_fate.
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¢ Describe in detail your algorithm and implementation of update_row function.
Note that you do not necessarily need to provide a highly optimized implement-

ation.

¢ Write the assembly code of update_row function.

Inputs:

31 0
a0 ’ upper row of three subsequent rows |
31 0
al [ middle row of three subsequent rows |
31 0
lower row of three subsequent rows |

a2|

Output:

31 0
updated value of the middle row |

aO’

Figure 15: Inputs and outputs of update_row function.

d) Write the main loop of you program, which executes one game iteration. This loop
iterates over all game rows and updates the game array in memory. The main loop
should call the function update_row.

Note that the next state should always depend on the current one: be careful not to use
an already updated line as input argument to the function update_row.

e) Write all the missing lines to complete your program.

Stack memory starts at the address 0x1200 and grows towards lower addresses. Once
the program is launched, the game should play indefinitely. Between every two game
iterations, a delay (a pause) of ~2?" instructions should be made. The delay should not
exceed the following range (22° — 0.001%, 22° 4+ 0.001%). You can assume that the game
array is already initialized in memory when the program is launched.

Version 1.0 of 1st October 2024, EPFL ©2024
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[Solution 23] The Game of Life

a)

mem[0x1003] = A0

mem[0x1005] = Al

mem[0x1007] = Bl

mem[0x1008] = B2

mem[0x100B] = C2

mem[0x100C] = C3

b)

# cell_fate

# Decides 1f a cell shall live, depending on its and its

# neighbours current states

#

# Arguments:

# - a0 = number of living neighbours

# - al = current state of the cell

# Returns:

# — a0 = next state of the cell

#

cell_fate:
add t3, zero, zero # Default answer is 0 (dead)
addi t0, =zero, 1 # Creating registers to use in the next

# comparisons
addi tl, zero, 2
addi t2, zero, 3

# If the cell has 3 living neighbours, it will live no

# matter its current state.

# CASE III (see comments at the end of this file for the
#

beq a0, t2, cell will_1live

If the cell is already dead, it will not live (3
neighbours case excluded thanks to the previous
condition) .

CASES I.1, II.1, 1Vv.1

bne al, t0, cell_will die

# If the cell hasn't got 2 neighbours, it will die no
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# matter its current state.
# CASES I.2, IV.2

bne a0, tl, cell_will_die
# CASE II.2 is implicit

cell will live:

addi t3, zero, 1 # Indicate that the cell will live
cell will_die:
addi a0, t3, O
ret
# Rules of the game of life:
# 0-1 neighb.: cell dies (0->0, 1->0) CASE I.1 / CASE I.2
¥ 2 neighb.: status quo (0->0, 1->1) CASE II.1 / CASE IT.2
# 3 neighb.: cell lives (*—->1) CASE III
# 4-8 neighb.: cell dies (0->0, 1->0) CASE IV.1 / CASE IV.2
c)
# update_row
# Updates a row using its 3 relevant rows (upper, current and
# lower)
#
# Arguments:
# — a0: upper line
# - al: current line
# — a2: lower line
# Returns:
# — a0: updated current (al) line
#
update_row:
addi sp, sp, -8 # Save registers
sw s0, 0O (sp)
sSwW sl, 4(sp)
addi s0, zero, TO_HANDLE # Set bit counter to 30, first bit
# to handle
add sl, zero, zero # The updated line will be saved

# here

# The main loop considers each of the 30 cells individually.

bit_loop:

add t1, a0, zZero

# Copy rows from arguments

Version 1.0 of 1st October 2024, EPFL ©2024
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ad
ad
ad
ad

#
#

ro

d t2, al, Zero
d t3, az, Zero
d s2, zero, zero

di t6, zero, 3

# Set neighbour counter
# Set row counter

The next loops will iterate over all 9 bits of the

current "zone".

This is the loop
neighbouring the
w_loop:
add tO0, =zero,
add tl1, =zero,
add t2, =zero,
addi t3, s0, -1

srl tO0, t0, t3
addi t5, =zero,

that iterates over the 3 lines
focused bit.

tl
t2
t3

3

# Advance in row list

# The first neighbour is
# before the focused bit.
# Get to first neighbour
# Set column counter

# This is the loop that iterates over the columns

# of the line.
col_loop:
andi t4, tO
add s2, s2
srli t0, tO

addi tb5, tb5

bne t5, zero,

addi to, to, -1
bne t6, =zero,

4

14

14

4

# Isolate neighbour
Add to counter
# Select next neighbour

.

# Update column counter
col_loop

# Update row counter

row_loop

# The next lines are here to subtract the value of the
# focused bit from the current neighbour count.

ad
sr
an

d t0, al, zero
1l tO0, t0, sO
di t0, tO0, 1

sub s2, s2, tO

# Cell fate call + saving/restoring important registers

ad
sw
sw
sw

di sp, sp, —-12
a0, 0 (sp)
al, 4 (sp)
ra, 8(sp)
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add a0, s2, zero # Current neghbour count
add al, t0, zero # Current cell state
jal ra, cell_fate
1w a0, O (sp)
1w al, 4 (sp)
1w ra, 8(sp)
addi sp, sp, 12
add sl1, sl, a0 # Add the new cell to the
# updated line
slli s1, s1, 1 # Shift it to make room for the
# next bit
addi s0, s0, -1 # Update bit counter
bne s0, zero, bit_loop # Bit 0 does not interest us
# (wall).
# Return updated line and restore saved registers.
add a0, sl, zero
1w s0, 0(sp)
lw sl, 4(sp)
addi sp, sp, 8
ret
d) and e)

.equ ROWS, 0x1000
0x1200

.equ STACK,

.equ TO_HANDLE,

la sp, STACK

# main

30

# Set value of stack pointer

# Executes the update code in an infinite loop.

#

main:
add sO,
addi s1,
slli s1,

la to,

Zero, zero
zero, TO_HANDLE
2

sl,

ROWS

Set address counter to 0
Only 30 lines interest us
Counter counts by 4, so
adapt upper bound

R

# Start at ROWS
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add s0, s0, tO
add sl1, sl1, tO
1w al, 0(s0)
lw az, 4(s0)
main_loop:
add a0, al, zero #
add al, a2, zero
1w a2, 8(s0)
#
jal ra, update_row
addi s0, s0, 4 #
#
sSwW a0, 0(s0)
#
beq s0, sl, main_wait #

J main_loop

# main_wait

# Waits for ca. 2720 instructions.

#
main_wait:
# Shift by 19, not 20,

addi t0, =zero, 1
slli t0, tO, 19

# Waiting loop
main_wait_loop:
addi t0, tO0, -1

because
# checked by decrementation!

# Load rows 1 and 2

Go to next row

# Only need to load the newest

row

# Update current (al) row

Increment counter by 4 (for
next address)

# Store the last-handled row

in memory
Wait for 2720 instructions
when finished

there are 2 instructions

bne t0, zero, main_wait_loop

j main # Restart row update
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Part ll: Processor, I/0s, and Exceptions

[Exercise 1]

A room must be warmed up to keep its temperature within 17°C and 21°C. For that
you have a processor (assume a little-endian machine) that has access to 2 peripher-
als, a sensor and a switch mapped at addresses 0x8800 and 0x8900, respectively. The
sensor provides the room’s current temperature and can be configured to raise an in-
terrupt request when this temperature crosses a user-defined threshold. The switch is
connected to an electric radiator and has only 2 states: on and off. When it is on, the
radiator warms up the room, when it is off the heat dissipates slowly.

The following table lists the sensor registers.

| Register | RW | 31...9 8 [7..2]1]0]
status | RW | Unused | IR | Temp
control | RW | Unused ‘ IH ‘ IL
tmax RW | Unused Temp max
tmin RW | Unused Temp min

The status register has a Temp field reporting the current temperature in °C on 8 bits
and is signed. The IR bit reads at 1 if an interrupt request is pending. Writing 0 to the
status register clears the IR bit (but does not modify the Temp field)

The control register is used to activate or deactivate interrupts coming from the sensor.
When IL/IH is set to 1, the sensor raises an interrupt if the current temperature is
lower/higher than the temperature defined by the tmin/tmax register, respectively.

The switch has a very simple interface, depicted in the following table. Writing 0/1 to
the ON bit will turn off/on the radiator, respectively.

| Register | RW | 31...1 0 |
’ status/control ‘ RW ‘ Unused ‘ ON ‘
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a) In RISC-V Assembly, write the init_sensor function, which should initialize the
threshold temperatures of the sensor interface and, depending on the current temper-
ature, activate interrupts coming from the sensor and initialize the state of the switch.

b) In RISC-V Assembly, write the sensor_isr interrupt service routine which is
called upon an interrupt from the sensor. This routine is used to make sure that the
room temperature stays within 17A°C and 21A°C; it activates the radiator when the
temperature is too low, deactivates it when it is too high and configures the sensors for
the next interrupt.
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[Solution 1]

For this solution to work, we assume that init_sensor and sensor_isr are the
only functions accessing the switch and the sensor interfaces.

Note that we use the instruction 1b to load the current temperature from the status
register. This instruction extends the 8-bit signed value on 32 bits. We assume a Little
Endian model.

If the 1b instruction is not available, we could instead use the following;:

la t6, SENSOR

lw t1, 0(to) # load word
slli t1, tl1l, 24 # only keep the LSByte
srai tl, tl, 24 # extend sign

a) The init_sensor function below shows a straightforward solution.

.equ SENSOR, 0x8800
.equ RADIATOR, 0x8900

init_sensor:

# set temperature thresholds
la t6, SENSOR

addi t0, zero, 21 # t0 = tmax = 21
sSw t0, 8(t6)
addi tl, zero, 17 # tl = tmin = 17

sSwW tl, 12(te)

# set sensor interrupts & radiator
1b t2, 0(to) # t2 = temp (load byte to extend
# the sign)
init_sensor_check_temp_too_low:
# if (temp >= tmin) goto init_sensor_check_temp_too_high
bge t2, tl, init_sensor_check_temp_too_high

addi t3, zero, 2 # IH =1, IL =0
addi t4, =zero, 1 # ON = 1
Jj init_sensor_ret # goto init_sensor_ret

init_sensor_check_temp_too_high:
# else 1if (temp <= tmax) goto init_sensor_temp_ok
bge t0, t2, init_sensor_temp_ok
addi t3, =zero, 1 # IH =0, IL =1
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addi t4, zero, O # ON = 0
j init_sensor_ret # goto init_sensor_ret

init_sensor_temp_ok:
# else if (tmin <= temp <= tmax)

addi t3, =zero, 1 # IH = 0, IL =1
addi t4, zero, O # ON = 0
j init_sensor_ret # goto init_sensor_ret

init sensor_ ret:
la to6, SENSOR

swW zero, 0(t6) # clear IR

sSwW t3, 4(t6) # store IH, IL
la t6, RADIATOR

sSw t4, 0(to) # store ON

jalr zero, ra, O

However, we can see that the code in init_sensor_check_temp_too_high and
init_sensor_temp_ok is identical. Therefore, we can factor out this code and place
it before the 1if statements, as a default value, and then only check
init_sensor_check_temp_too_low. This shorter version of the solution is shown
below.
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.equ SENSOR, 0x8800
.equ RADIATOR, 0x8900

init_sensor:

# set temperature thresholds
la t6, SENSOR

addi t0, =zero, 21 # t0 = tmax = 21
sSwW t0, 8(to)
addi tl, =zero, 17 # tl = tmin = 17

sw tl, 12(to6)

# set sensor interrupts & radiator

1b t2, 0(to) # t2 = temp (load byte to extend
# the sign)

addi t3, zero, 1 # IH = 0, IL =1

addi t4, zero, O # ON = 0

init_sensor_check_temp_too_low:
# if (temp >= tmin) goto init_sensor_ret
bge t2, tl, init_sensor_ret

addi t3, zero, 2 # IH =1, IL =0

addi t4, =zero, 1 # ON = 1
init_sensor_ret:

la to6, SENSOR

swW zero, 0(t6) # clear IR

sSwW t3, 4(t6) # store IH, IL

la t6, RADIATOR

sSwW td, 0(t6) # store ON

ret
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b) The job of the service routine is now simply to invert the switch status and the
interrupt enable bits. It is important to disable the interrupt coming from the threshold
that caused it. The temperature may still be over or under the corresponding threshold
and we want to avoid interrupt loops, which will cause our system to fail.

sensor_isr:

addi
sw
sw
sw

la
la

1w
xori
sSwW
lw
xori
swW
swW

1w
1w
1w
addi
ret

Sp’
t0,
tl,
tz,

tl,
t2,

to,
to,
to,
to,
t0,
to,

zero, 0

to,
t1,
t2,
Spl

sp, —-12
0 (sp)
4 (sp)
8 (sp)

SENSOR
RADIATOR

4(tl
to,
4(tl
0(t2
to,
0(t2

T ~ )R ~ ~ W -

S oS S e S 3 o

load IH and IL

invert them

store IH and IL

load ON bit

invert it

store it

acknowledge interrupt
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[Exercise 2]

Consider a system using a RISC-V processor, with 32-bit data and address bus. The
memory is byte-addressed (cf. Figure 16).

P_in

32

Input port

CPU

Status

WE

Data __Addr

32 1432

< Data bus

-€ y 3> Addr bus
Figure 16: RISC-V system

a) You are asked to write a polling procedure Pol1 () which does the following :

¢ Polls bit 0 of the I/O component’s status word until it is active
* Reads the P_In port

* Callsa calc (a) procedure with P_In’s value as argument

b) Then, write the calc (a) procedure which calculates a + 100 on signed integers and
returns the result. This routine must leave all registers at their original value when the
routine was called.

¢) Explicit a situation where an exception could happen during the execution of this
program, specifying in which circumstances it could happen.

d) Draw the state of the stack:
1. Before Pol1 () was called.

2. During calc (a).

3. After Poll ().
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[Solution 2]

a)
.equ IO 0x5000

poll:
addi sp, sp, —-12
sw t0, O0(sp)
sSw tl, 4 (sp)
sw ra, 8 (sp)

la tl, IO
poll_loop:
1w t0, 4(tl)

andi t0, t0, 0x0001

# load status word
# keep bit O

begq t0, zero, poll_loop # if (status(0) = 0) goto poll_ loop

1w a0, 0(t1)
jal ra, calc
1w t0, 0 (sp)
lw tl, 4 (sp)
1w ra, 8(sp)

1

addi sp, sp, 12
ret

b)

calc:
addi a0, a0, 100
ret

# else a0 = load data word

C) An arithmetic exception might occur at the addi instruction in calc, if the value is

larger than Ox7FFF’/FFFEF - 100.

100 ofﬁ
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d) We move the stack pointer in 4-byte offsets as we push and pop 32-bit words. The
state of the stack is shown below:

1. Before Poll () was called.

sp — XXXXXXXX

2. During call (a).
sp — t0
tl
ra
XXXXXXXX

3. After Poll ().

sp — XXXXXXXX
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[Exercise 3]

Consider a system using a RISC-V processor, with 32-bit data and address bus. The
memory is byte-addressed (cf. Figure[I7).

P_in P_out
32 32
110 CPU
Status > Ireq
WE <€ WE
Data CS Data Addr
A
32 = 0x3000 32 32
-« 3 Data bus
-€ v 3 Addr bus

Figure 17: RISC-V system

Whenever a new value is available at the P_in input, an interrupt pulse is generated
through the Status port of the I/O component. In this system, the I/O component is
the only peripheral that generates interrupts.

a) WriteaWritePort (a) procedure that receives a value through the a0 register and
writes it to the P_out port.

b) Write an interrupt service routine (ISR) for the I/O component. This routine must
read P_In and write its value to P_Out. Use the WritePort (a) procedure you pre-
viously defined.
For this exercise, we are using a nonstandard RISC-V processor. Take the following
into account:

¢ the k1 register contains the return address of the ISR;

¢ the stack may be used in the ISR;

¢ all registers must have their original value when leaving the ISR;

102 ofﬁ Version 1.0 of 1st October 2024, EPFL ©2024



Exercise 3 Exercise Book
Processor, 1/0s, and Exceptions Computer Architecture

¢ the processor disables all interrupts before calling the ISR. It is therefore required
to reactivate them using the rfe instruction.

¢) Draw the state of the stack:

1. At the beginning of the ISR;
2. When WritePort () is called;

3. At the end of the ISR.
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[Solution 3]

a)

.equ IO 0x3000

WritePort:
la to,
sw a0,
ret

b)
addi sp,
swW ra,
sSwW ao,
sSwW t0,
la to,
1w ao,
jal ra,
lw ra,
1w ao,
1w t0,
addi sp,
rfe

I0
0(t0)

sp, —12
0 (sp)
4 (sp)
8 (sp)

10
0(t0)
WritePort

jalr zero, k1, O

¢) The state of the stack:

1. At the beginning of the ISR.

sp —

2. When WritePort () is called.

sp —

XXXXXXXX

ra

a0

to

XXXXXXXX
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3. At the end of the ISR.

sp — XXXXXXXX
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[Exercise 4]

Figure 18/ describes a system using a RISC-V processor. An interrupt controller is used
to handle interrupts coming from several peripherals. The controller receives the in-
terrupts on the irq0 to irg2 lines.

| |

irq irg2 irql irq0
DV,'cdeE Interrupt CPU
etector controller 2 T'rea
IRQ— & —Jlack
Buffer

A A A A

) Data
v v > Addr
) Control

AAA

Figure 18: RISC-V system

When a peripheral generates an exception on one of the irq0 to irq2 wires, the control-
ler sets the corresponding bit in the IRQ Register to 1. Figure |19|shows the various
registers available in the system.

Interrupt controller Video Detector
IRQ Register Status Register
|undeﬁned | i2 | il | i0 | |err| undefined | count |

Figure 19: Control registers

Figure 20|illustrates an interrupt being generated and the way it is serviced.
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aw LTI

irg0

irgl /7 \

irq2

[RQ Register 0x00000000 X0x00000002 =+ 0x00000002 X 0x00000000
IRQ 74 A\
Ireq /7 \ 7

Tack /Y\_ I

|

E1l: Controller raises E2: RISC-V CPU acknowledges E3: Routine withdraws
the interrupt the interrupt the interrupt

Figure 20: Interrupt timing diagram

The IRQ signal is combinatorial and is set if at least one of the bits from the IRQ Re-
gister is set. “E1” represents this in the diagram. The processor uses another protocol:
Ireq gets asserted immediately after IRQ, and gets de-asserted immediately when lack
(coming from the processor) is asserted.

a) Complete the figure describing the system, and add the logic component(s) needed
to generate Ireq from IRQ and lack.

After having received the interrupt through Ireq, the processor generates a confirma-
tion (“E2” represents this on the diagram) and automatically invokes the routine hand-
ling external interrupts. This routine must first decide which irq line caused the inter-
rupt by reading the IRQ Register, and then call the routine specific to the peripheral.
As soon as the peripheral’s request is handled by its routine, the main routine con-
firms the interrupt by erasing the corresponding bit in the IRQ Register (“E3” in the
diagram). The main routine enables future interrupts and returns to normal execution
(code outside of ISR).

b) Write the main routine handling external interrupts, which calls the specific routines.
Take the following into account:

¢ When more than one interrupt is waiting to be serviced (more than one bit as-
serted in the IRQ Register), the main routine must handle them all according to
their relative priorities (irg2 has the highest priority and irq0 the lowest priority).

¢ The k1 register contains the return address of the ISR.

* The processor disables all interrupts before calling the ISR. It is therefore required
to reactivate them using the r fe instruction.
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¢ The routine must follow the semanstic of RISC-V Assembly. Assume that the

stack is available.

e For irq2, the routine must call disk_int; for irq1, it must call det__int; and for
irg0, it must call key_int.

¢ Table[21|shows the memory layout of the system.

oxffff fffc IRQ Register
0x8000 1ffc I/0 space
0x8000 1000 Buffer
0x8000 0000 Status Register
ox7fff fffc
0x1000 1ffc
0x1000 1000 Video Buffer
Main memory
0x1000 0000 Video Error
0Xx0000 0004
0x0000 0000

Figure 21: Memory layout

One of the peripherals is a video detector whose purpose is to detect emergencies and
save some relevant data. Its controller has a Status Register and a Buffer that the
processor can access. An interrupt is asserted when an emergency occurs. The Buffer
memory contains the relevant data. To handle the interrupt, the routine must:

1. Check that the emergency detection did not suffer from any errors. An error is
indicated by the most significant bit of the Status Register. If there is no error,
proceed. Otherwise write —1 to the main memory at address Video Error, and
return from the routine;

2. Read the 12-bit Count value from the Status Register to determine the number
of words that are ready in the Buffer;

3. Transmit all data received in Buffer to the Video Buffer in main memory;

4. Set the Count bits to 0.

108 ofﬁ
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c) Write the det_int routine which handles the video interrupts described above.

d) The copy process from the Buffer to the Video Buffer is not very efficient on this
RISC-V system, explain why. Suggest a way to improve the copy, adding additional
components if needed. Make a drawing of that new system and comment it briefly.
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[Solution 4]

a) The following figure describes the circuit generating IRQ and lack. Pay attention to
the following details:

* The statement says that “Ireq gets asserted immediately after IRQ”, so we use IRQ
as an edge detector to assert the register to 1. Note that we do not use IRQ as the
SET port of the register because that would keep the register asserted as long as
IRQ is asserted, which is not the behaviour depicted in the timing diagram.

¢ The statement says that “(Ireq) gets deasserted immediately when lack (coming
from the processor) is asserted”, so we use lack as an asynchronous reset for the
register. Note that we don’t use a synchronous reset because the timing diagram
shows that Ireq gets de-asserted before lack is seen on the next rising edge of the

clock.
irq irq2 irql irq0
DV,'cdef Interrupt . CPU
elector controller | " I” ¢ Ired
IRQ > o
Buffer
IRQ Register I— lack
-€ v > Data
- 7 > Addr
-€ = Control

Figure 22: Solution for IRQ generating circuit

b) The following code is a possible solution for the main routine:

ext_ir:
addi sp, sp, —16 # update stack pointer
SW ra, 0(sp) # save return address
sSwW s0, 4 (sp) # save s0
sSwW sl, 8(sp) # save sl
SwW t0, 12 (sp) # save tO0
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1li
1w
andi
beq
jal
andi
swW
skip2:
andi
beq
jal
andi
sw
skipl:
andi
beq
jal
andi
sSw
skipO:
1w
1w
1w
1w
addi

rfe

jalr

s0O,
sl,
t0,
t0,
ra,
sl,
sl,

t0,
t0,
ra,
sl,
sl,

t0,
t0,
ra,
sl,
sl,

ra,
s0O,
sl,
t0,
Sp,

Zero,

Oxfffffffc
0(s0)

sl, 0x4
zero, skip2
disk_int
sl, 0x3
0(s0)

sl, 0x2
zero, skipl
det_int

sl, 0x5
0(s0)

sl, Ox1
zero, skipO
key_int

sl, 0x6
0(s0)

0 (sp)
4 (sp)
8 (sp)
12 (sp)
sp, 16

k1, O

S H= S S W S e

4=

address

of IRQ Register in sO0

sl <— IRQ Register

get the
if t0 =

bit no 2 (irg2)
0 then goto skip2

call disk_int handler
clear the bit no 2
update IRQ Register

get the
if t0 =

bit no 1 (irqgl)
0 then goto skipl

call det_int handler
clear the bit no 1
update IRQ Register

get the
if t0 =

bit no 0 (irg0)
0 then goto skipO0

call key_int handler
clear the bit no 0
update IRQ Register

restore
restore
restore
restore

return address
s0
sl
t0

update stack pointer

restore

interrupt mask and

processor mode
return from handler

Since the routine calls specific routines, we must save the registers needed after the
call. We use RISC-V convention which defines that s0 and s1 are kept. Return address
and the registers are saved on the stack before the stack and are reloaded at the end of

the routine.

This code defines the priorities for the interrupts. The way the bits are treated guaran-
tees that irq2 has the highest priority, followed by irq1, and then irq0.

¢) The RISC-V code for the det_int routine is:

det_int:
addi
sSwW

SPy
to,

sp —28
0 (sp)
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sSwW tl, 4(sp)
sSw t2, 8(sp)
swW t3, 12 (sp)
sw td4, 16(sp)
sw t5, 20(sp)
swW t6, 24 (sp)
1i t0, 0x80001000 # t0 <- addr (Buffer)
1li tl, 0x80000000 # tl <- addr (Status Register)
1i t2, 0x10000000 # t2 <- addr (Video Error)
1i t3, 0x10001000 # t3 <— addr (Video Buffer)
1w t4, 0(tl) # t4 <- Status Register
srli t5, t4, 31 # t5 <— t4 >> 31
begq t5, zero, no_error # if err = 0, goto no_error
error:
addi t5, zero, -1 # tHh <- -1
sSwW t5, 0(t2) # Video Error <— tb5
j end # goto end
no_error:
1i to, Oxfff
and td, t4, té6 # t4 <- count
loop:
beq t4, zero, loop_end # if t4 = 0 then goto loop_end
1w t5, 0(t0) # read from Buffer
sSwW £5, 0(t3) # store to Video Buffer
addi t0, t0, 4 # t0 <-— t0 + 4
addi t3, t3, 4 # £3 <— t3 + 4
addi td4, t4, -1 # t4 <- t4 - 1
j loop # goto loop
loop_end:
sSwW zero, 0(tl) # set count bits to 0 (the err bit
# 1s already 0 and the other bits
# in the status register are
# undefined)
end:
1w t0, 0 (sp)
lw tl, 4 (sp)
lw t2, 8(sp)
lw t3, 12 (sp)
1w td4, 16 (sp)
lw t5, 20(sp)
1w t6, 24 (sp)

addi sp, sp 28
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ret # return

d) This procedure is not efficient because the processor is used to copy large amounts of
data. Furthermore, this copy is done in an interrupt service routine, in which the pro-
cessor should not stay too long. The program running before the interrupt is blocked
during that copy, which takes a lot of time. One way to improve the system is to add a
Direct Memory Access (DMA) controller, which takes care of the memory copy opera-
tion without any processor intervention. The processor has to start the copy by telling
the DMA which addresses it shall copy, but can move on to other tasks during the

copy.

In this scenario, two devices may issue requests on the bus. They are called bus mas-
ters. An arbitrator, which decides which busmaster may take the bus if needed because
it is necessary to avoid collisions and to guarantee a fair sharing of the bus. The fol-
lowing figure shows the system with the DMA and the arbiter.

|

irq irq irg2 irql irq0
OMA Dvédeg Interrupt CPU
Elector controller | Y P ° Ireq
IRQ >
Buffer
Arbiter IRQ Register L Jiack

A A A A A

Y

3 Data
> Addr

AAA
€

v = Control
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[Exercise 5]

Consider a RISC-V based system that has two types of general exceptions: hardware in-
terrupts and instruction-related exceptions; the former having a higher priority. Hardware
interrupts are requested by external sources such as peripheral devices. Instruction-
related exceptions could be caused either by a software trap or by an unimplemented in-
struction. A software trap is generated when a special instruction, trap, is issued. An
unimplemented instruction exception is generated when a valid instruction (e.g., mul,
muli, div, etc.) is issued but the instruction is not implemented in the hardware. In
this question, you are requested to write an exception handler which determines the
cause of the exception and performs the necessary operations to handle it.

The cause of the exception is determined as follows (see also the reminder at the end).
If the MPIE bit of the mst atus register is 1 and the value of the mip register is non-zero,
an external hardware interrupt caused the exception. Otherwise (i.e., if the MPIE bit
of the mstatus register is 0 and/or the value of the mip register is 0), an instruction-
related exception occurred. To distinguish between software traps and unimplemented
instructions, the instruction at the address stored in mepc is read. If the instruction is
trap, the exception is a software trap; else, the exception was caused by an unimplemen-
ted instruction.

a) In this question, you are asked to write a RISC-V assembly code for the excep-
tion handler which determines the cause of the exception and calls the corresponding
routines. Assume that the following is available.

The hardware interrupts are properly managed by an already defined routine called
int_routine. This routine internally loops through all requested hardware inter-
rupts and calls the necessary routines to handle them. You should call this routine in
your exception handler only if there is a hardware interrupt. The interrupts should be
disabled before calling this routine.

There are already defined software routines for the unimplemented instructions, behav-
ing exactly like the hardware counterparts; these routines have the same names as the
corresponding instructions followed by an underscore (e.g., a routine called mul_).
These routines internally read the instruction that caused the exception, find out which
registers are used as parameters, perform the necessary operations for the arithmetic
functionality and write back the results to the correct register. You should store the
instruction code (32-bit value) that caused the exception, to a fixed memory location
(0x4000), before calling these routines. For simplicity, assume that there are only two
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unimplemented instructions that need to be handled: mul and div. Also, before call-
ing the instruction routines (i.e., mul_ and div_), you should restore MIE to enable the
nesting of exceptions: hardware interrupts can interrupt instruction-related exceptions.

In all the given routines (int_routine, mul_, div_), the content of all registers (ex-
cept the registers used for returning results) is preserved and the exceptions are never
enabled /disabled. The trap exception or an unknown exception should be ignored by
properly returning from the exception handler (without creating any side-effects). The
instruction encoding of mul, div and trap are given in Figure

31 27 26 2221 17 16 11 10 6 5 0

rA | rB| rC |0x27] 0O |Ox3a|MUL

31 27 26 2221 17 16 11 10 6 5 0

rA | rB| rC |0x25| 0O |Ox3a|DIV

31 27 26 2221 17 16 11 10 6 5 0

O | O |0x1d|Ox2d| O |Ox3a|TRAP

Figure 23: Instruction codes of mul, div and trap.

b) Why do you think the designers of this RISC-V system implemented an exception-
based mechanism for multiplication and division operations?

c¢) Can you give an example application for the use of t rap instruction?

Reminder

The instructions to manipulate the control registers are the following;:

* csrrw rd, csr, rsl:reads the value of the control register csr and stores it
in the register rd. It also writes the value of rs1 in csr

* mret: restores MIE from MPIE and jumps to the address in mepc.

* trap: saves the address of the instruction in register mepc, saves the contents of

the MIE bit in MPIE, disables interrupts, and transfers execution to the exception
handler.
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The following control registers are related to interrupts:

* mstatus: contains MIE, which is the processor interrupt-enable bit, in its fourth
LSB. Write 1/0 to the MIE bit to enable/disable interrupts. When MIE is 0, inter-
rupts are ignored. MIE is cleared at reset. It also contains MPIE in its eigth LSB,
which holds a saved copy of MIE during exception processing.

* mie: this register controls the handling of external hardware interrupts. It con-
tains MEIE and MTIE, controlling machine-level external and timer interrupts
respectively. A value of 1 in bit MEIE/MTIE means that the corresponding inter-
rupt is enabled; a value of 0 means that the corresponding interrupt is disabled.

¢ mip: the value of this register indicates which interrupts are currently pending. A
value of 1 in bit MEIP/MTIP means that the corresponding interrupt is enabled.
Writing a value to this register has no effect (read-only).

At power on, RISC-V executes the instruction at address 0. On an exception, register
mepc is loaded with the address of the instruction at the time of the exception. The
current instruction is never completed. Stack is assumed to be initialized at the begin-
ning of the program and you are allowed to use it freely. All exceptions trigger the
execution of a global handler at address 4.
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[Solution 5]

a)

interrupt_handler:

addi sp, sp, —-16 # set the stack

sw t0, 0(sp)

SwW tl, 4 (sp)

csrrw t0, mepc, zero # Read and store the exception address

sw t0, 8(sp)

csrrw tl, mstatus, zero # read mstatus

sSwW tl, 12 (sp) # and store it to stack

beq tl, zero, chk_inst # if zero, not a hardware interrupt

csrrw tl, mip, zero # read mip

beq tl, zero, chk_inst # if zero, not a hardware interrupt

jal ra, int_routine # call the hardware interrupt routine

3j end_hardware # jJump to the end

chk_inst:

lw tl, 0(t0) # get the content of [t0] (instruction
# at which the interrupt was generated)
# tl = instruction

1i £0, 0x4000

swW tl, 0(t0) # store the instr at 0x4000 as required
# by mul_/div_ emulation procedures

1i t0, Oxffff

and tl, tl, tO # get the last 16 bits

1i t0, 0x383a # check whether a mul instruction

beq tl, t0, is_mul # 1f yes, Jump

1i t0, 0x283a # check whether a div instruction

beq tl, t0, is_div # if yes, Jump

1li t0, 0x683a # check whether a trap instruction

beq tl, t0, is_trap # 1f yes, Jump

j is_undefined # else undefined exception

is_mul:

csrrw tl, mstatus, zero # tl[7] = MPIE

srli tl, tl, 4

andi tl, t1l, 0bl000 #

csrrs zero, mstatus, tl # recover MPIE

1w t0, 0(sp) # pop t0/tl, as it might be used by mul_
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lw tl, 4(sp)

call mul__

csrrci zero, mstatus,

j end_mul_div
is_div:

csrrw tl, mstatus, zero

srli tl, tl1, 4

andi tl, tl1, 0bl00O

csrrs zero, mstatus, tl

1w t0, 0 (sp)

1w tl, 4 (sp)

call div_

csrrci zero, mstatus,

j end_mul_div
is_trap:

1w tl, 8(sp)

addi tl, tl1, 4

Jj end_handler
is_undefined:

1w tl, 8(sp)

Jj end_handler
end_hardware:

1w tl, 8(sp)

j end_handler
end_mul_div:

1w tl, 8(sp)

addi tl, tl, 4

| end_handler

end_handler:

# call the multiply routine

0b1000 # disable interrupts

# jump to div/mul ending

# tl[7] = MPIE

# recover MPIE
# pop t0/tl, as it might be used by mul_

# call the division routine

0b1000 # disable interrupts

# Jump to div/mul ending

# increment tl (mepc) register, because
we don't want to re—-execute the trap
# instruction.

=

# ignore —-> jump to the end

# ignore —-> Jjump to the end

increment tl (mepc) register, because
we handled an unimplemented instruction
exception with a software routine, so
we want to skip the instruction to

CE

avoid retriggering the same exception

1180f@
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¢srrw zero, mepc, tl # Store updated mepc
1w tl, 12 (sp) # pop mstatus from stack
csrrw zero, mstatus, tl
1w t0, O(sp)
1w tl, 4(sp)
addi sp, sp, 16
mret # return from the exception handler

b) Because of resource limitations, sometimes designers do not want to include a mul-
tiply or a divide unit in the cores. Invoking an unimplemented instruction exception
makes it possible to use the same binary executable on any RISC-V system, irrespect-
ive of the availability of the required units and provided that an appropriate exception
handler is installed.

C) A trap instruction is typically used when the program requires servicing by the
other resources, such as the operating system or a peripheral (e.g., debugger). For
example, if the program needs an OS service, it raises an exception using trap in-
struction; the general exception handler of the operating system determines the reason
for the trap and responds appropriately, possibly raising the level of privilege for the
code being executed. A similar behaviour could be hard to achieve with an ordinary
function call.
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[Exercise 6]

The Programmable Interrupt Controller (PIC) is designed to prioritize and handle the
hardware interrupt requests of multiple peripheral devices. It controls and enables the
interaction with the processor through a single interrupt line. The Intel 8259A is the
most known programmable interrupt controller, introduced with the 8086 micropro-
cessors and still used on most x86 systems.

ISR
. . IRR
Priority
Set_ISR
Resolver
Reset_IRR |

Reset_ISR

EOI INTA INT

EOI INTA INT

Figure 24: The interrupt controller diagram.

Consider the simplified version of the 8259A PIC shown in Figure 24} where all inter-
rupts are enabled (all devices are allowed to issue a request). The PIC is pre-programmed
and operating in a Fully Nested mode so that the lower indexed IR lines have higher pri-
ority than the higher indexed lines, i.e. IR, has the highest priority while IR; has the
lower priority. The controller is connected to eight peripheral devices and consists of
three main units: the two registers IRR and ISR, and a Priority Resolver unit.

The Interrupt Request Register (IRR) stores the interrupt requests received from the
devices on the lines IR, to IR;. The In Service Register (ISR) is used to keep track of
the interrupts that are being serviced by the processor. The Priority Resolver is a fully
combinatorial unit needed to decide which interrupt has the highest priority among
the requesting devices. If the processor is already servicing another device, the Priority
Resolver decides to interrupt it again only if the new request has a higher priority than
the one being serviced. The Priority Resolver is also used to issue an interrupt signal
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to the processor and interpret the interrupt acknowledgment and end-of-interrupt sig-
nals received back.

The following is a list of all the steps that occur from the moment a device sends an
interrupt request to the controller until the processor finishes servicing the interrupt.

* One or more interrupt requests are received on the IR, to IR; lines from the eight
devices connected to the controller. The IRR bits corresponding to the requesting
devices are then set to 1.

¢ The priority of the requests is evaluated by the Priority Resolver and an interrupt
request is issued to the CPU using the INT signal.

¢ The CPU acknowledges the INT and responds with an INTA pulse.

* When receiving the INTA pulse, the Priority Resolver understands that the inter-
rupt with the highest priority is serviced and (a) sets the corresponding bit in
ISR, (b) resets its related bit in IRR and (c) puts the 8-bit pointer of the interrupt
subroutine on the data bus. For simplicity, all bus operations are not considered
in this exercise. If an interrupt with a higher priority arrives after INT is sent and
before INTA is received, the Priority Resolver will service the new interrupt (even
if the CPU was not originally interrupted for that device).

* When an interrupt is being serviced, requests from lower or equal priority devices
do not trigger new interrupts.

* The ISR bit of the currently-served interrupt remains set until the CPU issues an
End of Interrupt (EOI) request, at the end of the interrupt subroutine execution.

a) Design the Interrupt Request Register (IRR) and show the details of your implement-
ation using gate-level schematics or clear Verilog statements. Remember that the IR,
to IR; signals are interrupt lines connected to peripheral devices.

b) Design the Priority Resolver unit and show the details of your implementation using
gate-level schematics or clear Verilog statements.

€) Assuming a different version of the controller that generates also individual ac-
knowledge and end-of-interrupt signals back to the peripheral devices, as shown in
Figure 25| multiple PICs can be cascaded so that more than eight peripheral devices
can be serviced.
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[¢— IR,
—>» ACK,
—» EOI,

[¢— IR,
—» ACK,
—» EOI,

«— IR,
—» ACK,

Interrupt —> EOl
Controller

[¢— IR,
—>» ACK,
—» EOI,

EOI INTA INT

1

EOI INTA INT

Figure 25: Modified interrupt controller interface with acknowledge signals to peri-
pheral devices.

i) Design the peripherals’ acknowledge ACK, and end-of-interrupt EOI, signals.
Show the details of your implementation using gate-level schematics or clear Ver-
ilog statements.

ii) Propose ways of connecting multiple PICs to service 21 peripheral devices. Draw
your design.
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[Solution 6]

a) Figure 26/shows the design of the Interrupt Request Register (IRR).

L L
T T

IR, Reset_IRR, IRR, IR, Reset_IRR; IRR; IR, Reset IRR; IRR;

Figure 26: Design of the IRR.

L

b) To design the priority resolver, we first start by deciding which device has the
highest priority using the priority encoder of Figure 27| Each of the bits F; to P; cor-
respond to the one of the connected devices. However, only one of these bits is set to
one at a point in time meaning that its device has the highest priority.

IRR,

1) "
ISR, LD"_'_\ I
IRR, P,
> LD%_—D'W
IRR, P,
ISR, > J ‘g_‘ )T
IRR; P
ISRy Do—l_j ‘5; }-F‘ ’
IRR, P,
ISR, {>°—|_j
IRR_
IRRg P

g
ISR '|>°—|_J

IRR; P;
ISR,

Figure 27: The priority encoder decides which device has the highest priority.

If any of the F; to P; bits is one, the INT signal is set as shown in Figure

When the EOI signal is set, the ISR bit of the highest priority interrupt (the lowest
indexed of the set bits) should be reset. Figure [29|shows the logic used to generate the
ISR reset signals.
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P, INT

EOL ——

Reset_ISRo
ISR g me— L{>.,_I—\ I

Reset_ISR1
e &D’W

Reset_ISR;
ISR | ) 2

Reset_ISR,
ISR | /

Reset_ISR,
ISR, Il—/ ’

i } Reset_ISR;

Reset_ISR,
ISR, | J °
ISR, I Reset_ISR;

Figure 29: The logic used to generate the Reset_ISR,, bits.

When an ISR bit is set, its corresponding bit must be reset in IRR; thus both signals
are the same. When the INTA pulse is received, the interrupt with the highest priority
must be served: its bit is ISR is set and reset in IRR.

c) In this question, the new version of the controller is used.

i) The individual End-Of-Interrupt signals (£'O1,) are the same as the Reset ISR sig-
nals (Reset_[SR,). The individual acknowledge signals (ACK,,) are the same as
the Reset IRR signals (Reset_IRR,,).

ii) Three Interrupt Controllers are needed to serve 21 devices. Figure 31| shows how
the three PICs can be connected.

124 ofﬁ Version 1.0 of 1st October 2024, EPFL ©2024



Solution 6

Processor, 1/0s, and Exceptions

Exercise Book

Computer Architecture

INTA

Set_ISRy/Reset_IRR,

Po

P1

Set_ISR;/Reset_IRR;

P>

Set_ISR,/Reset_IRR,

Set_ISRs/Reset_IRR;

Ps

P4

Set_ISR,/Reset_IRR,

Set_ISRs/Reset_IRRs

Ps

Pe

Set_ISRg/Reset_IRRg

P7

Set_ISR,/Reset_IRR,

TTTTTTT]

Figure 30: The logic used to generate the Reset_IRR,, and Set_ISR, bits.

Interrupt [ IR Interrupt
Controller Controller

EOI INTA INT EOI INTA INT

EOl,
IRy
EOl,

ACK,

—> EOl,;
—> ACK;
Interrupt f— IR,g
Controller
— EOL.
—> ACK;
|[€— IR
EOI INTA INT
EOI INTA INT

Figure 31: Three interrupt controllers can be connected to serve up to 22 devices.
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[Exercise 7]

You need to design a digital stereo microphone that transmits through radio the audio
signals. For simplicity and versatility, this system is based on a simple 32-bit processor
with a byte-addressed memory and some peripherals: an analog-to-digital converter
(ADC), a timer, a button and a transmitter.

The physical interface of the processor is shown in Figure[193] where AS is an address
strobe signal indicating that the address on the A bus is valid and WR is a write signal
indicating that the processor is writing to the bus.

CLK
|
vV
0x0000 0000 Main code
CPU
—>|Ireq WR }—> A
Stack
AS 0x0000 FOOO Handler
D A 0x0001 0000 1/0s
32 ) £7)
-« >» Data

- V > Addr

Figure 32: The physical interface of the processor and its memory.

The bus accesses are performed as shown in the timing diagram of Figure

U N SO s S N e

WR — \ s s s
A[31:0] 3 A WA V% : hA\‘\ X 3 /
D[31:0] 3 A ) V% 3% RD V% /

Figure 33: Timing diagram of the bus.

Main memory is composed of 2! bytes (or 2'* words) at ranges between address 0 and
address OXFFFE. When the processor is powered up, it starts executing the code at ad-
dress 0. The clock of the system has a frequency of 1 GHz.
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The processor is not a RISC-V, but it executes the regular instruction set of RISC-V. It
doesn’t have any cache or virtual memory. In terms of interrupts, it has the following
characteristics that are slightly different from those of the standard RISC-V:

* The processor has an instruction eint to enable the interrupts. The interrupts
are not enabled immediately after the execution of the instruction eint but after
a dozen of clock cycles, which generally allows the execution of at least one or
two more instructions. When the processor is powered up, the interrupts are not
enabled.

* It has a single IREQ signal for the interrupts. When this signal goes to 1, the
processor, after a certain delay, will interrupt the current program and execute
the program at address 0xF000.

* During the execution of the code at address 0xF00O, the interrupts are auto-
matically disabled and the register mepc contains the address of the second in-
struction after the last one that has been completely executed. Note that re-
gister mepc can be accessed with classical RISC-V instructions. For example,
addi mepc, mepc, -4 isa valid instruction (although in a regular case, one
would need to use esrrw or similar instructions to access mepc).

¢ There is no hardware system to indicate that an interrupt is being served (in other
words, there is no IACK signal). If needed, this functionality must be implemen-
ted by the user.

Note that more than one element resembles the mechanisms of the RISC-V but this
remains a different interrupt protocol. There are no mret instructions and no RISC-V
control registers.

The analog-to-digital converter (ADC) with its two microphones is shown in Figure
while its typical timing diagram is shown in Figure
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CLK
|
Vv
ADC
RO 32
MICs > MICS
L p_
SAMPLE  BUSY

T

Figure 34: The analog-to-digital converter (ADC).

SAMPLE [\
BUSY / \ _
MICS OLD X7/ 2 NEW

Figure 35: The timing diagram of the ADC.

To perform the conversion, a pulse (transition from 0 to 1 and then from 1 to 0) needs
to be generated on the signal SAMPLE. Then we need to wait until the signal BUSY
returns to 0 before reading the bus MICS with its two 16-bit words that represent the
values of the analog signals on the right and left channels. You can assume that the
ADC will never receive a pulse on SAMPLE when it is busy (BUSY equals to 1).

a) Connect the ADC to the processor so that the bit 0 of the word at address 0x10000 is
the value assigned to the signal SAMPLE, that the bit 0 of the word at address 0x10004
is the value of the signal BUSY, and that the word at address 0x10008 is the value of
the bus MICS. You may use logic gates, registers, tri-state buffers and comparators, as
needed.

b) Write a function start_conv that starts a new conversion (no value is returned).
Write a function get_ conv that waits until a conversion is done and returns the value
of the bus MICS at the end of that conversion.

We should sample the microphones at a 44 100 Hz and, as such, start a conversion
every 22.675 s (since the ADC has been chosen for this purpose, its conversion time
is much smaller than this period).
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For that, we want to use the timer of Figure [36 with its timing diagram of Figure

CLK

|
4

Timer
16
—>»| COUNT ZERO b—
—{LOAD

—>{ENABLE

Figure 36: The timer interface.

cx L LT L L L
ZERO /—\

internal counter 7 — X~ Y\ . X 1 ¥ o Yont)\ - ¥ -
ENABLE _/

Figure 37: The timing diagram of the timer.

It is a simple counter that decrements its internal value at every clock cycle. When a
signal LOAD is received, the value of the bus COUNT is saved in an internal register of
the timer. When the value of the counter reaches 0, the output ZERO is set to 1 for one
clock cycle and the value of the internal register is copied into the counter (so the out-
put ZERO goes back to 0 after one clock cycle). If the signal ENABLE is 0, the counter
is disabled.

c¢) Connect the timer to the processor so that the value of COUNT is set by writing to
the address 0x1000C and the value of the signal ENABLE is set by writing to the bit 0
of address 0x10010. We also want to be able to know the last value that we assigned
to ENABLE through a read of the bit 0 at address 0x10010. You may use logic gates,
registers, tri-state buffers and comparators, as needed.

d) Write a function config_timer to configure the timer so that a pulse is generated
on the output ZERO every 22.675 ;is. Write also a function toggle_state to disable
the timer if it is enabled and to enable it if it is disabled.

A button is also connected to the processor to start and stop the sampling. Every time
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the button is pressed, a signal BUTTON goes from 0 to 1. Once the button is released,
the signal BUTTON goes back to 0. Receiving a 1 on BUTTON stops all sampling if it
has already started, and starts it if it has been stopped. When the processor is powered
up, the sampling will not start until the button is pressed for the first time.

You need now to manage the interrupts received by the timer peripheral (every time
the signal ZERO goes to 1), by the ADC (every time the signal BUSY goes to 0) and by
the button (every time the signal BUTTON goes to 1).

e) Connect ZERO, BUSY, and BUTTON to the input IREQ to detect the end of a period,
the end of a conversion, and to start/stop the sampling, respectively. You may use lo-
gic gates, registers, tri-state buffers and comparators, as needed. Make sure that no
interrupt can be ignored by the processor (otherwise, samples can be missed and the
signal can be corrupted). Implement, if needed, some logic to allow the processor to
determine the source of the interrupt (out of the three). Implement also, if needed,
the logic that allows the processor to signal that a particular interrupt has been re-
ceived (acknowledge). Use, as needed, writes and reads to the addresses successive to
0x10010 (e.g. 0x10014 or 0x10018) while clearly specifying how these I/O ports must
be used.

f) Write a function handler at the address 0xF000 that receives the interrupts. It
should determine the cause of the interrupt (ZERO, BUSY or BUTTON). If the cause is
ZERQO, it should initiate a conversion. If the cause is that BUSY dropped to 0, it should
read MICS and pass on the value to the transmitter by calling a function send_radio
with the new value of MICS as the only parameter (you don’t have to write the func-
tion send_radio). If the cause is BUTTON, it should restart or stop the sampling.
Use, wherever applicable, the functions defined in the previous questions. If needed,
the function handler must also indicate to the peripherals that their interrupts are
being served. And, of course, in the end, it should re-enable all interrupts.

g) Write a new main program for the complete system with interrupts. Remember that
the interrupts are not enabled when the system is powered up. You should use also the
instruction halt to stop the execution when there is nothing to execute (it would put
the processor in a low power consumption state, among others). After the execution of
the instruction halt, the processor can only wake up by an interrupt; in this case, we
assume that the execution of halt has completely finished.

main:
li sp, O0xFO00O0
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a)
ADC
9 731 '031.0"
CIiK 5 5 T 3;/
M CLK—> EN P N \7 P Q \7
CPU CLK—> CLK—p>
T Data, WRQ WR WR
D A AS AS 2y AS
A
2L 432 = OXIE EXIE = 0x1@
Y
- ¥
Figure 38: Connecting the ADC to the processor.
b)
start_conv: addi t0, zero, 1 # t0 =1
slli tl, t0, 16 # tl = 0x10000
sSwW t0, 0(tl) # set SAMPLE to 1
sSwW zero, 0(tl) # set SAMPLE to O
ret
get_conv: addi t0, zero, 1
slli t0, t0, 16 # t0 = 0x10000
loop: 1w tl, 4(t0) # read BUSY
bne tl, zero, loop
1w a0, 8(t0) # read MICS
ret
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c)
CLK
|
N4
Timer
ENABLE,
D ENABLE  Zgpol—>
CLK—> EN LOAD
-bﬁ/31—'031__1' COUNT
CLK V7
D Q
v \
CLK —p>
CPU
—>|Ireq WR |—= WR
AS | AS \ 16l
Data, WR WR WR 1 Data;s o
b A AS AS 2/ AS
A
RY f32 = 0x10010 = 0x1oooc|

Y

Data
Y
Addr
Figure 39: Connecting the timer to the processor.

d)

config_timer:

toggle_state:

addi
slli
addi
swW
ret

addi
slli
1w
xori
sSwW
ret

to,
to,
tl,
tl,

to,
to,
tl,
tl,
tl,

zero, 1
t0, 16
zero,

12(t0)

zero, 1
t0, 16
16(t0)
tl, 1
16(t0)

22674

=

H= oS o

t0 =
tl =

0x10000
22674
write to LOAD

t0 0x10000

read ENABLE

flip the last bit
write to ENABLE
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e)
1 —b Q inty
ZERO —> R
1—|o Q int; D
BUSY —op> R
. 1o Q int,
> o ’3, R, BUTTON—> o A, int,.o
Ra.o R,
CLK—P e 55— 05
e
CLK
Data,_o WRQ b @ V7 \I/
AS CLk—p> PU
— e
fsf{ 24 D A
A
ot Y
rsr Y
Figure 40: Logic for interrupt request and acknowledgement.
f)
handler: addi sp, sp, —20 # save registers on stack
sw sO, 0(sp)
swW t2, 4 (sp)
sw t3, 8 (sp)
sSw td, 12 (sp)
sw a0, 16 (sp)
addi sO, zero, 1
slli sO0, s0, 16 # s0 = 0x100000
1w t2, 0x14(s0) # read int[2..0]
andi t3, t2, 1
bne t3, zero, int_zero # interrupt from the timer
andi t3, t2, 2
bne t3, zero, int_busy # interrupt from the ADC
j int_button # interrupt from the button
end_handler:
lw s0O, 0 (sp)
lw t2, 4 (sp)
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lw
lw
lw

addi

t3, 8(sp)
td, 12 (sp)
a0, 16 (sp)
sp, sp, 20

addi mepc, mepc, -4

eint

jalr zero, mepc, O

int_zero: addi

SW
SW

jal

J

int_busy: addi

sSwW
sSwW
lw

jal

int_button: addi

SW
SW

jal

g)

main: 1i

jal
eint
forever: halt

br

td, zero, 1
t4, 0x18(s0)
zero, 0x18(s0)
ra, start_conv
end_handler

t4, zero, 2
t4, 0x18(s0)
zero, 0x18(s0)
a0, 8(s0)

ra, send_radio
end_handler

t4, zero, 4

t4, 0x18(s0)
zero, 0x18(s0)
ra, toggle_state
end_handler

sp, OxF00O0
ra, config_timer

forever

acknowledge the interrupt

serve the interrupt

acknowledge the interrupt

serve the interrupt

acknowledge the interrupt

serve the interrupt
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[Exercise 8]

We want to build a system based on a RISC-V processor capable of measuring the
distance of an object. To this end, we decide to use an ultrasonic sensor (a device
whose operating principle is based on the speed of sound). However, the speed of
sound depends on the temperature, so we also need a temperature sensor in order to
use the ultrasonic sensor reliably. Finally, for more precision in our measurements, we
decide to include a hardware counter in the system. Figure[#6|shows the processor and
its 3 peripherals.

TEMPERATURE COUNTER
SENSOR <DATA_COUNT
32| START STOP
TEMP COUNT COUNT
ULTRASOUND RISC-V
SENSOR EB—irq0
MEASURING |—> irq1
START = S
ULTRA RD WR ADDR DATA

! REii

Figure 41: RISC-V processor and peripherals.

The system’s operating principle is as follows:

1. An ultrasonic sensor is used to emit an ultrasonic wave. To do so, the device must
receive a pulse of a duration of at least 5 s on its START_ULTRA input pin.

2. Assoon as the ultrasonic wave is emitted, the sensor’s MEASURING output signal
is raised.

3. The wave propagates at the speed of sound and bounces off the object whose
distance is to be measured.

4. When the ultrasonic wave returns to the sensor, it is detected and the MEASURING
output signal is deactivated.

5. The duration ¢ of the pulse emitted on the MEASURING signal is between 0.5 ms
and 20 ms. It is proportional to the distance between the object and the ultrasonic
sensor, and it depends on the ambient temperature 7' measured by the temperat-
ure sensor.
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6. By measuring the duration of the MEASURING pulse and by knowing the temper-
ature, we can then compute the real distance between the ultrasonic sensor and
the object.

The following timing diagram summarizes the behaviour of the ultrasonic distance
Sensor:

4— >0.1ms —P|

START_ULTRA 4/<— >S50 ——»)

MEASURING f&————————— 05-20ms >\

Figure 42: Ultrasonic sensor behaviour.

The hardware counter is used for all timing measurements in the system. The counter
is clocked at 10 MHz and has an internal 32-bit register whose value is always provided
on its DATA_COUNT output port. Activating the START_COUNT signal on the rising
edge of the clock resets the internal register to zero and enables the counter, which
means that the value of the internal register is incremented at every clock cycle. Activ-
ating the STOP_COUNT signal on the rising edge of the clock stops the counting.

a) Complete the system schematic provided at the end of the exercise in such a way
to obtain the behavior described below. It is essential that you read question 2 before
drawing your solution in order to know the responsibilities of the software.

¢ Writing to bit 0 of address 0x1000 controls the START_ULTRA signal.

* A rising edge of the MEASURING signal generates an interrupt on the irq0 pin.
Writing 1 to bit 1 of address 0x1000 acknowledges the irq0 interrupt.

¢ A falling edge of the MEASURING signal generates an interrupt on the irgl pin.
Writing 1 to bit 2 of address 0x1000 acknowledges the irgl interrupt.

¢ Reading from address 0x1004 returns the temperature value measured by the
temperature sensor.

* Writing to bit 0 of address 0x1008 controls the START_COUNT signal.
* Writing to bit 1 of address 0x1008 controls the STOP_COUNT signal.

* Reading from address 0x100C returns the value of the internal register of the
counter.
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The system does not contain any other peripherals and no other interrupt signals are
used.

For the following questions, use all RISC-V conventions.

b) Write the ultrasound_start function that starts the ultrasonic sensor by send-
ing a pulse lasting at least 5 ps to START_ULTRA. Clearly explain how you measure
the time to ensure that the pulse width satisfies the duration constraint.

C) Write the get_distance_parameters function, the interrupt handler, and the
interrupt service routines of irq0 and irgl to obtain all the parameters needed to
compute the distance between the ultrasonic sensor and the object. This exercise uses
a nonstandard RISC-V core where i rg0 and irgl connect to bits 0 (irg0)and 1 (irgl
) of mie and mip. Concretely, the standard behaviour of RISC-V is modified in the fol-
lowing way: (i) if bits 0 or 1 of mie are 0, the corresponding irq is ignored, even if MEIE
is set; (ii) reading bits 0 or 1 of mip indicates if the corresponding irq is active (and if
either is active, MEIP is set).

The general algorithm must perform the following steps:

1. Enable the interrupts from irq0 and irqgl.

2. Start the ultrasonic sensor by calling the ult rasound_start function written
earlier.

3. The particular RISC-V processor that we use here has an additional instruction
called halt thatis not part of the standard RISC-V ISA. Use the halt instruction
to put the processor in low-power mode until an interrupt is detected. Refer to
the paragraph below for more details on the behaviour of the halt instruction.

4. When an interrupt from irqo is received, start the time measurement.

5. Use the halt instruction to put the processor in low-power mode until an inter-
rupt is detected.

6. When an interrupt from irql is received, stop the time measurement.
7. Disable the interrupts from irq0 and irql.
8. Read the time measured by the counter and convert it to ns, if necessary.

9. Read the temperature from the temperature sensor.
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10. Return the measured time in register a0 (in ns) and the temperature in register
al.

The halt instruction is functionally equivalent to the following code:

wait:
Jj wait

The only difference is that the code above will be executed in full-power mode, whereas
the instruction halt puts the processor into low-power mode. Upon the detection of
an interrupt, the processor leaves low-power mode and handles the interrupt as usual.

d) Explain in a clear and succinct manner (1-2 lines for each answer) the following
choices you made regarding the code in point 3):

a. Did you use the value contained in the mepc register and, if so, why?

b. Taking into account the algorithm used in this exercise, what can you say about
the accuracy of the measure of the duration of the pulse on MEASURING?
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[Solution 8]

a) The system schematic is shown in Figure

b) T.ounter = 1/10 MHz = 100 ns — the counter must count until N = 5us/100 ns = 50.

ultrasound_start:
# store on stack
addi sp, sp, -12

sSw t0, 0(sp)
SwW tl, 4 (sp)
SwW t2, 8(sp)

# set START_ULTRA signal
addi t0, zero, 1

la t2, ULTRASOUND_SENSOR
swW t0, 0(t2)

# 5 us = 50 clock cycles @ 10 MHz
addi tO0, zero, 50 # t0O = 5 us in clock cycles

# start counter

addi tl1, zero, 1 # tl = counter start mask
la t2, COUNTER_CONTROL
sSwW tl, 0(t2)

ultrasound_start_poll_counter:
# poll counter until value >= 5 us

la t2, COUNTER_DATA

1w tl, 0(t2) # tl = counter value

blt tl, t0, ultrasound_start_poll_counter # if counter value < 5 us
# ——> goto ultrasound_start_poll_counter

# stop counter

addi tl1, zero, 2 # tl = counter stop mask

la t2, COUNTER_CONTROL

sSwW tl, 0(t2)

ultrasound_start_end:

# clear START_ULTRA signal
la t2, ULTRASOUND_SENSOR
sSwW zero, 0(t2)

# restore from stack
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1w t0, 0(sp)

1w tl, 4 (sp)

1w t2, 8(sp)

addi sp, sp, 12

ret

c)

get_distance_parameters:
# store on stack
addi sp, sp, -12

sSwW t0, O (sp)
sw tl, 4 (sp)
sw t2, 8(sp)

# enable irg0 + irgl + MIE
1li t0, 0x803
¢csrrs zero, mie, tO

# enable interrupts
csrrsi zero, mstatus, 8

# start the ultrasound sensor
addi sp, sp, -4

sw ra, O (sp)
jal ra, ultrasound_start
1w ra, 0(sp)

addi sp, sp, 4

# Halt the CPU and wait for the MEASURING signal to go high,

# generating an interrupt. The ISR of irg0 will run and when we return,
# we will return after this halt by

# construction of the interrupt handler.

halt

# Halt the CPU and wait for the MEASURING signal to go low, generating an
# interrupt. The ISR of irgl will run and when we return, we will return
# AFTER this halt by construction of the interrupt handler.

halt

# Return value a0 = length in ns of of MEASURING pulse
# read from counter.
# Must convert from clock cycles to ns:

#
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# <=> 1 000 000 000 ns —--> 10 000 000 clock cycles

# <=> X ns ——> a0 clock cycles

#

# ==> x ns = a0 * 1000000000 / 10000000 = a0 * 100

# duration of MEASURING pulse in clk cycles.

1w a0, COUNTER_DATA (zero)

slli tO0, a0, 6 # t0 = counter * 64

slli t1, a0, 5 # tl = counter = 32

slli t2, a0, 2 # t2 = counter x 4

add a0, to, tl # a0 = t0 + tl = counter * 96
add a0, a0, t2 # a0 = a0 + t2 = counter * 100

# Return value al = temperature read from temperature sensor.
1w al, TEMPERATURE_SENSOR (zero)

# disable irg0 + irqgl

csrrci zero, mie, 3

# disable interrupts

csrrci zero, mstatus, 8

# restore from stack

1w t0, 0 (sp)

1w tl, 4(sp)

1w t2, 8(sp)

addi sp, sp, 12

ret

ihandler:

addi sp, sp, -8 # store on stack

sSwW t0, 0 (sp)

sw tl, 4 (sp)

csrrw t0, mip, zero # t0 = mip

andi tO0, tO0, 2 # t0 = mip AND irgl_mask
bne t0, zero, ihandler_stop_measurement # if mip AND irgl_mask
# ——> goto ihandler_stop_measurement

ihandler_start_measurement:

# acknowledge irqg0 interrupt by resetting irqg0 register.
addi tO0, zero, 2

la t1l, ULTRASOUND_SENSOR

sSwW t0, 0(tl)

# stop resetting irgQ0 register.
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sSwW zero, 0(tl)

# reset and start counter.
addi t0, zero , 1

la t1l, COUNTER_CONTROL
sSwW t0, 0(tl)

# goto end of interrupt handler.
Jj ihandler_return

ihandler_stop_measurement:
# acknowledge irgl interrupt by resetting irgl register.
addi tO0, zero, 4

la t1, ULTRASOUND_SENSOR

swW t0, 0(tl)

# stop resetting irgl register.
sSwW zero, 0(tl)

# stop counter

addi t0, zero, 2

la t1l, COUNTER_CONTROL
sSwW t0, 0(tl)

ihandler_return:

csrrw t0, mepc, zero

addi tO, t0, 4

csrrw zero, mepc, tO

1w t0, O(sp) # restore from stack
1w tl, 4(sp)

addi sp, sp, 8

note that we do increment mepc by 4, because we want to avoid re-
executing the halt instructions we were sleeping on.

If we had not incremented

mepc here, we would re-execute the halt instructions

and the CPU would never

advance in the main program.

mret

H= FH= H= H H S

d)

1. Normally, before the mret which terminates an ISR, one doesn’t modify mepc in
order to re-execute the instruction that was interrupted by the interrupt. How-
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ever, in this case, interrupts can only happen while the CPU is in sleep mode after
executing halt and, after the interrupt, we want the processor to continue with
the execution of the program and not to return to sleep mode by re-executing
halt. Therefore, mepc is incremented by 4 before returning from the interrupt.

2. Two factors limit the accuracy of the time measurement performed by this sys-
tem:

(@) The period of the counter, 100 ns.

(b) Theinterruptlatency,i.e. the time between the falling edge of the MEASURING
signal and the activation of the STOP_COUNT signal. If accuracy is the most
important requirement, and there are no constraints in terms of power con-
sumption nor the processor has to perform other tasks during the measure-
ment, then polling the MEASURING signal would be a better solution.
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Figure 43: System schematic.
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[Exercise 9] Interrupt Management

This exercise uses a nonstandard RISC-V core that has 32 distinct interrupt sources
labeled irg0 to irg31, each mapped to bits 0 through 31 of the mie (Machine In-
terrupt Enable) and mip (Machine Interrupt Pending) registers. Unlike the standard
RISC-V architecture, this core does not use the MEIE and MTIE bits of mie for external
and timer interrupts, nor the MEIP and MTIP bits of mip for their pending states.
Instead, if bit 0 of the mie register is set to 0, interrupts from irq0 are ignored. The
same applies to each irq source: if the corresponding bit in the mie register is 0, in-
terrupts from that source are ignored, and the mip register’s corresponding bit indic-
ates whether an interrupt from that source is active. Thus, interrupt management is
handled directly through these specific bits in the mie and mip registers.

Concretely, the standard behaviour of RISC-V is modified in the following way: (i) bits
MEIE and MTIE of mie, along with bits MEIP and MTIP no longer exist, (ii) if bit 0 of
mie is 0, interrupts triggered by 1irg0 are ignored, (iii) reading bit 0 of mip indicates if
irg0 is active. The same applies to irgl to irg31 that are connected to bits 1 to 31.

To increase the control we have on this non-conventional RISC-V system, we would
like to define a new way for managing interrupt priorities.

To generalize interrupt handling, assume that an interrupt vector table is stored at ad-
dress 0x100. The interrupt vector table contains the address of the 32 event handlers in
consecutive order—for example, the address of 1rq7 islocated at address 0x100+7 x 4.
Event handlers are standard RISC-V functions which follow the usual calling conven-
tions.

In all the following questions, use RISC-V assembly, registers, and calling conventions.

a) Write the interrupt handler ihandler which looks for the source of the interrupt
and calls the corresponding event handler in the interrupt vector table. Interrupts with
lower index should have higher priority than those with higher index (for example,
irqg2 has priority over irg6, which in turn has priority over irg8). For simplicity,
there is no need to support nested interrupts.

Consider now the system shown in Figure 215 which is based on a nonstandard RISC-
V processor and contains the following peripherals: a LED display, a button, and a
timer. The system operates at a frequency of 100 MHz. Any memory address that is
not already used for something can be assummed to be available as RAM.
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Figure 44: Block diagram of the system.

The LED display consists of a single row of 32 LEDs. The LEDs can be turned on or
off by writing to the control register located at address 0x3000. Bit 31 of the control
register corresponds to the leftmost LED, bit 0 to the rightmost; writing 1 (0) turns on
(off) the respective LED. The control register is write-only: reading from 0x3000 al-
ways returns zero.

When the button is pressed, it generates an interrupt on irqg0. Writing any value to
0x3010 acknowledges the interrupt.

The dual timer contains two independent and identical counters, A and B. Its register
map is shown below.

| Name | Address [ 31...8 | 7 | 6 | 5 | 4 | 3 ] 2 1 [ o0 |
Csr 0x3020 Reserved | contB ‘ intEnB | zeroB | runB | contA | intEnA ‘ zerok | runk
prdA | 0x3024 Counter A timeout period
cnth 0x3028 Counter A current value
prdB | 0x302C Counter B timeout period
cntB 0x3030 Counter B current value

In the following description, X refers to either A or B.

1. All registers are read /write.
2. Writing to the Reserved bits has no effect; reading from them always return 0.

3. Writing 1 to runX starts counter X, writing 0 stops it. Reading runX returns
whether counter X is running (1) or not (0).

4. cntX contains the current value of counter X; it is decremented by one every
10,000 cycles while the counter is running.
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5. cntX is initialized to prdX on (1) a write operation to prdX, or (2) when cntX
reaches zero.

6. When cntX reaches zero, zeroXis set to 1 and, if intEnX is set to 1, an interrupt
is generated; timer A is connected to irgl and timer B to irg2.

7. Writing 0 to zeroX clears it and acknowledges the interrupt.

8. After reaching zero, cnt X immediately restarts decrementing from prdXif cont X
is set to 1; otherwise, it reloads prdX and then stops until writing 1 to runX.

The system’s operating principle is as follows:

1. Timer A, connected to irqgl, is used to generate an interrupt every 1 s.

2. Atany given moment, there is always exactly one LED that is turned on. We will
call this the active LED.

3. The leftmost LED is the first one to be active.

4. On an interrupt from the 1 s timer, the system changes state: the LED currently on
is turned off, while one of its neighbors turns on. Initially, it is the right neighbor
that turns on, which means that the active LED will move left-to-right.

5. When the active LED reaches one of the edges, the LED on the opposite edge
becomes active. For example, if the current update direction is left-to-right, after
the rightmost LED has been active for 1 s, the next active LED will be the leftmost
LED.

6. Pushing the button changes the update direction. Note that this does not affect
the timing of the next update, which will still happen 1 s after the previous one.

b) Write a main procedure that:

1. Initializes any internal variables. Assume the stack pointer is already initialized.

2. Initializes the interrupt vector table with two event handlers, button_func for
irg0 and led_timer_func for irgl. Function labels such as button_func
are treated as constants by the RISC-V assembler and can be used wherever an
immediate value is expected.

3. Configures timer A to send an IRQ every 1 s.

4. Enables the necessary interrupts.
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5. Enters an infinite loop that does nothing.

In all the following questions, remember that event handlers must be written as
standard RISC-V functions.

c) Write the event handler for the timer 1ed_timer_func to modify the state of the
LEDs whenever the timer generates an interrupt.

d) Write the event handler for the button button_func which changes the direction
in which the LEDs are lit whenever the button generates an interrupt.

Whenever a button is pressed, its electrical contacts may experience some mechanical
bouncing, as shown in Figure These spurious transitions, very fast compared to
human reaction times but slow compared to the cycles of a processor, may be read as
multiple button pushes in a very short time, causing incorrect behavior—in the case
of our system, it can cause the direction in which the LEDs are lit to change multiple
times due to a single push of a button. A possible solution to this problem is software
debouncing—ignoring the button for a certain time after detecting the first transition
until it can be safely assumed that any possible bouncing is over.

AX = 2.600ms J1/AX = 384.62Hz aYQ) = 2.75v

Figure 45: Snapshot of switch bounce on an oscilloscope. The switch
bounces between on and off several times before settling (reproduced from
https://en.wikipedia.org/wiki/Switch).

e) Write a new button_func which implements a purely software debouncing.
Whenever the button causes an IRQ, wait for 10 ms before changing direction and
returning from the event handler (you can safely delay servicing the timer interrupts
while waiting). Measure the necessary time in software. Assume that each instruction
takes 4 cycles to execute.

f) Rewrite button_func, debounce_timer_func, and main to implement the
debounce time measurement in hardware. Use interrupts from timer B to measure
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the time interval of 10 ms. You should not need to modify led_timer_func and
ihandler.

g) Compare in a clear and succinct manner (2-3 sentences) the software and hardware
solution for time measurement from the previous two questions. Is there any benefit
of using one approach over the other? If yes, provide an example situation in which
one of the solutions would be beneficial. If no, justify your answer concisely.
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[Solution 9]

# ihandler

ihandler:

addi sp, sp, -—-44
sw ra, O(sp
sw s0, 4(sp
sw sl, 8(sp

)

)

)
sw s2, 12 (sp)
sw tO0, 16(sp)
sw tl1, 20 (sp)
sw t2, 24 (sp)
sw t3, 28 (sp)
sw t4, 32 (sp)
sw t5, 36 (sp)

)

sw t6, 40 (sp
csrrw s0, mip, =zero
addi s2, zero, 0x100

loop:

andi sl1, s0, 1

beq sl1, zero, skip
lw s1, 0(s2)

jalr ra, sl1, O
skip:

srli s0, sO, 1
addi s2, s2, 4

bne s0, zero, loop

sw ra, 0(sp)
sw s0, 4(sp)
sw sl, 8(sp)
sw s2, 12(sp)
sw tO0, 16(sp)
sw tl1, 20 (sp)
sw t2, 24 (sp)
sw t3, 28 (sp)
sw t4, 32(sp)
sw t5, 36 (sp)
sw t6, 40 (sp)
addi sp, sp, 44
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mret
# main

.equ LEDS_COPY 0x2000
.equ DIR 0x2004

.equ LEDS 0x3000

.equ BUTTON 0x3010
.equ csr 0x3020

.equ prdA 0x3024

.equ prdB 0x302C

.equ LEFT O

.equ RIGHT 1

main:
addi t0, zero, 1
srli t0, tO, 31

la t1, LEDS_COPY
sw t0, 0(tl)
la tl1, LEDS
sw t0, 0(tl)

addi t0, zero, RIGHT
la tl1, DIR
sw t0, 0(tl)

addi t0, zero, button_func

sw t0, 0x100(zero)

addi t0, zero, led_timer_func
sw t0, 0x104 (zero)

li tO0, 10000
la tl1, prdA
sw tO0, 0(tl)

1li tO, Obl1lo01l
la tl1, csr

sw tO0, 0(tl)

csrrwi zero, mie, 0x03
csrrwi zero, mstatus, 8

nothing:
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jJ nothing

# led_timer_func
led_timer_func:
la t0, LEDS_COPY
lw t0, 0(t0)

la t1, DIR

lw tl1, 0(tl)

beq tl1, zero, left
right:

srli t0, tO0, 1

j store

left:
slli t0, tO, 1

store:

la t1, LEDS

sw t0, 0(tl)

la tl1, LEDS_COPY
sw tO0, 0(tl)

la tl, csr

lw tO, 0(tl)
andi t0, tO0, OxFD
sw tO0, 0(tl)

ret

# button func
button_func:
la t1, DIR
lw tO0, 0(tl)
xori tO, tO, 1
sw t0, 0(tl)

la t1, BUTTON
sw zero, 0(tl)

ret

# button func waiting
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button_func:
addi t0, zero, 2
loop:

add zero, =zero,
add zero, =zero,
add zero, =zero,
addi t0, tO0, -1

5000

Zero
zZero
zZero

bne t0, zero, loop

la tl1, DIR
lw tO0, 0(tl)
xori t0, t0, 1
sw t0, 0(tl)

la tl1, BUTTON
sw zero, 0(tl)

ret

# button func timer

main:

.equ LEDS_COPY 0x2000

.equ DIR 0x2004
.equ LEDS 0x3000

.equ BUTTON 0x3010

.equ csr 0x3020
.equ prdA 0x3024
.equ prdB 0x302C
.equ LEFT O

.equ RIGHT 1

addi t0, zero, 1
srli t0, tO, 31

la tl1, LEDS_COPY

sw tO0, 0(tl)
la tl1, LEDS
sw t0, 0(tl)

addi t0, zero, RIGHT

la t1, DIR
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sw tO,
addi tO,
sw tO,
addi tO,
sw tO,
addi tO,
sw tO,
addi tO,
la t1,
sw tO,
addi tO,
la t1,
sw tO,
addi tO,
la t1,
sw tO,

csrrwi zero,
csrrwi zero,

nothing:

0(tl)

zero,

button_func

0x100 (zero)

zero,

led _timer func

0x104 (zero)

zero,

debounce_timer_func

0x108 (zero)

zero,
prdA
0(tl)

zero,
prdB
0(tl)

zero,
csr
0(tl)

j nothing

button_func:

addi tO,
la t2,
1w t1,
ori t1l,
sw tl,

csrrci zero,
csrrsi zero,

ret

zero,
csr
0(t2)
tl, tO
0(t2)

10000

100

0x4D

mie, 0x3
mstatus, 8

0x10

mie, 1
mie, 4

debouce_timer_ func:

la t1,
lw tO,
xori tO,
sw tO,

DIR
0(tl)
t0, 1
0(tl)
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addi t0, zero, 0x20
addi t2, zero, -1
xor t0, tO0, t2

la t2, csr

1w tl1l, 0(t2)

and tl1, t0, t1l

sw tl, 0(t2)

csrrsi zero, mie, 1
csrrci zero, mie, 4

ret

g) Here both solutions are identical in terms of performance because the processor
doesn’t have anything else to do. The hardware solution is preferred if we need to take
into account energy, or if the CPU has other things to process during the 10ms.
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[Exercise 10] Interrupt Management

We want to build a system based on a RISC-V processor that controls room lighting
in a university library. The last student leaving the library often forgets to turn off
the light, so to reduce energy consumption we want to design a system that will turn
lights off automatically if it detects no presence in the library for some time. To this
end, we decide to use a presence sensor, which will work in conjunction with the
physical light button present at the library’s entrance to control lighting. In addition,
the system includes a countdown timer. Figure 46/ shows the processor and its four
peripherals.

TIMER
10 — RISC-V
g 70 = EB—irq0
write_en addr data_in data_out =D irq1
2 32 32 .
N
>
PRESENCE SENSOR read write addr rddata wrdata

= R

write_en addr data_in data_out

N

LIGHT BUTTON >
ACK > write_en data_in data_out

¢ 32 32
write_en data_in data_out 6 E E
6 éﬂ 632

Figure 46: RISC-V processor and peripherals.

System’s specifications
The system should operate as follows:

1. Whenever the button is pressed, the lights should be flipped immediately (i.e.,
turned from off to on or from on to off), regardless of the system’s state.

2. Whenever the library becomes empty, the lights shouldn’t stay on for more than
approximately 10 minutes.
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3. The light button is inside the library. Hence at the instant someone presses it the
library is necessarily non-empty.

The presence sensor works by performing scans of the entire library on-demand (more
details are provided below), using various physical metrics like noise, movement,
and heat to check for presence. The scan itself is very short-lived, taking only a few
seconds, but is very energy-intensive. We have to make sure we scan the library as
rarely as possible—all while meeting the system’s specification—so that the presence
sensor doesn’t end up consuming more energy than what we would have wasted if
lights had just stayed on when no one needed them.

For simplicity, we assume the presence sensor is perfect: after a scan, it never reports
a presence when the library is empty and always reports a presence when someone
is in the library. We can then equate “the presence sensor reports a presence” with
“someone was in the library during the scan”.

In all subsequent peripherals” interface, Reserved bits are unused. Writing to them has
no effect and reading them returns 0.

Countdown timer

The following table lists the registers of the countdown timer (chosen through the port
addr).

| Register | Address (RISC-V) | Name | 31...3 1 0
0 0x2000 period Timeout period
1 0x2004 control Reserved | START | STOP/RST
2 0x2008 status Reserved ZERO

period register

The period register maintains the timeout period value in number of clock cycles (see
below). The internal counter is loaded with the period register value whenever one
of the following event occurs:
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* A write operation to the period register.
¢ The internal counter reaches 0.

* By writing 1 to the STOP/RST bit.

Writing to the period register stops the internal counter. The counter starts from the
period’s value, so if the period is IV the timer will tick after NV + 1 clock cycles.

control register

* By setting the START bit, the counter starts counting. The START bit is a write-
only bit (i.e., when reading the counter register, this bit will always be read as
0). If the timer is stopped, writing 1 to the START bit causes the timer to start
counting. When the internal counter reaches 0, it is loaded with the period
register value and stopped. If the timer is already running, writing 1 in START
has no effect. Writing 0 in the START bit has no effect.

* By setting the STOP/RST bit, the counter stops counting and resets its internal
counter value to the period. The STOP/RST bit is a write-only bit. If the
timer is already stopped, writing 1 to STOP/RST has no effect. Writing 0 to the
STOP/RST bit has no effect.

status register

The ZERO bit is set to 1 when the counter reaches zero. The ZERO bit stays 1 until it
is explicitly cleared by software. Write 0 to the status register to clear the ZERO bit.
Writing 1 to the ZERO bit has no effect. The ZERO bit is both available at the output
of the component and through the status register.

Presence sensor

The following table lists the registers of the presence sensor (chosen through the port
addr).
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| Register | Address (RISC-V)| Name | 31...2 1] 0 |
0 0x200C control Reserved LAUNCH
1 0x2010 status Reserved | PRES | SCANNED

control register

By setting the LAUNCH bit, the presence sensor launches a scan of the library. The
LAUNCH bit is a write-only bit (i.e., when reading the control register this bit will
always be read as 0). If a scan is still ongoing, writing 1 to LAUNCH aborts it and
restarts a new scan. Writing 0 to the LAUNCH bit has no effect.

status register

1. The presence sensor returns the previous scan’s result in the PRES bit. The sensor
will set the PRES bit to 1 if it detected someone in the library during the scan, and
to 0 otherwise. The PRES bit is read-only, writing to it has no effect.

2. The SCANNED bit is set to 1 when the sensor completes a scan. The SCANNED
bit stays 1 until it is explictly cleared by software. Write 0 to the status register
to clear the SCANNED bit. Writing 1 to the SCANNED bit has no effect. The
SCANNED bit is both available at the output of the component and through the
status register.

Light button

The following table lists the registers of the light button.

| Register | Address (RISC-V) | Name | 31...1 \ 0 |
0 [ 0x2014 [button| Reserved | PRESSED |

button register

The PRESSED bit is set to 1 when the button is pressed. The PRESSED bit stays 1 until
it is explictly cleared by software. Write 0 to the but t on register to clear the PRESSED
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bit. Writing 1 to the PRESSED bit has no effect. The PRESSED bit is both available at
the output of the component and through the button register.

Lights

The following table lists the registers of the lights.

| Register | Address (RISC-V) | Name | 31...1 | 0 |
0 [ 0x2018 | lights| Reserved | ON/OFF |

lights register

The ON/OFF bit can be set to 1 or 0 to, respectively, turn lights on or off. Overwriting
this bit with the same value has no effect. Reading the ON/OFF bit allows to determine
whether lights are on or off in the library.

Hardware System

a) Complete the provided system diagram in such a way to obtain the I/O memory
map described above. Note the following:

* When the timer reaches 0, the 1rq0 pin should be enabled on the RISC-V pro-
cessor. When the presence sensor completes a scan, pin 1rgl should be enabled.
Finally, when the light button is pressed, pin irg2 should be enabled.

¢ For each peripheral, the write_en input signal should be 1 when the data com-
ing through data_in should be written to one of the peripheral’s internal re-
gisters (indicated by addr when relevant). data_out always outputs the in-
ternal register’s value pointed to by addr, hence the outgoing signal must be
appropriately controlled to avoid conflicts on the bus. Figure 46| indicates the
width and direction of all ports.

¢ For each peripheral, the write process is synchronous. However, the read pro-
cess has a perfectly combinatorial (i.e., asynchronous) interface: given an address
(when relevant), the value of the corresponding register is outputted a combinat-
orial delay later.
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In your diagram, you may use any of the logic components from Figure Recall
that, in RISC-V convention, the read process of the processor is synchronous and has a
latency of one cycle. The write process is synchronous and has no latency cycles. Timing
diagrams for typical read and write processes are shown in Figure

AN > AN N N

e = — —~/
=) > | |
—

Figure 47: Logic components you are allowed to use in your diagram. From left to
right: (1) equality test, (2) NOT, AND, and OR (arbitrary number of inputs allowed for
AND and OR), (3) tri-state buffer, (4) flip-flop (EN and R signals are optional).

cycle# O 1 2 cycle# O 1
ck T/ /[ \/ ck "/ \/
address address
read _/ \ write /" |\
rddata @ wrdata

Figure 48: Timing diagrams of RISC-V for a typical read transaction (on the left) and
write transaction (on the right).

Software Support

In the following questions, please use RISC-V assembly, registers, and calling conven-
tions. This exercise uses a nonstandard RISC-V core where irg0 connects to bit 0 of
mie and mip. Concretely, the standard behaviour of RISC-V is modified in the follow-
ing way: (i) if bit 0 of mie is 0, interrupts triggered when enabling irg0 are ignored,
even if MEIE is set; (ii) reading bit 0 of mip indicates if 1rg0 is active. irgl and irg2
are connected similarly to bits 1 and 2 respectively.
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b) Implement the init procedure which initializes the system and then puts the
processor into low-power mode. You can assume that lights are off when the pro-
cessor starts and that the light button isn’t pressed before the processor is put in low-
power mode. ROM is mapped in memory from address 0x0000 (included) to address
0x1000 (excluded) and is followed by RAM mapped from address 0x1000 (included)
to address 0x2000 (excluded). The init procedure should:

1. Initialize the stack pointer to address 0x2000. Following RISC-V conventions,
the stack should grow toward lower memory addresses.

2. Set the timer’s period so that the timer reaches zero 10 minutes after being star-
ted. The timer’s clock runs at a fixed 1 KHz.

3. Make the CPU able to receive interrupts from all interrupt-generating peripherals
(timer, light button, and presence sensor) and enable interrupts globally.

4. Use the halt instruction to put the CPU in low-power mode (more details about
this instruction are given below).

The particular RISC-V processor we use here has an additional instruction called halt
that is not part of the standard RISC-V ISA. Use the halt instruction to put the pro-
cessor in low-power mode until an interrupt is detected.

The halt instruction is functionally equivalent to the following code:

01 wait:
02 j wait

The only difference is that the code above will be executed in full-power mode,
whereas the instruction halt puts the processor into low-power mode. Upon the
detection of an interrupt, the processor leaves low-power mode and handles interrupts
as usual.

c) Write the interrupt handler int_handler and the three interrupt service routines
button_isr, timer_isr,and sensor_isr corresponding to, respectively, the light
button, countdown timer, and presence sensor peripherals. ISRs should be functions
which the interrupt handler can call and which end with ret. You are free to define
and use as many helper functions as you need, as well as . equ statements. The system
should implement the specification defined in subsection

The main idea is to start the timer every time lights are turned on using the light button,
and to stop and reset it whenever lights are turned off. When the timer reaches O (i.e.,
when 10 minutes have passed with lights remaining on), the system launches a scan
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using the presence sensor. The scan’s result is available after a few seconds and is
signalled by the sensor raising an interrupt on irql:

e If the sensor detected a presence (1 in PRES bit) and the lights are still on then
they should remain on and the timer should be restarted.

¢ Otherwise (0 in PRES bit) the lights may be turned off to save energy.

When designing your interrupt handler, make sure you handle the case where there are
multiple interrupts pending. Each ISR is responsible for acknowledging its corres-
ponding interrupt. Upon returning from the interrupt handler, the previously aborted
halt instruction should be executed again, which puts back the processor into low-
power mode.

Access control using a card reader

The library’s front door is controlled using a magnetic card reader, which—
concurrently with the lighting system—communicates with the RISC-V processor
through memory as well as a 4th interrupt lane irq3 (connected to mie and mip
as described before). To enter the library students must swipe their card in the reader
which reads out a 32-bits Unique Student IDentifier (USID) from the card’s magnetic
band. This USID is then sent to the university’s server over the network—which can
take some time—to check whether the student is authorized to access that room. The
following table lists the registers of the card reader.

| Register | Address (RISC-V) | Name | 31...0 |
’ 0 ‘ 0x201C ‘ data ‘ USID ‘

When a student swipes their card:

* Their unique identifier is loaded into the dat a register.

* The card reader generates an IRQ on irqg3.

Reading the USID from the data register acknowledges the interrupt.
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Software support

d) Quickly explain what you would add or change in init and int_handler to be
able to receive the card reader’s interrupts and call the card reader’s ISR reader_isr
whenever an interrupt from the card reader is pending. You do not have to rewrite the
implementations of init and int_handler completely, simply point out what you
would modify to support the new peripheral.

e) Write the card reader’s ISR reader_isr which is called whenever a student swipes
their card at the library’s front door. Similarly to the other ISRs, reader_isr must be-
have like a function. You can assume that no student swipes their card while the pre-
vious student is waiting for the system to authorize or deny access. The card reader’s
ISR should:

1. Read the USID from the card reader’s internal register (which acknowledges the
interrupt).

2. Call the existing check_authorization function (you do not have to imple-
ment it), which expects to be passed the USID as an argument in the a0 register.
The function internally contacts the university’s server to determine whether the
student should be able to enter the room; based on the server’s response, it auto-
matically unlocks the door to let the student enter the library. The function itself
doesn’t return any value.

check_authorization can take a few seconds to return (sometime the uni-
versity’s server and network can be slow to answer), during which the library’s
lighting system should continue to operate as smoothly as before. In particu-
lar, the light button should flip the lights immediately when it’s pressed. Hence,
make sure the card reader’s ISR can itself be interrupted by the other three in-
terrupt sources.

3. Return to the interrupt handler.
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[Solution 10]

a) See diagram at the end.

b) Throughout the exercise, we’ll use the following constants:

.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ

TIMER_PERIOD , 0x2000
TIMER_CONTROL , 0x2004
TIMER_STATUS , 0x2008
SENSOR_CONTROL, 0x200C
SENSOR_STATUS , 0x2010

LIGHT_BUTTON , 0x2014
LIGHTS , 0x2018
READER , 0x201C

The initialization code is:

init

# Initialize stack pointer

1li sp, 0x2000

# Set the timer's period to 1000 » 10 = 60 *» 6000 - 1
# = 599 999

# 599 999 = 512 000 + 64 000 + 23 999
# = (279 + 276) = 1000 + 23 999

1i t0, 0x1000

slli t1, tO0, 9

s1l1li t2, t0, 6

add t0, tl, t2

1i t1, 23999

add t0, t0, tl

la tl1, TIMER_PERIOD

sw t0, 0(tl)

# Enable all interrupt sources
addi t0, zero, 0x807

csrrw zero, mie, tO

addi t0, =zero, 8

csrrw zero, mstatus, tO0

# Put the CPU in low-power mode
halt

c) We first implement the interrupt handler:

int_handler:
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addi sp, sp, -4
sw ra, 0(sp)
csrrw s0, mip, zero

# Simply handle every interrupt source independently

button_check:
andi sl1, sO, 4
beq sl1, zero, sensor_check
call button_isr
sensor_check:
andi sl1, sO, 2
beq sl, zero, timer_check
call sensor_isr
timer_check:
andi sl1, s0, 1
beq sl, zero, int_handler_ret
call timer_isr
int_handler_ ret:
lw ra, 0(sp)
addi sp, sp, 4
mret # Re-execute the aborted halt instruction

The light button’s ISR:

button_isr:
# Flip the lights
la t1, LIGHTS
1w tO, 0(tl)
xori t0, t0, 1 # flip LSB of tO
sw tO0, 0(tl)
beq t0, zero, lights_off
lights_on:
# Lights have been flipped on, start the timer
addi t0, zero, 2
j button_isr_ret
lights_off:
# Lights have been flipped off, stop the timer
addi t0, =zero, 1
button_isr_ret:
la t1, TIMER_CONTROL
sw t0, 0(tl) # Start or stop the timer
la t1, LIGHT_BUTTON
sw zero, 0(tl) # Ack the button's interrupt
ret

168 of@ Version 1.0 of 1st October 2024, EPFL ©2024



Solution 10 Exercise Book
Processor, 1/0s, and Exceptions Computer Architecture

The presence sensor’s ISR:

sensor_isr:
# Check if the sensor detected a presence
la t2, SENSOR_STATUS
lw t0, 0(t2)
andi t0, tO, 2
beq t0, zero, no_presence
# There is someone in the library
la t2, LIGHTS
1w tl, 0(t2)
beq tl, zero, sensor_isr_ret # If lights are already off,
# do nothing
# Lights are still on, restart the timer
addi tl, =zero, 2
la t2, TIMER_CONTROL
sw tl, 0(t2)
j sensor_isr_ret
no_presence:
la t2, LIGHTS
sw zero, 0(t2) # No one in the library
# turn lights off
sensor_1isr_ ret:
la t2, SENSOR_STATUS
sw zero, 0(t2) # Ack the sensor's interrupt
ret

The timer’s ISR:

timer_isr:

la t1, LIGHTS

1w tO0, 0(tl)

beq t0, zero, timer_isr_ret # If lights are off,

# don't start a scan

la tl1, SENSOR_CONTROL

sw t0, 0(tl) # Start a presence scan
timer_isr_ret:

la tl1, TIMER_STATUS

sw zero, 0(tl) # Ack the timer's interrupt

ret

d) In init; we only need to change the set of interrupt sources we enable in mie:

1li t0, O0Ox80F
csrrw zero, mie, tO
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In int_handler, we need to handle the card reader’s interrupts. We add the follow-
ing snippet before the but ton_check label:

reader_check:
addi sl, =zero, 8
and sl1, s0, sl
beq sl1, zero, button_check
call reader_isr
button_check:

We'll also be calling and potentially interrupting the check_authorization func-
tion, which might use any register. Hence we need to save in the stack all registers we
use within the interrupt handler and ISRs at the beginning. We restore them at the end.

int_handler:
addi sp, sp, —28
sw ra, 0(sp)
sw a0, 4 (sp)
sw tO, 8(sp)
sw tl1l, 2 (sp
Sp

)
sw t2, 6 (sp)
sw sO0, 0 (sp)
sw sl, 24 (sp)

csSrrw sO, mip, zero

int_handler_ ret'
1w s1, 24 (sp)
lw sO, 20(sp)
lw t2, 6 (sp)
lw t1, 12(sp)
1w tO0, 8 (sp)
1w a0, 4 (sp)
1w ra, O0(sp)
addi sp, sp, 28

e) The card reader’s ISR:

reader_isr:
addi sp, sp, -8
sw ra, 0(sp)
csrrw t0, mepc, zero

sw t0, 4(sp) # Save mepc because the ISR might get interrupted
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la t0, READER

lw a0, 0(t0)

# Enable three other interrupt sources
addi t0, zero, 7

csrrs zero, mie, tO

# Re—enable interrupts globally
addi t0, =zero, 8

csrrs zero, mstatus, tO0

call check_authorization

# Disable interrupts globally
addi t0, zero, 8

csrrc zero, mstatus, zero

# Re—enable all interrupt sources
addi t0, zero, 15

csrrs zero, mie, tO

# Restore registers and return
1w tO0, 4(sp)

¢srrw zero, mepc, tO0

1w ra, 0 (sp)

addi sp, sp, 8

ret
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[Exercise 11] System Design

Consider a security system composed of a RISC-V processor connected to a main
memory storage and four peripherals through a bus as shown in Figure The first
peripheral is a video detector that records continuously for surveillance. The second
peripheral is a video analyzer which does video analysis detecting temporal and spa-
tial events. The third and fourth peripherals are a power failure sensor and an electric
generator, respectively, together providing a backup power supply, necessary in the
event of unexpected power outages (more details are provided later).

.

Irq irq irg0 irq1 irq2

ELECTRIC POWER FAILURE VIDEO
GENERATOR SENSOR DETECTOR

T , 1 .
J« l »Addr

MAIN VIDEO
MEMORY ANALYZER

RISC-V

A A

Figure 49: RISC-V Processor and System Peripherals.

Details of the Peripherals

Video Detector

The video detector is composed of a camera and a small internal storage buffer. It is
managed by a single register (video_status) that holds control information. The
MEMFULL bit in the video_status register is the only bit of interest. When the
internal video frame buffer of the video detector peripheral is full, it sets the value of
MEMFULL to 1. It remains 1 until it is explicitly cleared by writing 0 to it. On the
contrary, when the internal storage is not yet full, the value of MEMFULL is 0. Writing
1 to the MEMFULL bit has no effect.

| Register | Address | Name \ 31...1 \ 0 |
0 | 0x201C |video_status| Reserved | MEMFULL |
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Video Analyzer

The video analyzer is a complete and independent subsystem that receives video
frames through its input data port memory mapped at address 0x2018 (see details
later in the memory map), processes them, and transmits the results to a remote
server—the details of its functions are irrelevant to the scope of this exercise. It has
no control registers of interest.

Power Failure Sensor

The power failure sensor detects when the mains power supply has an outage. When
this happens, the whole system is not powered anymore and relies on a supercapa-
citor (i.e., a sort of very small battery) to operate for one or two seconds more. It is
essential that as soon as a power outage is detected, an electric power generator is
switched on very quickly (see below). The power failure sensor has a single status re-
gister power_status with a single bit (OUTAGE) of interest. In the event of a power
outage, the OUTAGE bit is set to 1, and it remains 1 until explicitly cleared by the soft-
ware. On the contrary, while mains power keeps coming, the OUTAGE bit is 0 and
writing any value to it has no effect.

| Register | Address | Name \ 31...1 0 ]
’ 0 ‘ 0x2010 ‘ power_status ‘ Reserved ‘ OUTAGE ‘

Electric Generator

The electric generator is managed by a single write only control register
generator_ctrl with a single bit of interest (GENERATE). When the GENERATE
bit is set to 1, it starts generating electricity. The generator automatically switches off
by itself when it senses that the mains power is restored.

| Register | Address | Name \ 31...1 \ 0 |
’ 0 ‘ 0x2014 ‘ generator_ctrl ‘ Reserved ‘ GENERATE ‘
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System’s Specifications
The system should operate as follows:

1. The video detector processes the video frames and stores the processed data in
its small internal storage which is mapped in main memory.

2. When the video detector’s internal storage is full, the stored data should be sent
to the video analyzer through the memory mapped port at address 0x2018; each
word from the video detector’s internal storage must be written sequentially to
address 0x2018. Then, the MEMFULL bit of the video_status register should
be cleared.

3. In the event of the power failure sensor detecting an outage, the electric gen-
erator must be switched on as soon as possible and the OUTAGE bit of the
power_status register should be cleared.

Memory Map

Figure 50|shows the memory layout of the system.
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0x0000
ROM
0x0FFF
0x1000
RAM
0x1FFF
0x2000
DMA
0x200F

0x2010 | Power Failure Sensor

0x2014 Generator
0x2018 Video Analyzer
0x201C Video Detector
0%2020 .
Video
Buffer
0x401F
0xA020
OXFFFF

Figure 50: System’s memory layout. The DMA controller is not relevant and can be
ignored until Part 5.

Problem Statement

The goal of this exercise is to identify the best design that interfaces the RISC-V
processor with the peripherals and implements the desired system behaviour such
that (1) the time between the moment a power outage occurs and the electric generator
is started is minimized in the worst-case scenario and (2) the processor’s idle time is
maximized.

In the following questions, you should abide by the following conventions:

1. Use RISC-V assembly, registers, and calling conventions.
2. Each instruction on the given RISC-V processor takes 3 cycles to execute.

3. Whenever the processor is idle, use the halt instruction that puts the processor
in low-power mode. The halt instruction takes 3 cycles to execute before switch-
ing the processor to low-power mode (more details about this instruction are
given below).
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4. At power-up, the processor starts executing instructions at label main, where it
should initialize the stack pointer with value 0x2000.

5. When the processor is interrupted, it starts executing instructions at label
interrupt_handler. It takes the processor 0 cycles to jump to the interrupt
handler when an interrupt is raised by a peripheral.

The particular RISC-V processor we use here has an additional instruction called halt
that is not part of the standard RISC-V ISA. Use the halt instruction to put the pro-
cessor in low-power mode until an interrupt is detected.

The halt instruction is functionally equivalent to the following code:

01 wait:
02 j wait

The only difference is that the code above will be executed in full-power mode,
whereas the instruction halt puts the processor into low-power mode. Upon the
detection of an interrupt, the processor leaves low-power mode and handles interrupts
as usual.

In the following questions, you are free to reuse or refer to code you defined in previ-
ous parts of the exercise in later questions provided that you state clearly which part
of your implementation you take advantage of.

Part 1: Transferring Data

A function called transfer_data is needed to implement the logic of copying data
from a memory area into a single address of the input port of a peripheral. It should
take as arguments the number of words to transfer (which is a number that can be
represented in 16 bits), the address of the first word in the memory area to start
copying from (source address) and the address of the input port of the peripheral to
copy to (destination address). The arguments are passed in registers a0, al, and a2,
respectively. The data transfer is word aligned and consists in copying complete 4-byte
words one after the other, sequentially, from the first word in the source memory area
to the fixed input port address.

For the specified system, the t ransfer_data function is needed to transfer the con-
tent of the video detector’s internal buffer, which has its start address mapped at
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0x2020 and is 8 KiB long (see Figure [50), to the video analyzer’s input port mapped
at address 0x2018.

a) Implement the described t ransfer_data function.

b) Use your implementation of the t ransfer_data function to count the number of
cycles needed for executing it in terms of the number of words transferred.

Part 2: System Design Using Polling

The simplest method that allows the processor to communicate with peripherals is
polling.

c) Write the complete code implementing the specification above and including
everything needed from the moment the processor is switched on; in this first case,
have the processor communicate with the peripherals by polling.

d) Explain, in words, the worst case scenario that will result in the maximum wait time
between the occurrence of a power outage and starting the operation of the electric
generator.

e) Considering the worst case scenario, compute the maximum wait time (in cycles)
between the occurrence of a power outage and starting the operation of the electric
generator.

Part 3: System Design Using Nonnested Interrupts

An alternative to polling is to use interrupts to interface the processor with the video
detector and the power failure sensor. Given that the occurrence of a power outage
requires a response within a minimum number of cycles, interrupts from the power
failure sensor should be served first if interrupts from the two peripherals are issued
at the same time. Interrupts from the power failure sensor arrive to the processor at
irqg0, whenever the OUTAGE bit of its power_status register is 1, and interrupts
from the video detector arrive to the processor at irql, whenever the MEMFULL bit
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of its video_status register is 1. In this nonnested approach, further interrupts are
ignored while the processor is already serving any other interrupt.

This exercise uses a nonstandard RISC-V core where irg0 connects to bit 0 of mie
and mip. Concretely, the standard behaviour of RISC-V is modified in the following
way: (i) if bit 0 of mie is O, interrupts triggered when enabling irq0 are ignored, even
if MEIE is set; (ii) reading bit 0 of mip indicates if 1rq0 is active. irgl and irqg2 are
connected similarly to bits 1 and 2 respectively.

f) Write the complete code implementing the specification above and including
everything needed from the moment the processor is switched on; in this second case,
write code for enabling interrupts, the interrupt handler and interrupt service routines
(ISRs) to handle interrupts from the two peripherals.

g) Explain, in words, the worst case scenario that will result in the maximum wait time
between the occurrence of a power outage and starting the operation of the electric
generator.

h) Considering the worst case scenario, calculate the maximum wait time (in cycles)
between the occurrence of a power outage and starting the operation of the electric
generator.

Part 4: System Design Using Nested Interrupts

A more sophisticated implementation of interrupts allows for nesting one interrupt
into another. We want to allow an interrupt from the power failure sensor to interrupt
the interrupt handling of the video detector. However, we do not want interrupts from
the video detector to interrupt those from the power failure sensor. As in the previous
part, interrupts from the power failure sensor arrive to the processor at irq0, and
interrupts from the video detector arrive to the processor at i rql.

1) Write the complete code implementing the specification above and including
everything needed from the moment the processor is switched on; similarly to the
nonnested case, write code for enabling interrupts, the interrupt handler and interrupt
service routines (ISRs) to handle interrupts from the two peripherals. Additionally,
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write code to allow the video detector to nest interrupts from the power failure sensor.

j) Explain, in words, the worst case scenario that will result in the maximum wait time
between the occurrence of a power outage and starting the operation of the electric
generator.

k) Considering the worst case scenario, calculate the maximum wait time (in cycles)
between occurrence of a power outage and starting the operation of the electric gener-
ator.

Part 5: System Design Using DMA with Interrupts

Consider extending the system by adding a Direct Memory Access (DMA) control-
ler which takes care of the memory copy operations without any processor interven-
tion. The processor is only responsible for configuring the DMA controller’s internal
registers (more details are provided below), then can move on to executing other in-
structions or go into an idle state. The new system schematic is shown in Figure
Not shown on the figure is a memory arbiter that prevents memory conflicts on the
bus between the RISC-V processor and the DMA controller. You do not need to take
into account the latency of this arbiter in your calculations, i.e., you can assume that
the memory bus is always immediately available to any peripheral needing to use it.

e S

ELECTRIC
GENERATOR

]

POWER FAILURE
SENSOR

irq

VIDEO
DETECTOR

irg0 irq1 irg2

RISC-V

1

!

A A

»Data

l

MAIN

VIDEO
ANALYZER

CONTROLLER

irq
DMA

»Addr

———

MEMORY

Figure 51: RISC-V Processor and System Peripherals including the DMA controller.
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DMA Controller’s Specification

For the DMA controller to start the data transfer, it requires some information to be
provided by the processor in its registers. The memory-mapped source and destin-
ation addresses in main memory to use for the transfer should be written into the
dma_addr register. The dma_cfg register is used to specify additional information
about the memory transfer: The word count indicates how many 4-byte words will be
copied during the transfer. The source and destination strides represent, respectively,
the offset that is added to the source and destination addresses between two consecut-
ive words (e.g., a stride of 4 indicates that words will be read or written contiguously
and a stride of 0 indicates that all words will be read or written at the same address).
The START bit in the dma_ctrl register should be set to 1 to start the data transfer.
Writing 0 to the START bit has no effect. Writing 1 to the START bit while a transfer is
ongoing has also no effect. The DMA controller sets the INTR bit to 1 upon completion
of the data transfer and issues an interrupt to the processor on irg2. The INTR bit
remains high until it is explicitly cleared by writing 0 to it.

| Register | Address| Name | 31...16 | 15...8 [7...1] 0
0 0x2000 dma_addr | Source address Destination address
1 0x2004 dma_cfg Word count | Source stride \ Destination stride
2 0x2008 dma_ctrl Reserved START
3 0x200C | dma_status Reserved INTR

New System Specification

The goal of this part is to modify the system’s design to add support for DMA. The
system should behave as follows:

1. When the video detector raises an interrupt, the DMA controller should be in-
structed to start a data transfer by loading appropriately its registers.

2. During the data transfer, the processor should not be sensitive to another inter-
rupt from the video detector.

3. The DMA controller interrupts the processor when it completes the data transfer.
After this, the processor should become sensitive to interrupts from the video

detector again.

4. No interrupt nesting should be supported in this part.
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5. You cannot use the t ransfer_data function in this part.

I) Write the complete code implementing the specification above and including
everything needed from the moment the processor is switched on; write code for
enabling interrupts, the interrupt handler and interrupt service routines (ISRs) to
handle interrupts from the three peripherals (now including the DMA controller).
Your code should instruct the DMA controller to do the data transfer when handling
the interrupt from the video detector.

m) Explain, in words, the worst case scenario that will result in the maximum wait
time between the occurrence of a power outage and starting the operation of the
electric generator.

n) Considering the worst case scenario, calculate the maximum wait time (in cycles)
between the occurrence of a power outage and starting the operation of the electric
generator.

Part 6: Processor Idle Time

In this part we want to see how the different design choices explored before influence
the processor utilization. Consider the following assumptions: (1) there are no outages
during normal operation; (2) the video detector’s internal storage buffer is full, on
average, every 10ms; and (3) the processor runs at 10 MHz.

o) Compute, for each of the four system options developed in Part 2 to Part 5, the
approximate fraction of time when the processor is idle (time executing the halt
instruction). The result does not need to be exact but can be within, say, £5%); yet, you
need to explain very clearly how you compute such idle fraction of the time and what
components, if any, you disregard in your approximation.

p) Studying the four design choices, what do you think is the best design for the re-
quired system with respect to (1) the latency to start the electricity generator after the
power outage occurs and (2) the amount of time the processor is left idle? Are there
any qualitatively equivalent options? Briefly explain why the best design(s) perform(s)
better than the others with respect to our objectives.
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[Solution 11]

Throughout the exercise, we'll use the following constants:
.equ POWER_FAILURE_SENSOR, 0x2010

.equ GENERATOR , 0x2014
.equ VIDEO_ANALYZER , 0x2018
.equ VIDEO_DETECTOR , 0x201cC
.equ VIDEO_BUFFER , 0x2020

Part 1: Transferring Data

a)

transfer_data:
add t0, zero, a0 # retrieve the number of words to transfer

add tl, zero, al # retrieve the source address of the first word

copy:
beq t0, zero, end
1w t2, 0(tl)
sw t2, 0(a2) # write to the fixed destination port address
addi t1, tl1, 4
addi t0, tO, -1
J copy
end:
ret

b) Our implementation has 3 instructions outside the loop and 6 instructions inside the
loop. Each instruction takes 3 cycles to execute. Therefore the number of cycles needed
to execute the t ransfer_data function is

8KiB (8 x 1024)

Number of words = 1B 1 = 2048
Number of cycles = (3 4+ 6 x Number of words) x 3 = 9 + 18 x Number of words
= 36,873

Part 2: System Design Using Polling

¢) We implement the polling design below.
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main:
1i sp, 0x2000 # initialize the stack pointer

check_power_sensor:
la tl1l, POWER_FAILURE_SENSOR
lw t0, 0(tl) # check if a power outage is detected
beq t0, zero, check_video_detector

handle_power_outage:
addi t0, zero, 1
la tl1l, GENERATOR
sw t0, 0(tl) # start the generator
la tl1, POWER_FAILURE_SENSOR
sw zero, 0(tl) # clear the power_status register

check_video_detector:
la tl1, VIDEO_DETECTOR
lw tO0, 0(tl) # check if the internal buffer is full
beq t0, zero, check_power_sensor

handle_video_detector:
1li a0, 0x2000 # the video buffer size from Figure 2
la al, VIDEO_BUFFER
la a2, VIDEO_ANALYZER
call transfer_data
la tl1, VIDEO_DETECTOR
sw zero, 0(tl) # clear the video_status register
j check_power_sensor # restart the poll loop

d) The worst case scenario happens when a power outage occurs one cycle after load-
ing the value of the power_status register, and the internal buffer of the video de-
tector becomes full before the video_status register is loaded.

e) In the worst case scenario, we'll execute 14 instructions and transfer_data before
starting the electric generator. Considering the latency of instructions (3 cycles per

instruction) and transfer_data (computed before), this creates a worst case latency
of 14 x 3 + 36,873 = 36, 915 cycles.

Part 3: System Design Using Nonnested Interrupts

f) We implement the nonnested interrupt design below.
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interrupt_handler:
csrrw t0, mip, zero

check_power_sensor:
andi tl1, t0, 1 # is there a power outage?
beq tl, zero, check_video_detector

isr_power_sensor:
addi tl, =zero, 1
la t0, GENERATOR
sw tl1, 0(tO) # start the generator
la t0, POWER_FAILURE_SENSOR
sw zero, 0(t0) # clear the power_status register

check_video_detector:
andi tl1, t0, 2# is the video detector's memory full?
beq tl, zero, ih_return

isr_video_detector:
1li a0, 0x2000 # the video buffer size from Figure 2
la al, VIDEO_BUFFER
la a2, VIDEO_ANALYZER
call transfer data
la tO0, VIDEO_DETECTOR
sw zero, 0(t0) # clear the video_status register

ih_return:
mret

main:
1i sp, 0x2000 # initialize the stack pointer
addi t0, zero, 8
csrrs zero, mstatus, t0 # set the MIE bit to 1
addi t0, zero, 0x803
csrrs zero, mie, t0 # enable interrupts from the two peripherals
halt # put the CPU in low-power mode

d) The worst case scenario happens when the video detector raises an interrupt and—

when in the interrupt handler—a power outage occurs one cycle after the mip register
is loaded.

h) In the worst case scenario, we’ll execute 16 instructions and t ransfer_data before
starting the electric generator. Considering the latency of instructions (3 cycles per

Version 1.0 of 1st October 2024, EPFL ©2024 185 of@



Exercise Book Solution 11
Computer Architecture Processor, 1/0Os, and Exceptions

instruction) and transfer_data (computed before), this creates a worst case latency
of 16 x 3 + 36,873 = 36, 921 cycles.

Part 4: System Design Using Nested Interrupts

i) We reuse main, check_power_sensor, isr_power_sensor, and
check_video_detector from the nonnested interrupt implementation. To add sup-
port for nested interrupts, we need to save the registers used by both t ransfer_data
and the IH at the beginning of interrupt_handler. Otherwise the IH would
override their values in case a power outage interrupts a video transfer.

interrupt_handler:
addi sp, sp, -8 # save to stack
sw tO0, 0(sp)
sw tl, 4 (sp)
csrrw t0, mip, zero

Conversely, we need to pop them from the stack at the end.

ih_return:
1w t0, O(sp) # restore from stack
lw tl1, 4(sp) # restore from stack
addi sp, sp, 8
mret

Finally, we rewrite the video detector’s ISR so that it re-enables interrupts before calling
transfer_data, and disables them after. We need to save mepc otherwise it would
be lost when a nested interrupt happens.

isr_video_detector:
1i a0, 0x2000 # the video buffer size from Figure 2
la al, VIDEO_BUFFER
la a2, VIDEO_ANALYZER

addi sp, sp, -4 # save mepc in stack
csrrw t0, mepc, zero # save mepc in stack
sw tO0, O(sp)

# re—enable interrupts in order to keep getting interrupts from the p
1i t0, 0x801

csrrw zero, mie, tO

csrrsi zero, mstatus, 8

186 of Version 1.0 of 1st October 2024, EPFL ©2024



Solution 11 Exercise Book
Processor, 1/0s, and Exceptions Computer Architecture

call transfer_ data

# clear PIE and re-enable interrupts from the video_detector
csrrci zero, mstatus, 8

csrrsi zero, mie, 3

lw t0, O(sp) # restore mepc from stack

¢srrw zero, mepc, tO0

addi sp, sp, 4

la t0, VIDEO_DETECTOR
sw zero, 0(t0) # clear the video_status register

j) The worst case scenario happens when the video detector raises an interrupt and—
when in the interrupt handler—a power outage occurs one cycle after the mip register
is loaded (same as in the nonnested case).

k) In the worst case scenario, we’ll execute 20 instructions before starting the electric
generator. This time t ransfer_data may be interrupted and so we do not need to ac-
count for its latency in the worst case scenario. Considering the latency of instructions
(3 cycles per instruction), this creates a worst case latency of 20 x 3 = 60 cycles.

Part 5: System Design Using DMA with Interrupts

I) We reuse everything but check_video_detectorand isr_video_detector from
the nonnested interrupt implementation. We modify the video detector’s ISR once
again to launch the DMA instead of calling t ransfer_data.

check_video_detector:
andi tl1, t0, 2# is the video detector's memory full?
beq tl1l, zero, check_dma_controller

isr_video_detector:
# set up the source and destination addresses
la t2, VIDEO_BUFFER
la t3, VIDEO_ANALYZER
slli t2, t2, 16
or t2, t2, t3

la t3, DMA_CONTROLLER
sw t2, 0(t3)
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# set up the word count (0x2000) and strides
# source stride 1s 4, destination stride is O
1li t2, 0x2000

slli t2, t2, 16

ori t2, t2, 0x0400

sw t2, 4(t3)

# disable any future interrupts from the video_detector
addi t2, zero, 0x805

csrrw zero, mie, t2

# start the DMA transfer

addi t2, =zero, 1

sw t2, 8(t3)

j 1ih_return

We then add support for interrupts coming from the DMA controller by adding the
following code after the video detector’s ISR.

check_dma_controller:
andi tl1, t0, 4 # is the DMA transfer done?
beq tl, zero, ih_return

isr_dma_controller:
# acknowledge the video detector and DMA controller's interrupt
la tl1, VIDEO_DETECTOR
sw zero, 0(tl)
la tl1, DMA_CONTROLLER
sw zero, 0xC(tl)
addi t2, zero, 0x807
csrrw zero, mie, t2 # re-enable interrupts from the video detector

m) The worst case scenario happens when the video detector raises an interrupt and—
when in the interrupt handler—a power outage occurs one cycle after the mip register
is loaded (same as in the nonnested and nested interrupts cases).

n) In the worst case scenario, we’ll execute 24 instructions before starting the electric
generator. Considering the latency of instructions (3 cycles per instruction), this creates
a worst case latency of 24 x 3 = 72 cycles.

Part 6: Processor Idle Time

0) We make the following approximations:
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1. Round up the number of cycles taken to transfer data that is calculated in part 1
to 36,000 cycles, which is 3.6 ms at 10 MHz.

2. The number of cycles needed to enable interrupts and identify the source of inter-
rupt is negligible relative to the number of cycles needed to transfer data, there-
fore we do not account for it.

For each of the four given design choices, the proportion of time the CPU spends idling
under these assumptions is:

1. Polling: 0%

2. Nonnested interrupts: 64%
3. Nested interrupts: 64%

4. DMA controller: 100%

p) With respect to the worst case wait time between the occurrence of a power out-
age and starting the generator, the design employing nested interrupts and the design
using DMA are qualitatively equivalent in the sense that both allow the system to be
sensitive to the occurrence of a power outage irrespective of the transfer of data. There
is a slight difference in the calculated number of cycles from above, though, because of
storing to the multiple registers of the DMA controller, but the difference is negligible.

With respect to the CPU idle time percentage, the DMA design choice is the best since
it leaves the CPU fully idle during the transfer of data.
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Part lll: Memory Hierarchy

[Exercise 1] Cache Organization

Consider the memory access sequence at the following addresses:
1,5,20,17,5,4,2,18,43,11,43,9,17,5,6, 56, 19, 43
Or equivalently in hexadecimal:

1,5,14,11,5,4,2,12,2B, B, 2B, 9, 11, 5,6, 38, 13, 2B

The memory is word addressable (1% word = address 0, 2"¢ = address 1, and so on).

a) Consider an initially empty, 2-way set-associative cache memory with an LRU (Least
Recently Used) replacement policy, a capacity (size) of 16 words and single word block
size. Indicate which accesses result in a hit and which result in a miss. Show the state
of the cache after the access sequence.

b) Consider an initially empty, fully associative cache memory with an LRU (Least
Recently Used) replacement policy, a capacity of 16 words and single word block size.
Indicate which accesses result in a hit and which result in a miss. Show the state of the
cache after the access sequence.

c¢) Consider an initially empty, 2-way set-associative cache memory with an LRU (Least
Recently Used) replacement policy, a capacity of 16 words and a four-word block size.
Indicate which accesses result in a hit and which result in a miss. Show the state of the
cache after the access sequence.

d) Draw the structure of a cache memory similar to the one in the preceding question
but with 32-bit addresses, 32-bit words and byte addressing. Clearly indicate the use
of each bit of the address by describing the address format in detail.
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[Solution 1] Cache Organization

a) Hits and Misses:

Address: 0x01 O0x05 O0x14 O0x11 O0x05 0x04 0x02 0x12 0x2B

Hit/Miss: M M

M

M H M

M M

M

Address: 0xOB 0x2B 0x09 0x11 O0x05 O0x06 0x38 0x13 0x2B

Hit/Miss: M H

M

H H M

M M

H

The final contents of the cache after the sequence of accesses are given in the table

below:
Tag Data Tag Data
0x38 M[0x38] None Empty
(0x01—)0x09  MJ[0x09] Ox11 M[0x11]
0x02 M[0x02] 0x12 M[0x12]
0x2B M[0x2B] (0x0B—)0x13  M][0x13]
0x14 M[0x14] 0x04 M[0x04]
0x05 MJ[0x05] None Empty
0x06 MJ[0x06] None Empty
None Empty None Empty
Remarks:

¢ The order of each pair of corresponding elements in the two ways is irrelevant

* The tag does not actually contain the whole address (the three LSBs can be omit-
ted); the complete address is given here only for readability

¢ Tag = None represents the Valid Bit ="0".

e Bits 0 to 2 of the address select the block

* The replacement policy has been used twice
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b) Hits and Misses:

Address: 0x01 O0x05 0x14 O0x11 O0x05 0x04 0x02 0x12 0x2B
Hit/Miss: M M M M H M M M M

Address: 0x0B 0x2B 0x09 0x11 O0x05 O0x06 0x38 0x13 O0x2B
Hit/Miss: M H M H H M M M H

The final contents of the cache after the sequence of accesses are given in the table
below:

Tag Data
0x01 M[0x01]

0x05 M[0x05]
0x14 MJ[0x14]
0x11 MJ[0x11]
0x04  M[0x04]
0x02 M[0x02]
0x12 M[0x12]
0x2B  MJ[0x2B]
0x0B MJ[0x0B]
0x09  M[0x09]
0x06  M[0x06]
0x38 M[0x38]
0x13  M[0x13]

None Empty
None Empty
None Empty

Remarks:

e The order of the table rows is irrelevant
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* The tag contains the full address
¢ Tag = None represents the Valid Bit = "0’

¢ The replacement policy was irrelevant for this small number of accesses (no re-
placement performed)

¢) Hits and Misses:

Address: 0x01 0x05 0x14 O0x11 O0x05 0x04 0x02 O0x12 0x2B
Hit/Miss: M M M M H H H H M

Address: 0x0B 0x2B 0x09 O0x11 O0x05 0x06 0x38 0x13 0x2B
Hit/Miss: M H H M H H M H M

The final contents of the cache after the sequence of accesses are given in the table
below:

Tag Data

0 (0x00—)(0x28—)0x10 M[0x10] M[Ox11] MJ[0x12] M[0x13]
0x04 M[0x04] M[0x05] MJ[0x06] M[0x07]
Tag Data

0 (0x10—)(0x08—)(0x38—)0x28 M[0x28] M[0x29] M[0x2A] M[0x2B]

1 0x14 M[0x14] M[0x15] MJ[0x16] M[0x17]

Remarks:

The order of each pair of corresponding elements in the two ways is irrelevant

The tag does not actually contain the whole address (the three LSBs can be omit-
ted); the complete address is given here only for readability

All Valid Bits ="1’

Bits 0 and 1 of the address are used to select one of the four words in the block
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e Bit 2 of the address selects the block

* The replacement policy has been used five times

d) This case differs from the previous case because the last two bits of the address are
actually used to identify one of the four bytes inside a word and are irrelevant for the

cache.

31

5

4 3 2 10

Address |

27 bits

1 bits 2 bits 2 bits Unused or used

{ to select the byte
within a word

TAG [Pata (4 words, 4 bytes each

0

1

2

3

TAG

Data (4 words, 4 bytes each

0 1 2 3

Figure 52: Structure of the cache for byte addressing
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[Exercise 2] A Direct-Mapped Cache

Consider the following code for a RISC-V Processor (word addressable, 16-bit ad-
dresses, 32-bit data and %0 is always "0”).

1w
1w
mv
loop:

1w
mul
beq
addi
1w
beq
mv
add
addi

end:

x4,
x5,
X6,

X2,
X2,
x5,
X2,
x1,
x1,
x4,
x4,
x5,

loop

34 (x0)
35 (x0)
x4

1(x4)
X2, X2
x0, end
x0, -1
0(x4)
x0, end
x1
x4,
x5,

X6
-1

#
#
#

H= oS S S S S S e S o

x4=M[34]
x5=M[35]
x6=x4

x2=M[x4 + 1]
X2=X2 * X2
if x5 =
x2==1
x1=M[x4]
if x1==x0 then goto end
x4=x1

x4=x4 + x6

x5=x5 - 1

goto loop

x0 then goto end
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Suppose that the state of the memory is as follows:

Address Data

34 36
35

36 4
37 41
38 10
39 42
40 2
41 18
42 8
43 21
44 0
45 0
46 6
47 38

The program is stored in memory beginning at address "0".

a) Given an initially empty, direct-mapped cache memory with a size of 32 words and
four words per block, indicate which accesses result in a hit and the ones that result in
a miss. Show the state of the cache after the sequence of accesses (after the Fetch phase
of 13™instruction). For each entry (location) in the cache indicate the address of the
stored information. Assume the cache is unified, i.e. shared for Instruction and Data
accesses.

b) Draw the structure of the cache memory. Clearly indicate the use of each bit of the
address, i.e. give a detailed description of the address format.
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[Solution 2] A Direct-Mapped Cache

a) The following is the access sequence that needs to be considered for the cache:

0
4,5,6,7,38,8,9,10,11, 12,

Hits and Misses:

,9,10,11, 12, 3, 39,

,34,1,35,2,3,37,4,5,6,7,36,8,9,10, 11, 12, 3, 41,4, 5, 6,7, 40, 8, 9
5 3,47,4,5,6,7,46,8,9,10,11,12,3,43,4,5, 13

Address: 0 34 1 35 2 3 37 4 5
Hit/Misss M M M M M H M M H
Address: 6 7 36 8 9 10 11 12 3
Hit/Misss H H M M H H H M H
Address: 41 4 5 6 7 40 8 9 10
Hit/Misss: M M H H H H M H H
Address: 11 12 3 39 4 5 6 7 38
Hit/Misss H H H M M H H H M
Address: 8 9 10 11 12 3 47 4 5
Hit/Misss H H H H H H M M H
Address: 6 7 46 8 9 10 11 12 3
Hit/Misss H H H H H H H M H
Address: 43 4 5 13

Hit/Miss: M H H
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Final State of the Cache:
Tag Data
000 (0—32—0—32—)0 M[0] MJ[1] MJ[2] MI3]
001 (36—4—36—4—36—4—36—)4 M[4] MI[5] Ml6] M][7]
010 (8—40—8—) 40 M[40] MJ[41] M[42] M[43]
011 (12—44—) 12 M[12] MJ[13] M[14] M[15]
100 None Empty Empty Empty Empty
101 None Empty Empty Empty Empty
110 None Empty Empty Empty Empty
111 None Empty Empty Empty Empty
Remarks:

The tag does not actually contain the whole address (the five LSB’s should be

omitted); the complete address is given here only for readability.

The first four Valid Bits = 1’ and the last four Valid Bits = ’0’.
Bits 0 and 1 of the address are used to select one of the four words in the block.
Bits 2, 3 and 4 of the address select the cache line.

It is a direct-mapped cache, hence no replacement policy is needed.
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b) The structure of the cache is given in the schematic below:

15 54 2 10
Address | | | |
]
V| Tag Data
0 1 2 3
0
1
2
—>3 |®| @ ® ® ® ®
4
5
6
7
RENE
Hit Data

Figure 53: Structure of the cache
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[Exercise 3] A 2-Way Set Associative Cache

Consider the following code for a RISC-V processor (word addressable, 16-bit ad-
dresses, 32-bit data and x0 is always "0’):

1w x4, A(x0) # x4=MI[A]

1w x5, B(x0) # x5=MI[B]

1w X6, C(x0) # x6=M[C]

LOOP:beq x5, x0, end # if x5=x0 goto end

1w x1, 0(x4) # x1=M[x4]
addi x4, x4, 1 # xd4=x4 + 1
1w x2, 0(x4) # x2=M[x4]
mul x2, x1, x2 # x2=x1 * x2
sSwW x2, 0(x06) # M[x6]=x2
addi x6, x6, 1 # x6=x6 + 1
addi x5, x5, -1 # x5=x5 - 1
j LOOP # go to LOOP

end:

Suppose that the initial values are:

A=16 M][16]=20
B=17 M[17]=4
C=18 M][18]=50

The program is stored in the memory starting at address "0’.

a) Given an initially empty, 2-way set-associative cache with an LRU (Least Recently
Used) replacement policy, four-word blocks and a total size of 32 words, indicate the
memory accesses that result in a hit and those that lead to a miss. Show the state of the
cache after the sequence of accesses. For each cache entry, indicate the address of the
stored information.

b) Draw the structure of the cache. Indicate the use of each bit of the address by de-
scribing its format in detail.
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[Solution 3] A 2-way Set Associative Cache

a) The step-by-step execution of the program is given below:

lw x4, 16 (x0) # x4=20. Read 0 (instr.) and 16 (M[16]): Misses
Data Data
0 1 2 3 0 1 2 3
ol O 1 2 3 o|16 |17 |18 | 19
1 1
2 2
3 3
lw x5, 17 (x0) # x5=4. Rd 1 (instr.) and 17 (M[17]): Hits
lw x6, 18 (x0) # x6=50. Rd 2 (instr.) and 18 (M[18]): Hits
LOOP:
beg x5, x0, end # x5=0. Rd 3 (instr.): Hit
lw x1, 0(x4) # Rd 4 (instr.) and 20 (M[20]): Misses
Data Data
0 1 2 3 0 1 2 3
ol O 1 2 3 o|l16 |17 |18 | 19
1| 4 5 6 7 1120|2122 23
2 2
3 3
addi x4, x4, 1 # x4=21. Rd 5 (instr.): Hit
1w x2, 0(x4) # Rd 6 (instr.) and 21 (M[21]): Hits
mul x2, x1, x2 # Rd 7 (instr.): Hit
sw x2, 0(x6) # Rd 8 (instr.); Wr 50 (M[50]): Misses
Data Data
0 1 2 3 0 1 2 3
ol O 1 2 3 0|48 | 49 | 50 | 51
1| 4 5 6 7 1120|2122 | 23
2| 8 9 10| 11 2
3 3
addi x6, x6, 1 # x6=51. Rd 9 (instr.): Hit
addi x5, x5, -1 # x5=3. Rd 10 (instr.): Hit
j LOOP # Rd 11 (instr.): Hit
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beq x5, x0, end# Rd 3 (instr.): Hit
1w x1, 0(x4) # Rd 4 (instr.) and 21 (M[21]): Hits
addi x4, x4, 1 # x4=22. Rd 5 (instr.): Hit
1w x2, 0(x4) # Rd 6 (instr.) and 22 (M[22]): Hits
mul x2, x1, x2 # Rd 7 (instr.): Hit
sSwW x2, 0(x6) # Rd 8 (instr.) and Wr 51 (M[51]): Hits
addi x6, x6, 1 # x6=52. Rd 9 (instr.): Hit
addi x5, x5, -1 # x5=2. Rd 10 (instr.): Hit
3 LOOP # Rd 11 (instr.): Hit
beq x5, x0, end# Rd 3 (instr.): Hit
1w x1, 0[x4] # Rd 4 (instr.) and 22 (M[22]): Hits
addi x4, x4, 1 # x4=23. Rd 5 (instr.): Hit
1w x2, 0[x4] # Rd 6 (instr.) and 23 (M[23]): Hits
mul x2, x1, x2 # Rd 7 (instr.): Hit
sSwW x2, O[R6] # Rd 8 (instr.): Hit
# Wr 52 (M[52]): Miss
Data Data
0 1 2 3 0 1 2 3
ol O 1 2 3 0|48 |49 | 50 | 51
1| 4 5 6 7 1152|5354 |55
2| 8 9 10| 11 2
3 3
addi x6, x6, 1 # x6=53. Rd 9 (instr.): Hit
addi x5, x5, -1 # x5=1. Rd 10 (instr.): Hit
j LOOP # Rd 11 (instr.): Hit
beq x5, x0, end# Rd 3 (instr.): Hit
1w x1, 0(x4) # Rd 4 (instr.): Hit
# Rd 23 (M[23]): Miss
Data Data
0 1 2 3 0 1 2 3
ol O 1 2 3 0|48 | 49|50 | 51
1| 4 5 6 7 1120|2122 23
2| 8 9 10| 11 2
3 3
addi x4, x4, 1 # x4=24. Read word 5 (instr.): Hit
1w x2, 0(x4) # Read word 6 (instr.): Hit
# Read word 24 (M[24]): Miss

202 of Version 1.0 of 1st October 2024, EPFL ©2024



Solution 3 Exercise Book

Memory Hierarchy Computer Architecture
Data Data
0 1 2 3 0 1 2 3

ol O 1 2 3 0|48 |49 | 50 | 51

1| 4 5 6 7 1120 | 21| 22| 23

2| 8 9 10| 11 2| 24 | 25| 26 | 27

3 3
mul x2, x1, x2 # Read word 7 (instr.): Hit
sSW x2, 0(x06) # Read word 8 (instr.): Hit

# Write word 53 (M[53]): Miss
Data Data
0 1 2 3 0 1 2 3

ol O 1 2 3 0|48 | 49 | 50 | 51

1| 4 5 6 7 1152 |53 |54|55

2| 8 9 10| 11 2| 24 | 25 | 26 | 27

3 3
addi x6, x6, 1 # x6=53. Read word 9 (instr.): Hit
addi x5, x5, -1 # x5=1. Read word 10 (instr.): Hit
j LOOP # Read word 11 (instr.): Hit
beq x5, x0, end# Read word 3 (instr.): Hit
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b) The structure of the cache is given in the figure below:

15 432 10
Address | [ [ |
| I
V| Tag Data V|Tag Data
2 0ol 1]2]3 0] 1213
0 0
f12 1 1
20l o | @ [ @ | @ | @ F>2l0l @ | @ [ @ [ @ | @
3 3
 ( 12} n y y A12 ) y y y
4 £32 [f32 f32 f32 £32 32 f32 f32
128 128
/2

Data

Hit
Figure 54: Structure of the cache
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[Exercise 4] A Direct-Mapped Cache

Consider the following code for a RISC-V processor (word addressable, 16-bit ad-
dresses, 32-bit data, x0 is always "0”):

1w x4, A(x0) # x4=MI[A]

1w x5, B(x0) # x5=MI[B]

1w X6, C(x0) # x6=M[C]

LOOP:beq x5, x0, end # if x5=x0 goto end

1w x1, 0(x4) # x1=M[x4]
addi x4, x4, 1 # xd4=x4 + 1
1w x2, 0(x4) # x2=M[x4]
mul x2, x1, x2 # x2=x1 * x2
sSwW x2, 0(x06) # M[x6]=x2
addi x6, x6, 1 # x6=x6 + 1
addi x5, x5, -1 # x5=x5 - 1
j LOOP # go to LOOP

end:

Suppose the initials values are:

A=16 M][16]=20
B=17 M[17]=4
C=18 M][18]=50

The program is stored in memory starting at address 0.

a) Given an initially empty, direct-mapped cache memory with a size of 32 words and
four words per block, indicate which accesses result in a hit and the ones that result
in a miss. Show the state of the cache after the sequence of accesses (after the Fetch
phase of instruction 12). For each entry (position) in the cache indicate the address of
the stored information.

b) Draw the structure of the cache memory. Clearly indicate the use of each bit of the
address by describing its format in detail.
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[Solution 4] A Direct-Mapped Cache

a) The step-by-step execution of the program is given below:

lw x4, 16 (x0) # R4=20. Read 0 (instr.) and 16 (M[16]): Misses
Data
0 1 2 3
o] O 1 2 3
1
2
3
4116 |17 |18 | 19
5
6
7
lw x5, 17 (x0) # xb5=4. Rd 1 (instr.) and 17 (M[17]): Hits
lw x6, 18(x0) # x6=50. Rd 2 (instr.) and 18 (M[18]): Hits
LOOP:
beq x5, x0, end # x5=0. Rd 3 (instr.): Hit
1w x1, 0(x4) # Rd 4 (instr.) and 20 (M[20]): Misses
Data
0 1 2 3
o] O 1 2 3
1| 4 5 6 7
2
3
4116 |17 (18| 19
5120 21| 22| 23
6
7
addi x4, x4, 1 # x4=21. Rd 5 (instr.): Hit
1w x2, 0(x4) # Rd 6 (instr.) and 21 (M[21]): Hits
mul x2, x1, x2 # Rd 7 (instr.): Hit
sw x2, 0(x6) # Rd 8 (instr.); Wr 50 (M[50]): Misses
addi x6, x6, 1 # x6=51. Rd 9 (instr.): Hit
addi x5, x5, -1 # x5=3. Rd 10 (instr.): Hit
3j LOOP # Rd 11 (instr.): Hit
beq x5, x0, end# Rd 3 (instr.): Hit
1w x1, 0(x4) # Rd 4 (instr.) and 21 (M[21]): Hits
addi x4, x4, 1 # x4=22. Rd 5 (instr.): Hit

206 of@

Version 1.0 of 1st October 2024, EPFL ©2024



Solution 4
Memory Hierarchy

Exercise Book
Computer Architecture

1w x2, 0(x4) #
mul x2, x1, x2 #
sw x2, 0(x6) #
addi x6, x6, 1 #
addi x5, x5, -1 #
3 LOOP #
beq x5, x0, end#
1w x1l, 0[x4] #
addi x4, x4, 1 #
1w x2, 0[x4] #
mul x2, x1, x2 #
swW x2, 0[R6] #

#
addi x6, x6, 1 #
addi x5, x5, -1 #
3 LOOP #
beq x5, x0, end#
1w x1, 0(x4) #

#

Data
o 1 2 3

ol O 1 2 3

1| 4 5 6 7

2| 8 9 (10|11

3

4148 |49 ( 50 | 51

5201|2122 |23

6

7
Rd 6 (instr.) and 22
Rd 7 (instr.): Hit
Rd 8 (instr.) and Wr
x6=52. Rd 9 (instr.):
x5=2. Rd 10 (instr.):
Rd 11 (instr.): Hit
Rd 3 (instr.): Hit
Rd 4 (instr.) and 22
x4=23. Rd 5 (instr.):
Rd 6 (instr.) and 23
Rd 7 (instr.): Hit
Rd 8 (instr.): Hit
Wr 52 (M[52]): Miss

Data
0 1 2 3

ol O 1 2 3

1| 4 5 6 7

2| 8 9 (10|11

3

4148 (49 | 50 | 51

5|52 | 53|54 |55

6

7
x6=53. Rd 9 (instr.):
x5=1. Rd 10 (instr.):
Rd 11 (instr.): Hit
Rd 3 (instr.): Hit
Rd 4 (instr.): Hit
Rd 23 (M[23]): Miss

(M[22]): Hits

51 (M[51]): Hits
Hit
Hit

(M[22])

Hit
(M[23]) :

Hits

Hits

Hit
Hit
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Data

ON|==

49 | 50 | 51

NOoOuh~rWNRDO
»
(<)

addi x4, x4, 1 # x4=24. Read word 5 (instr.): Hit
1w x2, 0(x4) # Read word 6 (instr.): Hit
# Read word 24 (M[24]): Miss

Data

QU=

NoOoOuhWNRO

mul x2, x1, x2 # Read word 7 (instr.): Hit
SwW x2, 0(x6) # Read word 8 (instr.): Hit
# Write word 53 (M[53]): Miss

Data

OlN|==

NOUuWhAWNRNRDO
=Y
(<]
=Y
©
Ul
o
[$]
=

addi x6, x6, 1 # x6=53. Read word 9 (instr.): Hit
addi x5, x5, -1 # x5=1. Read word 10 (instr.): Hit
3j LOOP # Read word 11 (instr.): Hit
beq x5, x0, end# Read word 3 (instr.): Hit
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b) The structure of the cache is given in the figure below:

15 542 10
Address| | | |
I |_
V. V|Tag Data
13 0o[1[2]3
0
11| 1
2
3
4
5
—>6(el o |0 (0|0 | @
7
{11 f32 f32 f32 f32

Hit Data

Figure 55: Structure of the cache
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[Exercise 5] Cache Organizations

Consider a cache memory having 128 blocks of 4 words each, with 32-bit words, 32-bit
addresses and word addressing.

a) Draw the structure of the following three caches, each time giving the use of the

different bits of a word’s address.

1. Direct-mapped cache
2. 4-way set-associative

3. Fully-associative

b) How many memory bits are necessary to implement the direct-mapped cache ?

c) If the direct-mapped cache is initially empty, indicate the hits and misses in the
following memory access sequence.

What is the hit ratio for this access sequence ?

d) Give the contents of the cache at the end of the previous access sequence. Given that
the memory is very large, only indicate words whose valid bit is set.
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Address (decimal) Address (hexadecimal)

1 0x0001

0 0x0000
127 0x007F
128 0x0080
129 0x0081
514 0x0202
512 0x0200
5125 0x1405
516 0x0204
514 0x0202

4 0x0004

3 0x0003
129 0x0081
9223 0x2407
1024 0x0400
5126 0x1406
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[Solution 5] Cache Organizations

a) The structures of the data and instruction caches are given below:

31 9 8 210

Address| | | |
V| Tag Data
0 1 2 3

0

1

2
A23] 3

/7

12.!;
126
127
32 |,32 |,32 |,32
— ) el il )4
01 2 3 2
Hit Data

Figure 56: Structure of the data cache Direct Mapped
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31 7 6 2 10
Address| | | |
V|Tag Data V|Tag Data V|Tag Data V|Tag Data
25 s o 1 2 3 [ 1 2 3 o 1 2 3 ) 1 2 3
o o o o
1 1 1 1
P > ... p > ... > ...
32 32 32 32

25 (32 f32 [f32 f32 25 (32 f32 [f32 f32 25 f32 32 f32 f32 25 f32 32 f32 f32

Hit

Data

Figure 57: Structure of the data cache 4 Way Set associative

31 2 10
Address| | |
30 0 1 127
V|Tag Data V|Tag Data V|Tag Data
0123 o123 0o[1]2]3

0 [olo—>oe[e e e e e |—> H BN —>oefe e e [e]e

30 f32 f32 f32 32 30 f32 f32 f32 f32 30 f32 f32 f32 f32
H E N

128 128

Hit Data

Figure 58: Structure of the data cache Fully Set associative
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b) For the direct mapped cache, each line needs 1 valid bit, 23 tag bits and 432 data bits
(4 words of 32 bits). There are 128 lines in the cache, so the total is 128 (1+23+44%32) =
19456 bits

c)

A\ 1 0 127 128 129 514 512 5125 516 514 4 3 129 9223 1024 5126

Lfo o 3 32 32 0 o0 1 1 0 1 0 32 1 0 1

‘MHMMHMHMMHMMHMMM

Table 1: Miss (M) or Hit (H) depending on the accesses of address (A) on line (L) in the
Direct Mapped Cache

#Hit

The hit ratio is computed as 77277

. In this case, the hit ratio is & = 0.3125.

d)

Data

0]1024]1025(1026 {1027
1|5124|5125|5126(5127

31|124|125|126(127
32|128|129(130(131

Figure 59: Cache after the memory accesses. Only cache lines 0, 1 and 31, 32 have the
valid bit set
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[Exercise 6] Direct-Mapped Caches

Consider a system with a data cache of 256 bytes and an instruction cache of 1 Kbytes.
Both caches are direct mapped and have 16-byte lines. Instructions, data and addresses
are all 32-bit wide and byte addressing is used in the system. Moreover, every write to
the cache causes a write to main memory (write-through cache).

Now consider the following program given that sp = 1200 and a0 = 3 when the
program is executed:

1000: main: addi sp, sp, —-32

1004: SwW ra, 20 (sp)
1008: sSwW zero, 24 (sp)
1012: sw zero, 28(sp)

1016: loop: 1w tl, 28(sp)

1020: mul t2, tl1, tl
1024: 1w t3, 24 (sp)
1028: add t4, t3, t2
1032: sw td, 24 (sp)
1036: addi t0, tl1, 1
1040: sSw t0, 28 (sp)
1044: blt t0, a0, loop
1048: 1w al, 24 (sp)
1052: 1i a2, 0
1056: 1w ra, 20 (sp)
1060: addi sp, sp, 32
1064: ret

a) Draw the structure of the cache. Clearly indicate the use of each bit of the address.
b) What is the hit ratio for each cache (data and instruction).
c) Indicate the state of each cache at the end of the program’s execution.

d) Suppose the type of write policy is changed to copy-back (when a write results in
a hit, only the cache is modified, but if it results in a miss the corresponding line is
loaded from the main memory and modified in the cache). How would this change
the answers to the preceding two questions b) and ¢)? Explain your answer.

e) Suppose the instruction cache and the data cache are replaced by a unified cache
with a capacity of 2 Kbytes and write-through policy. How would this change the
answers to the questions in points b) and ¢)? Explain your answer.
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[Solution 6] Direct-Mapped Caches

a) The structures of the data and instruction caches are given below:

31 8 7 4 3210
Address | | | | |

]

V|Tag Data

0O NO UL WNKH O

©o

=
o

—>1110| @ ® ® ® ®
12
13
14
15

T [

Hit Data

Figure 60: Structure of the data cache
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31 10 9 43210
Address | | | | |

]

V| Tag Data

w N = O

62
63

Hit Data

Figure 61: Structure of the instruction cache

b) The hit ratio can be deduced from the following table:
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Instruction Instr. address  Instruction  Data address Data
decimal (hexa) Cache access decimal (hexa) cache access
main: addi sp, sp, -32 1000 (0x3ES8) M
sw ra, 20(sp) 1004 (0x3ECQC) H 1188 (0x4A4) M
sw zero, 24(sp) 1008 (0x3F0) M 1192 (0x4AS8) H
sw zero, 28 (sp) 1012 (0x3F4) H 1196 (0x4AC) H
loop: 1w tl1l, 28(sp) 1016 (0x3F8) H 1196 (0x4AC) H
mul t2, tl, tl 1020 (0x3FC) H
1w t3, 24(sp) 1024 (0x400) M 1192 (0x4AS8) H
add t4, t3, t2 1028 (0x404) H
sw t4, 24(sp) 1032 (0x408) H 1192 (0x4AS8) H
addi t0, tl1, 1 1036 (0x40C) H
sw t0, 28(sp) 1040 (0x410) M 1196 (0x4AC) H
blt t0, a0, loop 1044 (0x414) H
loop: 1w t1, 28(sp) 1016 (0x3F8) H 1196 (0x4AC) H
mul t2, tl, tl 1020 (0x3FC) H
1w t3, 24(sp) 1024 (0x400) H 1192 (0x4AS8) H
add t4, t3, t2 1028 (0x404) H
sw t4, 24(sp) 1032 (0x408) H 1192 (0x4AS8) H
addi t0, tl1, 1 1036 (0x40C) H
sw t0, 28 (sp) 1040 (0x410) H 1196 (0x4AC) H
blt t0, a0, loop 1044 (0x414) H
loop: 1w t1, 28(sp) 1016 (0x3F8) H 1196 (0x4AC) H
mul t2, tl1, tl 1020 (0x3FC) H
1w t3, 24(sp) 1024 (0x400) H 1192 (0x4AS8) H
add t4, t3, t2 1028 (0x404) H
sw t4, 24(sp) 1032 (0x408) H 1192 (0x4AS8) H
addi t0, tl1, 1 1036 (0x40C) H
sw tO0, 28(sp) 1040 (0x410) H 1196 (0x4AC) H
blt t0, a0, loop 1044 (0x414) H
1w al, 24(sp) 1048 (0x418) H 1192 (0x4AS8) H
1i a2, 0 1052 (0x41C) H
lw ra, 20(sp) 1056 (0x420) M 1188 (0x4A4) H
addi sp, sp, 32 1060 (0x424) H
ret 1064 (0x428) H
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The instruction cache hit ratio is % = 0.85. The data cache hit ratio is i—? = 0.94.

c) The state of each cache is given in a separate table.

Cache line Data
0x00 0x400 0x404 0x408 0x40C

0x01 0x410 0x414 0x418 0x41C
0x02 0x420 0x424 0x428 0x42C

0x3E Ox3E0 O0x3E4 O0x3E8 O0x3EC
Ox3F Ox3F0 O0x3F4 O0Ox3F8 Ox3FC

Table 2: Instruction cache

Cache line Data

0x0A 0x4A0 0x4A4 0x4A8 O0x4AC

Table 3: Data cache

d) If the writing policy changes from write-through to copy-back, the hit rate and the
tinal state of the cache remain unchanged.

When there is a miss, both policies are the same. When there is a hit, the hit rate does
not depend on the update method of the main memory. For the copy-back, the update
of the main memory is delayed in a transparent way.

e) The hit rate will remain unchanged because accesses to the instructions and data
occur on different lines of the cache. The unification of the cache can affect the hit rate
if there is an overlap of instruction area with the data area.
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Cache line Data

Ox3E Ox3E0 O0x3E4 O0x3E8 O0x3EC
Ox3F 0x3F0 O0x3F4 O0x3F8 0x3FC
0x40 0x400 0x404 0x408 0x40C
0x41 0x410 0x414 0x418 0x41C
0x42 0x420 0x424 0x428 0x42C

0x4A 4A0 O0x4A4 0x4A8 O0x4AC

Ox7F

Table 4: Unified cache
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[Exercise 7] Code and Cache

Consider a system with a data cache of 32 Kbytes and an instruction cache of 16 Kbytes.
Both caches are direct-mapped and have 128-byte (cache) lines. The system uses byte
addressing using 32-bit addresses and instructions are also 32-bit. Integers are encoded
on 32 bits.

Now consider the following program:

int af[128], b[128], c[128], 1i;
main () {

for (i=0; i<128; 1i++) {

ali] = b[i] + cI[i];

a) Draw the structure of the two caches. Clearly indicate the use of each bit of the
address by describing its format in detail.

b) Could the hit ratio of either cache memory be influenced by the address chosen
by the system to store the program’s instructions in memory? Explain your answer
supposing that the program is the only one running on the system.

¢) What restrictions regarding the placement in memory of arrays a, b and ¢ would
allow minimizing misses in the data cache ? Ignore integer i in this question and
the following ones. Give two placement examples to illustrate two extreme situations
(minimum and maximum number of misses).

d) Suppose that the cache’s level of associativity is increased, i.e. the number of ways
in the cache is increased. What is the data cache’s highest level of associativity in which
misses still occur?

e) Suppose that the separate instruction and data caches are replaced by a unified direct
mapped 32 Kbyte cache. How would this modify the answers to questions b) and ¢)?
Give two placing examples.
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[Solution 7] Code and Cache

a) The structures of the data and instruction caches are given below:

31 1514 76 2 10 31 1413 76 2 1 0
Address | | | | | Address | [ [ | |
I— I —
7
V|Tag Data V|Tag Data
0 31 0 31
0 0
1 1
2 2
3 3
—> |®| @ ® ® ® ® —> |®| @ ® ® ® ®
254 126
255 127
5
32
Hit Data Hit Data
(a) Structure of the data cache. (b) Structure of the instruction cache.

Figure 62: Structure of the data cache (left) and the instruction cache (right).

b) The location of the program in memory does not affect the hit rate of the data cache,
as both caches are separate.

The location of the program in memory does not affect the hit rate of the instruction
cache either, since no other program is running, once the program is loaded in the
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cache there will only be hits (We discard the potential miss resulting from the program
overlapping two cache blocks, given the long loop).

¢) To minimise the miss rate in the data cache, the three arrays must be mapped on
three different blocks of the cache.

The addresses of the arrays must be chosen so as to avoid any overlapping in the cache.

Figure 63| shows the address format (structure) for the data cache.

31 1514 76 210
Address | | | | |

Cache line index J

Select word in cache block

Figure 63: Structure of the address for the data cache

Address bits 7 to 14 select a line in the cache. To minimise the miss rate, these 8 bits
must be different for each element of the array. Thus for each physical address of arrays
a, b and ¢ we must have address,[7;14]#address;[7;14]#address.[7;14].

Figure [64 shows two different placings in memory for arrays a, b and c. The data
cache has a size of 32 Kbytes, so addresses that are distant by 32K are placed in the
same location in the cache, thus if the arrays are placed with such a difference in their
addresses as in figure [64] (on the right), the miss rate will be maximal. In order to have
a minimal miss rate, the tables must be placed as shown on the left side of figure
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Minimal number Maximal number
of miss of miss
Memory Memory
0 a[128] 0 a[128]
b[128]
size of the
data cache
32K, 32K b[128]
c[128]
64K 64K c[128]

Figure 64: Placing arrays a, b and ¢

d) With an associativity level of 3 there can be no more misses because even in the
worst case (all arrays mapped on the same cache line) the associativity allows avoiding
misses.

With an associativity level of 2, it is still possible to have some misses, thus the highest
associativity level where misses can still occur is 2.

e) The answer to b) is modified as follows: If the cache in unified, the hit rate can be
affected if the program and one of the arrays overlap in the cache. In order to avoid
this, the following conditions on the addresses must be fulfilled:

addressins|7; 14] # address,|7; 14]
addressiysiy|7; 14] # address,|7; 14]
addressnsiy|7; 14] # address.[7; 14]

For all possible values of the physical addresses of the instructions and arrays a, b and
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C.

The answer to ¢) is modified as follows: The answer remains the same, but in addition
the program must be mapped onto a different block in the cache than the ones used for
the arrays. Thus the condition becomes:

addressipsiy|7; 14] # address,|7; 14] # address,|7; 14] # address.[7; 14]

for every possible value of the physical addresses of the instructions and the arrays a,

b and c.

Minimal number

size of the
data cache

32K

64K

of miss

Memory

program

a[128]

Maximal number
of miss

32K

64K

96K

Memory

program

a[128]

b[128]

c[128]

Figure 65: Placing arrays a, b and ¢
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[Exercise 8] Cache Hierarchies

We consider a memory access system as shown in figure

L1 Data
Cache

CPU Memory

L1 Instr.
Cache

Figure 66: Organization of the memory

The L1 caches are organized as follows:

Physical address on 32 bits. Byte addressing.

¢ Instructions and data are separated.

4 Kbytes for the data and 4 Kbytes for the instructions.

Blocks of 32 bytes.

Each cache has 2 ways. The replacement policy is LRU (Least Recently Used).

Write-back is used.

a) Draw the diagram of each cache specifying the use of each bit of the physical ad-
dress.

b) The average access time of the memory is:

Tmem = Thl + Pml : Tml

Where T),; is the access time to the cache when there is a hit (hit time), P,,; is the
miss rate and 7,,,; is the miss penalty. Referring to the diagram drawn in the previous
question indicate what is 7},;? What is the time 7},,; when a read miss occurs? Explain
why T}, should ideally be as small as possible.
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c) Given that the cache is physically addressed, virtual addresses must be translated
into physical ones before accessing the cache. Draw a diagram showing how the 32 bits
of the virtual address are used when the latter is translated into a physical address in
the case of 1 Kbyte pages as well as 4 Kbyte pages. Do you expect a better performance
in one of the cases? Explain your answer.

d) What change do you expect on T}, P,1 1) if the associativity of the cache or the
size of its blocks are increased without changing the total size (of the cache). Indicate
whether it will result in an increase, a decrease or in no change, or whether the change
is unpredictable as it depends on other parameters. Explain your answers.

e) In order to decrease the miss penalty without affecting the hit time, we propose
adding an additional cache between the L1 caches (instruction and data) and the
memory:

L1 Data
Cache
L2 unified
CPU Cache <@E—p-| Memory
L1 Instr.
Cache

Figure 67: Organization of the memory with unified L2

The L2 cache has the following characteristics:

¢ Physical byte addressing.
¢ Size of 512 Kbyte, unified for instruction and data.
* 64-byte blocks.

¢ Direct-mapped.

Draw the diagram of the cache indicating the use of the bits of the physical address.

f) Indicate if the following accesses result in hits or misses in each of the caches L1 and
L2 (the caches are initially empty). Calculate the hit-and-miss rates of each cache for
the following access sequence (I for instructions and D for data):
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I
D
I
I
D
I

[Oxffff
[0x0000
[OxfEfff
[Oxffff
[0x2000
[Oxffff

00007,

00001,

00187,
0010]
0004]
]

0014

7

4

7

[OxEffff
[Oxffff
[0x2000
[Oxffff
[Oxffff
(

I
I
D
I
I
D[0x1000

000417,

00101,

00001,
0014]
00201
]

0000

7

4

7

[Oxffff
[Oxffff
[OxEffff
[0x1000
[Oxffff
(

I
I
I
D
I
I[Oxffff

00087,

00141,

00201,
00201
0024]
]

0018

7

4

7

I[Oxffff
D[0x1000
I[Oxffff
I[Oxffff
I[Oxffff
D[0x2000

000c]
00001
00241,
00187,
]
]

7

7

0010
0008

4

d) Express the mean memory access time as a function of parameters Tj1, P1, Tha, P
and 7,,». Parameters T}, P2 and T,,» are defined the same way as T}, P,1, 15,1 but
for the L2 cache. Compute it (mean memory access time) for the access sequence in the

preceding question with 7},; = 1 cycle, T}» = 5 cycles and 7,,,, = 100 cycles.
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[Solution 8] Cache Hierarchies

a) The structure of the cache is shown in the diagram below:

31 1110 54 210
Address | | | | |
6 V| Tag Data V| Tag Data
0 0
(21 1 1
lo] @ Y > [o] @ °
63 63
¢
21 421
A256 (256

32

Hit Data

Figure 68: Structure of each cache

b) i) 7}, is the sum of the critical path of the combinatorial circuit that verifies the
equality of the address and cache data tags and the time required to select (multiplex)
the output word out of the 8 words of a cache line.

ii) 7,,; is the sum of:

1. the time required to access the memory in order to fetch the block of the missing
word and write this block in the cache.

2. the time required to write in memory (or in a write buffer) the block that will be
taken out of the cache to resolve a miss.
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Timing 2| above is not taken into consideration is the block taken out of the cache has
not been modified (e.g. instructions).

iii) A processor’s clock cycle is necessarily larger than 73;. Consequently, we want T},
to be as small as possible for performance reasons (i.e. to reach higher processor clock
frequencies).

c) i) Pages of 1 Kbyte have an offset field of 10 bits, while 4 Kbyte pages need 12 bits
for the offset field.

[ # of the virtual page | offset |
<<2
page table
\J
| # of the virtual page | offset |

if) In order to access the cache in parallel to the translation of the virtual address, the
offset field of the virtual address must contain the 11 least significant bits of the phys-
ical address that are required to access the cache as shown in the diagram drawn in
point a). For 1 Kbyte pages, this is not possible as the offset field in the virtual address
has only 10 bits. In the case of 4 Kbyte caches the virtual address has 12 bits, and can
thus contain the 11 bits of the physical address that are required to access the cache
while the translation is performed.

d) If the associativity of the cache is increased, 7},; remains unchanged. More tri-state
buffers, comparators, and-gates are needed horizontally. The size of the and-gate is in-
creased as it needs more entries. The size of the final multiplexer remains unchanged
as it is only affected by the block size. Those changes do not significantly affect the
hit time as everything is done in parallel. Only the size of the and-gate affects the crit-
ical path of the hit. Increasing the associativity decreases the number of misses due to
conflicts. There are more slots available if multiple addresses are mapped on the same
cache line. Misses due to the size limitation of the caches and compulsory (unavoid-
able) misses remain unchanged. Thus, F,,; decreases, while 7}, is not influenced by
the associativity of the cache.

If we increase the block size, T},; increases as well as the critical path of the combinat-
orial circuit that provides the desired block increases. The multiplexer which selects
the block needs to be larger. Misses due to conflicts increase ( if the size of the cache
is unchanged). There are less slots if two addresses are mapped to the same cache
line. Misses due to the size limitation of the cache and compulsory misses remain
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unchanged. P,,; decreases during sequential (consecutive) accesses. For other access
types, it is not possible to predict the effect on P,,;. T,,; increases because the time re-
quired to access and transfer the blocks from the main memory increases with the size
of the blocks.

e) The structure of the cache is given in the diagram below.

31 19 18 6 5 210
Address | | | [ |
13
13
/ V| Tag Data
0
1
—> |®| @ ®
8191
y
/13
= [512
4
32
Hit Data

f) Hits and misses are indicated for each access of the sequence.
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Access L1 IndexI/D L1H/M L2Index L2 H/M
I[OxFFFF 0000] 0x00 M 0x1C00 M
I[OXFFFF 0004] 0x00 H 0x1C00
I[[OxFFFF 0008] 0x00 H 0x1CO00
I[[OxFFFF 000C] 0x00 H 0x1CO00
D[0x0000 0000] 0x00 M 0x0000 M
I[[OxFFFF 0010] 0x00 H 0x1C00
I[[OXFFFF 0014] 0x00 H 0x1C00
D[0x1000 0000] 0x00 M 0x0000 M
I[OxFFFF 0018] 0x00 H 0x1CO00
D[0x2000 0000] 0x00 M 0x0000 M
I[[OxFFFF 0020] 0x01 M 0x1CO00 H
I[[OXFFFF 0024] 0x01 H 0x1CO00
I[OXFFFF 0010] 0x00 H 0x1C00
I[[OXFFFF 0014] 0x00 H 0x1C00
D[0x1000 0020] 0x01 M 0x0000 M
[[OxFFFF 0018] 0x00 H 0x1CO00
D[0x2000 0004] 0x00 H 0x0000
I[[OxFFFF 0020] 0x01 H 0x1CO00
I[[OXFFFF 0024] 0x01 H 0x1CO00
I[OxFFFF 0010] 0x00 H 0x1C00
I[OXFFFF 0014] 0x00 H 0x1C00
D[0x1000 0000] 0x00 H 0x0000
[[OxFFFF 0018] 0x00 H 0x1CO00
D[0x2000 0008] 0x01 H 0x0000
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For the L1 instruction cache, there are 15 hits and 2 misses. The hit ratio is i—‘;’ and the
miss rate is % For the L1 data cache, there are 3 hits and 4 misses. The hit ratio is %
and the miss rate is ‘—;. For the L2 cache, there is 1 hit and 5 misses. The hit ratio is %

and the miss rate is 2.
d) The mean memory access time can be obtained by replacing 7,,,; by the mean time

to access the memory from the L2 cache, i.e. Tjs + P2 - Tin2. Thus, the mean access
time can be expressed as follows:

Tmem = Thl + Pml . (ThQ + Pm2 : Tm?)
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[Exercise 9] Set Associative Caches

Consider a byte-addressable 2-way set associative cache memory of 1 Kbyte, with an
LRU replacement policy, 32-bit words and two words per block.

a) Draw a diagram of the cache indicating the use of each bit of the address. Explain
precisely what determines the position of a word in the cache.

b) Given the following access sequence, compute the hit and miss rates of the cache.
Explain the obtained results.

0x18DE 0000, O0x18DE 0004, 0x2000 01FC, 0x2000 O1F'S,
O0x18DE 0008, O0x18DE 000C, 0x2000 01F4, 0x2000 O1FO,
O0x18DE 0010, Ox18DE 0014, 0x2000 0lEC, 0x2000 O1lES,

0x18DE 01F8, O0x18DE O01lFC, 0x2000 0004, 0x2000 0000,
0x18DE 0000, O0x18DE 0004, 0x2000 0000, 0x2000 0004,

O0x18DE 01F8, 0x18DE O01lFC, 0x2000 01F8, 0x2000 Ol1FC

c) Is it possible to improve (reduce) the miss rate for the aforementioned access se-
quence by increasing the number of ways from 2 to 4 while keeping the same cache
size ? Explain.

d) If we increase the block size to 4 words instead of 2 while keeping the same cache
size, what will be the new miss rate for the (same) access sequence ? Explain and show
the contents of the last line of both cache ways.
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[Solution 9] Set Associative Caches

a) The 2 least significant bits are not used (byte addressing). Only one bit is necessary
to address a word in a block. The cache contains 256 words. The number of lines for

each way of the cache is 35; = 64 and thus 6 bits are needed for the index as shown in
Figure
31 9 8 3210
Address | | | | |
| |
6 V| Tag Data V| Tag Data
0 0
23] 1 1
(o] ® * . [¢] @ *
63 63
t 123 123
64 (64
/ /

32

Hit Data

Figure 69: Structure of the cache

b) Figure [70|shows how the cache is filled after the first four accesses according to the
address format introduced in figure Accesses 0x18DE 0000 and 0x18DE 0004
are placed in the first block of one of the cache’s two ways. The first access results in a
miss while the second results in a hit. Accesses 0x2000 01FCand 0x2000 01F8 are
placed in the last block of the same way and the first one results in a miss while the
second in a hit.

If we carefully observe the access sequence we can see that we can distinguish two
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Word 0 Word 1 Word 0 Word 1
0| Ox18DE 0000 0x18DE 0004
1
2
63 | 0x2000 01F8 0x2000 01FC
0x2000 01FC (Miss), 0x2000 01F8 (Hit), ...
Figure 70: Cache state after first accesses
..., 0x18DE 00F8 (Miss), 0x18DE 00FC (Hit), 0x18DE 0100 (Miss), 0x18DE 0104 (Hit) ...
Word 0 Word 1 Word 0 Word 1
0| O0x18DE 0000 0x18DE 0004
1] Ox18DE 0008 0x18DE 000C
31 0x18DE O0F8 | 0x18DE 0O0OFC 0x2000 00F8 0x2000 OOFC
32 | 0x2000 0100 0x2000 0104 0x18DE 0100 0x18DE 0104
63 | 0x2000 01F8 0x2000 01FC

0x18DE 0000 (Miss), 0x18DE 0004 (Hit), ...

..., 0x2000 0104 (Miss), 0x2000 0100 (Hit), 0x2000 00FC (Miss), 0x2000 00F8 (Hit) ...

Figure 71: Cache state after first way is full

sequences. The first one is an ascending then descending access sequence starting at
0x18DE 0000, culminating at 0x18DE O01FC then back to 0x18DE 0000. The other
sequence has an opposite pattern, starting at 0x2000 01FC reaching its lowest point
at 0x2000 0000 then rising back to 0x2000 01FC.

As a result, the first cache way will be filled at accesses 0x18de 00£8, 0x18de 00fc
and 0x2000 0100, 0x2000 0104, therefore the following accesses will start filling
the second way as shown in figure

Both cache ways will be full halfway through the sequence at accesses 0x18DE 01FC
and 0x2000 0000, which are the highest and lowest points of the first and second
inner sequences, respectively. We can observe that up to this point the first access of
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Word 0 Word 1 Word 0 Word 1
0| 0x18DE 0000 0x18DE 0004 0x2000 0000 0x2000 0004
11 O0x18DE 0008 0x18DE 000C
31 0x18DE 00F8 0x18DE 00FC 0x2000 00F8 0x2000 OOFC
32 0x2000 0100 0x2000 0104 0x18DE 0100 0x18DE 0104
63 | 0x2000 01F8 0x2000 01FC 0x18DE 01F8 0x18DE 01FC

Figure 72: Cache state halfway through the accesses

..., Miss, Hit, Miss, Hit,... ..., Miss, Hit, Miss, Hit,...

Word 0 Word 1 Word 0 Word 1 Word 0 Word 1 Word 0 Word 1
0| Ox18DE 0000 0x18DE 0004 0x2000 0100 0x2000 0104 0x18DE 0100 0x18DE 0104 0x2000 0000 0x2000 0004
1] Ox18DE 0008 | O0x18DE 000C 0x18DE 0108 0x18DE 010C
15 | 0x18DE 0078 0x18DE 007C 0x2000 01F8 0x2000 01FC 0x18DE 0178 0x18DE 017C 0x2000 0078 0x2000 007C

16 | 0x2000 0180 0x2000 0184 0x18DE 0080 0x18DE 0084 0x2000 0080 0x2000 0084 0x18DE 0180 Ox18DE 0184

31 | _0x2000 01F8 0x2000 01FC 0x18DE 00F8 0x18DE 00FC 0x2000 00F8 0x2000 00FC 0x18DE 01F8 0x18DE 01FC

..., Miss, Hit, Miss, Hit,... ..., Miss, Hit, Miss, Hit,...

Figure 73: Cache state halfway with 4 word blocks

each inner sequence results in a miss while the second results in a hit, therefore the
miss rate for the first half of the sequence is 50%.

The second half of the accesses is a mere repetition of the previous ones only in the
reverse order, therefore all accesses result in a hit and the miss rate is 0%.

The overall miss rate for the whole sequence is thus 25%.

c) Figure|72|shows the state of the 4-way cache after the first half of the accesses.

The miss rate is still 50% because blocks contain two words. For the second half of the
accesses, the miss rate is also 0%. Thus the overall miss rate for both caches is the same:
25%.

d) By increasing the block size to 4 words while keeping the same total cache size 9

bits are still needed to determine the position of a word in the cache. Consequently,
the first half of the access sequence will fill the cache as shown in figure
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In this case however, the miss rate for the first half of the access sequence is only 25%
as only one access out of four generates a miss. The second half, as before, generates no
miss. Therefore the overall miss rate of this cache for this access sequence is 12.5%.
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[Exercise 10] Cache Organizations

Consider the following data caches with a size of 128 words:

1. A 2-way set associative cache with an LRU (Least Recently Used) replacement
policy and a block size of 4 words.

2. A fully associative cache with an LRU (Least Recently Used) replacement policy
and a block size of 2 words.

3. A direct-mapped cache with a block size of 4 words.

Caches are byte addressed using 32-bit addresses and data is 32-bit wide.
a) Draw a diagram of the three caches indicating the use of each bit of the address.

b) Given the following access sequence, which cache will have the smallest miss rate?
Explain.

0x8000 0000, 0x8000 0200, 0x8000 0004, 0x8000 0204,
ey 0x8000 O3FC, 0x8000 O5FC

c) Can the performance of the direct-mapped cache be enhanced by increasing the
block size from 4 to 8 words while keeping the same cache size ? Qualitatively compare
the performance of these two direct-mapped caches ?
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[Solution 10] Cache Organizations

a) For all caches the two least significant bits are not used for addressing the cache as
it is byte addressed.

I) The structure of the first 2-way set associative cache is given in figure Blocks
contain 4 words, hence two bits (2 to 3) are required to address a word inside a block.
Each cache way contains 16 lines (128 <+ (2 x 4)). The index thus needs 4 bits (4 to 7).
The rest (bits 8 to 31) determine the tag. Since the cache is 2-way set associative, two
comparisons are needed to determine a hit.

31 8 7 43210
Address | [ [ | |
1 | [
4 V| Tag Data V| Tag Data
0
f24] 1 1
..[e] @ [ =[] [
15 15
t 424 424
f128 128
I/2
32
Hit Data

Figure 74: Structure of the 2-way set associative cache

ii) In this fully associative cache, a single bit is required to address a word in a line, bit
2 is used to this end. The structure of the cache along with the use of the address bits is
given in figure (75, The cache has 64 lines (128 = 2). Since it is fully associative, the tag
consists of all the remaining bits (3 to 31). To determine if a hit has occurred requires
64 comparisons.
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31 32 10

Address | | ] |

] B
V| Tag w0Data wl

0 =
1 =
63 =

U U

Hit Data

Figure 75: Structure of the fully associative cache

iif) The structure of the direct-mapped cache is given in figure [76{along with the use of
the address bits. As we can see, given the block size of 4 words, 2 bits are required to
address a word within a block, bits 2 and 3 are used to this end. The cache has 32 lines
(128 = 4). Five bits (4 to 8) are used for the index, and the tag consists of the remaining
bits (9 to 31). A single comparison is needed to determine the occurrence of a hit.

b) Looking more closely at the access sequence we can see that it actually consists of 2
interlaced sequences of 256 consecutive accesses. The first sequence consists of accesses
0x8000 0000, 0x8000 0004, ..., 0x8000 O03FC. Accesses of the second sequence
are distant from the first sequence accesses by 0x0000 0200 and the second sequence
is thus 0x8000 0200, 0x8000 0204,...,0x8000 O5FC.

i) In the 2-way set associative cache, accesses of the second sequence will placed on
the same line as the ones of the first sequence. However, given the 2 ways and the
associativity of the cache, the accesses of both sequences do not interfere with one
another. The block size of 4 words also contributes to fewer misses, only addresses
ending with 0 result in a miss. Thus the miss rate of the 2-way set associative cache is
25%.

i) In the fully associative cache accesses of both sequences do not interfere with one
another due thanks to the associativity. Given that blocks are two words in size, ac-
cesses with addresses ending with 0 and 8 result in a miss, while those ending with 4
and C. Thus the miss rate of the fully associative cache is 50%.
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31 9 8 4 3210
Address | | | | |
— [ —
V|Tag Data
5 0 ]1]2]3
0
23 1
- |®] @ [ ] ® [ ] [ ]
31
23
32 f32 32 32
0 2 3 2
32
Hit Data

Figure 76: Structure of the direct mapped cache

iii) The lack of associativity of the direct-mapped cache results in a maximal penalty of
a 100% miss rate. Given the fact that the 9 first (least significant) bits of each pair of
consecutive accesses are identical, each access of the sequence will result in a miss.

) The use of each bit of the address in the direct-mapped cache with 8 words per block
is shown in figure

31 9 8 54 210
Address | | | | |

|
Cache line index Jr

Select word in cache block

Figure 77: Structure of the address for the direct mapped cache

As we saw earlier, each pair of accesses is placed on the same line of the cache because
the 9 least significant bits of each pair are identical. Increasing the block size to 8 words
does not remedy the lack of associativity problem. In both caches the miss rate for the
given sequence is 100%.
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[Exercise 11] Code and Caches

The C program excerpt given below computes the multiplication of two square
matrices A and B containing each 16 elements and stores the product in a matrix C.
Integers int are encoded on 32 bits and memory is byte-addressed.

int A[4][4];
int B[4][4];
int C[4][4];
int i, j, k, acc;

for (i = 0; 1 < 4; i++)

acc = 0;
for (k = 0, k < 4; k++)
{
acc = acc + A[i]l[k] = B[kIlI[3J];
}
Cli][J] = acc;

According to the C language standards, the three matrices A, B and C have virtual
addresses as shown in figure

Consider an architecture where data and instruction caches are separate. Caches are
physically addressed, i.e. virtual addresses are translated before accessing the cache.
The virtual memory uses 4 Kbyte pages and physical addresses are 32-bit wide.

a) If the aforementioned C code were given to a compiler, which C expressions would
certainly be translated into assembly instructions that access the data cache? Suppose
for the rest of the exercise that the order of these (assembly) instructions and their
corresponding accesses is the same as in the C code and not modified (optimised) by
the compiler.

b) Consider a direct mapped cache with 4-word blocks and a total size of 256 bytes.
Draw the structure of this cache and precisely indicate the use of each bit of the physical
address used to address the cache.
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A A[0][0] | B BlOJ[0] | C CI0][0]
A+4 [a0l1] | B+4 [ BON1] | c+4 [ cloi1]
A+8 [ A0i21 | B+8 [ BloI2] | c+8 [ clol2]
A+12 [ Af0131 | B+12[ B[OI[3] | c+12[ Cl0I3]
A+16 [ A[1l[0] | B+16[ B[1][0] | c+16[ C[1](0]
A+20 [ ArL1] | B+20[ By | c+20[ criiig
A+24 [ AL21 | B+24[ Bru21 | c+24 crii2]
A+28 | A[LI3] | B+28[ B3] | c+28[ Cl113]
A+32 [ A21[01 | B+32[ B[21[0] | c+32[ C[2][0]
A+36 | AL2111] | B+36([ B[2][1] | C+36[ CI2](1]
A+40 | AR2I121 | B+40[ B21[2] | c+40[ Cl2][2]
A+44 | AR213]1 | B+44[ BR213] | c+44| Cl213]
A+48| A3]l0] | B+48[ B[3][0] | c+48[ CI3][0]
A+52 [ ABIL] | B+52[ B3Il | c+52 CI311]
A+46 [ ABI2] | B+46[ B[3I2] | c+46[ CI312]
A+60| A[31(3] | B+60[ BI313] | c+60[ CI31(3]

Figure 78: Virtual addresses of arrays A, B and C

c¢) Explain why it is possible to deduce the access sequence (physical addresses) to the
data cache without knowing the contents of the page table.

d) Suppose A = 0x400, B = 0x440 and C = 0x480. What is the miss rate of this
cache when computing matrix C ? Consider the cache empty before the first for of the
program. (Advice: do not simulate all accesses, but rather think of the position of the
three matrices in the cache.)

e) Now suppose A = 0x400, B = 0x800 and C = 0x480. What is the miss rate
when computing the first three elements of matrix C? The cache is empty before the
tirst access in memory.

f) Give the simplest structure of a 256-byte cache that always guarantees the same miss
rate as in d) when computing the matrix C for all possible addresses of matrices A, B
and C.
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[Solution 11] Code and Caches

a) The C expression acc = acc + A[i][k] » B[k][]]; accesses the data cache
twice to load the coefficient of matrix A (A[i] [k]) and the coefficient of matrix B
(B[k] [3]) in the registers.

Also, the expression C[1] [j] = acc; generates a write access to the cache in order
to store in memory the coefficient c [1] [ j] of matrix C.

b) A cache block contains 16 bytes. The cache thus contains 16 lines. The structure of
the cache is given in figure

31 8 7 43210
Address | | | | |
V| Tag Data
4 ol 1]2]3
0
f24] 1
SO EEEEEERE
15
A24
32 f32 f32 f32
0 1 2 3 2
32
Hit Data

Figure 79: Structure of the direct-mapped cache

€) As indicated in b), cache addressing is determined by the 8 least significant bits
of the physical address. Moreover, pages have a size of 4 Kbytes, thus the 12 least
significant bits of the virtual address determine the offset in a page. Since these 12 bits
also constitute the 12 least significant bits of the physical address, we can determine
the access sequence from the virtual address.
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d) It can be noticed that accesses to matrices A, B and C do not generate any misses
due to conflicts because they reside on different lines in the cache. Indeed, matrix A
occupies lines 0, 1, 2 and 3, while matrix B occupies lines 4, 5, 6 and 7 and finally matrix
Clines 8,9, 10 and 11.

Computing matrix C generates 16 write accesses. For each one of them, 4 coefficients
of matrix A and 4 coefficients of matrix B are read. The total number of accesses is thus
16 +4 x 16 +4 x 16 = 144.

Within the accesses on matrices A, B and C, each access to a new line generates a miss.
There are thus 4 misses for accesses to A, 4 misses for those to B and 4 as well for C.

12 _ 1

Hence, there are 12 misses in total and thus the miss rate is i = 13

e) Contrary to point d), matrices A and B reside in the same cache lines 0, 1, 2 and 3,
which causes misses due to conflict. On the other hand, matrix C still resides in cache
lines 8 to 11 and thus does not interfere with accesses to matrices A and B.

The access sequence generated by the the computation of the first three coefficients of
C is given below along with the access type. (H: hit, CPM: Compulsory Miss, CFEM:
Conflict Miss).

Access H/CPM/CFM Access H/CPM/CFM Access H/CPM/CFM

A[0][0] CPM B[0][0] CPM

A[O]I[1] CFM B[1][0] CPM

A[0][2] H B[2][0] CPM

A[0][3] H B[3][0] CPM C[0][0] CPM
A[0][0] H B[O][1] CFM

A[0][1] CFM B[1][1] H

A[0][2] H B[2][1] H

A[0][3] H B[3][1] H C[O][1] H
A[0][0] H B[0][2] CFM

A[OI[1] CFM B[1][2] H

A[0][2] H B[2][2] H

A[0][3] H B[3][2] H C[o][2] H

The sequence contains 27 accesses, of which 11 are misses. The miss rate for this se-
quence is thus 3.
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f) In order to avoid conflict misses as in e), we can use an associative cache. Since there
are three matrices, a 3-way associative cache would be enough to eliminate conflict
misses. It is however not possible to build a 3-way cache with a size of 256 bytes (each
way must have an integer number of bytes).

Thus, the simplest cache that eliminates conflict misses is associative, has 4 ways, 4
word blocks and 4 lines per way.
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[Exercise 12] Victim Caches

Consider a system comprised of a 16-bit RISC processor with an 8-bit data bus. The
processor is connected to two memory units, each having a 16-bit address bus and an
8-bit data bus. One memory is exclusively used for storing the program (instruction
memory) and the other is used entirely for data (data memory). Between the processor
and data memory, there is a 4kB, 2-way (2-way set associative) data-cache. Each line of
the cache holds 32 bytes and the Least Recently Used (LRU) cache replacement policy
and write-back policy is used.

a) Draw a diagram of the mentioned data cache indicating clearly how the address bits
are used. Indicate the cache lines on which the following address ranges are mapped:

[0x1000 - 0x10C7], [0x2000 - 0x20C7] and [0x3000 - 0x30C7].

b) Assume this system was used to perform the addition of two vectors A and B to
compute a vector C, where A, B and C are stored as arrays. The following code snippet
illustrates this:

/* A, B and C are the arrays representing the vectors
and have already been defined earlier x/
for(int i = 0; 1i<100; i++)
{
Cli] = A[i] + BI[i];
}

The elements of A, B and C are 16-bit integers and are stored in the data memory in the
address range given below. Note that the processor needs two accesses to the memory
to read or to write a 16-bit value.

Variable Adresse

A [0x1000-0x10C7]
B [0x2000-0x20C7]
C [0x3000-0x30C7]

Assuming the cache was initially empty and the variable i is stored in a register, how
many cache hits and cache misses occur while executing the above code snippet? Ex-
plain the impact of the cache on the system’s performance in this case.

c) Propose another cache structure which has a significantly better performance when
the code in question b) is being executed. The proposed cache should have same
size with the original and should have minimal cost. Explain your choice briefly and
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provide the new number of cache hits and misses for the same code snippet. In case of
multiple solutions, discuss the advantages and disadvantages for each.

d) A victim cache is a small data cache used to hold blocks that are evicted from the
primary cache upon replacement. The victim cache lies between the primary cache and
the memory and is usually fully-associative. When a victim cache is present, following a
regular cache miss the victim cache is first queried and the query propagates to the main
memory only if the data item is not present in the victim cache. Note that it is not an
L2 cache, since it does not fill its data from the memory, but only stores the cache-lines
evicted from the primary cache. When a hit occurs in the victim cache, the retrieved data
migrates to the primary cache.

We add a fully-associative victim cache that can hold 16 lines of 32-byte data between
the data-cache and the data-memory to our system. Still using the same code given in
a):

1. How many data-cache misses would propagate to the main memory?

2. How many hits would occur in the victim cache?

e) Find the minimum size of the victim cache which allows the same performance as in
question d) for the code snippet given in a). If the primary cache is direct-mapped, is
this minimal size would be affected? Give your responses in number of blocks with a
brief explanation.

f) With the system given in d) and for the code snippet given in a), a random replace-
ment policy is used in the primary cache.

1. What is the minimum size of the victim cache that will maintain the same per-
formance?

2. Can the performance of the system improve with this change? Explain.

3. Can the performance of the system degrade with this change? Explain.
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[Solution 12] Victim Cache

a) The Figure [80| illustrate the 2-way set associative cache. The three ranges of ad-

15 1110 5 4 0
Address | | | |
V| Tag Data V| Tag Data
6 o 0
1 1
5
62|e| @ ® >62[0] @ ®
63 63
A5 A5
— 328 328 5

o]

Hit Data

Figure 80: The 2-way set associative cache
dresses will all be mapped to the cache lines 0 to 6.

b) In each iteration, we have two pairs of loads and one pair of stores. Each pair of
accesses will first generate a miss (compulsory miss) and then a hit. The three arrays are
aligned on the same cache line and have available only two ways: this will necessarily
generate conflict misses. In total, we will get 300 misses and 300 hits. The cache can
improve the performance of the reference system for only 50% of the accesses but could
potentially do better.

€) An associativity of three (that is, adding a third way to the set-associative cache)
will remove all the conflicts and the execution of the program will now generate only
21 compulsory misses for 579 hits. Note that there is no need for the associativity to
be a power of two, but if one wants to design a cache with exactly the same total data
memory, it would make sense to halve the number of lines in each way (which must be
a power of two) and thus use four ways.
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Another solution would be to change the write-back policy to a write-through with
unallocated store misses. Here only two arrays would have to share the two ways of
the cache, and therefore this change would remove all the conflicts as well. However,
a write-through policy would be more expensive in terms of power and, potentially,
performance because it would use the memory bus more frequently.

d) With a victim cache we still have the 21 compulsory misses and the 300 hits to the
data cache. The remaining 279 accesses are still misses to the main cache but hits to the
victim cache, as the corresponding cache lines would have been evicted very recently.

e) One could roughly see the victim cache as individual cache lines used to increase
as needed the associativity of individual sets. Since in our particular case the program
works only on a single set at a time and we would need an associativity of three to
remove all conflict misses, a single entry in the victim cache is sufficient. Similarly, in
the case of a direct-mapped data cache, we would need two entries in the victim cache
to hide the conflicts.

f)

1. We have to consider the worst decisions possible for the random replacement. In
the worst case, the cache could almost behave as a direct-mapped cache, always
evicting the most useful piece of data. Therefore, we would need two entries in
the victim cache, as discussed above.

2. Yes, we can potentially get better performance. For example, if the array A would
load in one way of the cache and if the second way would be shared between B
and C, we would get fewer hits to the victim cache but more to the data cache,
which has a smaller hit latency.

3. No we cannot have lower performance, because no matter what is the random re-
placement we won't get less than 300 hits in the data cache (due to the read /write
pairs) or more than 21 misses (compulsory) going to the memory.
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[Exercise 13] Caches

Consider the following assembly code (for a 32-bit processor whose assembly language
resembles RISC-V) and the equivalent C code. This program performs a peculiar addi-
tion of two arrays of int (32 bits) a and b, and stores the result in array c.

addi t0, zero, 0 # Initializing i to zero
loop:
andi t1, t0O, 1
# Check if 1 is even/odd
beq tl1, 1, odd
even:
Iw t2, 0(a0) # Load a[i] into t2
Iw t3, 2(al)
# Load b[i+2] into t3
j addition # Go to addition

for(int i = 0; i <N; i++) {
if (i %2 ==0){

odd: //_i is even .
w  t2, 0(a0) # Load a[i] into t2 c[il = a[i] + b[i+2];
Iw t3, 0(al) # Load b[i] into t3 }1

addition: else { . -
add  t2, t2, t3 # Add 2 to t3 clil =alil + blil;
SW t2, 0(a2) i

# Store result in c[i] }

addi a0, a0, 1
# Increment array pointers
addi al, al, 1
addi a2, a2, 1
addi t0, t0O, 1
bne t0, a3, 1
end:

# Increment i
oop# Iterate N times

For the assembly code above, the following initializations are assumed:

Register a0 holds the address of the first element of array a.

Register a1 holds the address of the first element of array b.

Register a2 holds the address of the first element of array c.

Register a3 holds the total number of iterations N.

a) Is the memory addressed by byte or word in this particular processor? Justify your
answer.

b) Suppose now that for a specific run of the above assembly code, the arrays are
located in memory such that the first element of array a is stored at memory address
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0x000 while the first element of array b is stored at address 0x3FE and the first element
of array c is stored at memory address 0x820. Given an initially empty, direct-mapped
data cache with a total size of 64 words and having two words per line/block:

1. Draw the structure of the cache memory, assuming that the address is 16-bit wide.
Clearly indicate the use of each bit of the address by describing its format in
detail.

2. Compute the hit rate of the cache while running the code for 1000 iterations (i.e.,
N is 1000).

¢) How can you rewrite the above assembly code (with minimal changes) to improve
the computed hit rate while maintaining the exact same functionality of the code? You
do not need to rewrite the whole code, just clearly specify the changes and justify your
answer. What is the improved hit rate?

d) Consider now that the direct-mapped cache is replaced by a 2-way set-associative
cache with the Least Recently Used (LRU) replacement policy, having the same total
cache size and still with two words per line/block. Assuming that the initial code
provided above is used (and not the one modified by you), compute the new hit rate.
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[Solution 13] Caches

a) The memory is word-addressable.

Reason 1: Examining the assembly code, each element of the arrays a and b is read as
a word using the instruction 1w, and then the array pointers are incremented by 1 to
point to the next array element respectively.

Reason 2: The instruction 1w t3, 2(al) # Load b[i+2] into t3 reads the
element b [i+2] by loading the second word two locations away from the head of
the pointer of the array.

b)
1. The structure of the cache is shown in the diagram on Figure
2. Table5|lists the cache misses and hits after running the code for a few iteration.
Table 5: Cache Miss/Hit while running the code for few iterations.
Accessing a Accessing b Accessing ¢
Operation Cache line | Hit/Miss | Cache line | Hit/Miss | Cache line | Hit/Miss

c[0] = a[0] + b[2] 0 M 0 M 16 M
c[1] = a[1] + b[1] 0 M 31 M 16 H
c[2] = a[2] + b[4] 1 M 1 M 17 M
c[3] = a[3] + b[3] 1 M 0 M 17 H
c[4] = al4] + b[6] 2 M 2 M 18 M

The hit rate (according to Table 5) is:
Hit rate = 1/6

¢) We can notice that loading b [i+2] before a[i] would lead to more hits. For ex-
ample, loading a [0] means that a[1] is also loaded to the cache. And since b[2] has
already been read, then during the next iteration a [1] would be available in the cache
(Hit).

The only modified section of the assembly code would be:

even:

Iw t3, 2(al) # Load b[i+2] into t3
Iw t2, 0(a0) # Load a[i] into t2
j addition # Go to addition

The new hit rate (according to Table [p) becomes:

Hit rate = 1/3
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15 65 1
Address | |
V|Tag Data

w0 wl
0
3

ol O ® ®
31

Hit

Figure 81: Structure of the cache.

Data

d) Replacing the direct-mapped cache with a 2-way set associative cache, results in
having all three arrays (a, b and c) aligned. The only hits will now be in c due to the

LRU replacement protocol.

The hit rate (according to Table|7) would be:

Hit rate = 1/6
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Table 6: Cache Miss/Hit while running the newly changed code for few iterations.

Accessing a Accessing b Accessing ¢
Operation Cache line | Hit/Miss | Cache line | Hit/Miss | Cache line | Hit/Miss
c[0] = 012 + a0) 0 M 0 M 16 M
1] = a[l] 1 0[1] 0 H 31 M 16 H
c[2] = b[4] + a[2] 1 M 1 M 17 M
c[3] = a[3] + b[3] 1 H 0 M 17 H
c[4] = b[6] + a[4] 2 M 2 M 18 M

Table 7: Miss/Hit of a 2-way set associative cache, while running the code for few

iterations.
Accessing a Accessing b Accessing ¢
Operation Cache line | Hit/Miss | Cache line | Hit/Miss | Cache line | Hit/Miss
c[0] = al0] + b[2] 0 M 0 M 0 M
c[1] = a[1] + b[1] 0 M 15 M 0 H
c[2] = a[2] + b[4] 1 M 1 M 1 M
c[3] = a[3] + b[3] 1 M 0 M 1 H
c[4] = a[4] + b[6] 2 M 2 M 2 M
c[5] = al5] + b[5] 2 M 2 M 2 H
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[Exercise 14] Memory Hierarchy

This problem consists of several short and independent questions covering the topics
of caches and virtual memory.

a) Consider a 32-bit microprocessor that has an on-chip 16 Kbyte four-way set-
associative cache. Assume that the cache has a line size of four 32-bit words and that
main memory is word addressed.

1. Draw the structure of this cache showing its organization. Clearly indicate the
use of each bit of the address by describing its format in detail.

2. Give any two main memory addresses with different tags that map to the same
cache line. Justify your choice.

b) Consider a direct mapped cache that consists of 4 lines, where each line consists of
16 Bytes. The main memory is byte addressed and one word is on 8 bits.

Now, consider a program that accesses memory in the following sequence of addresses:

¢ Reading once from memory locations 62 to 70;

* Reading from memory locations 15 to 32, followed by 80 to 95, repeatedly for five
times.

1. List the cache misses and hits that would occur at the execution of the above
program.

2. Compute the hit rate.

¢) Assume the same memory structure and program execution as in question 2] How-
ever, in this question, the cache is organized as a two-way set-associative cache, with
two sets of two 16 Byte lines each.

1. Compute the hit rate of the two-way set-associative cache using the Least Re-
cently Used (LRU) replacement policy.

2. Justify the hit rate changes, if any, between the direct mapped cache of question
and this two-way set-associative cache.
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d) Consider a byte-addressed memory with a 32-bit physical address. This system has
a virtual memory with the following characteristics:

* A 4 Gbyte page table size, organized as a regular array;
* A page table entry of 16 Bytes;
* A page size of 4 Kbytes.

1. What is the size of the offset field? How many virtual pages can there be in this
system? How many bits are used for the virtual address?

2. Draw a diagram of the classical translation process properly showing all the steps
needed to translate a virtual page number into a physical address. Clearly indic-
ate the precision (width) of all variables.

3. What changes would you have in this system and in the diagram of question [2|if
the virtual memory had a page table entry of 4 Bytes (instead of 16 Bytes)? Justify
your answer.
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[Solution 14] Memory Hierarchy

a)

1. The cache has a size of 16 KB, divided into 4-way sets. Each way contains a block
consisting of 4 words. Therefore, we have the following cache size relations:
* Cache size = 16 KB
* Line size =4 x 32 bits =16 B
* Size per way = 188 = 4 KB

* Number of lines per way = 1£8 = 256

We can now compute the number of address bits used for the tag, index, and
word selector:

e Number of lines per way = 256 = 2® — 8-bit index
¢ Number of words per line = 4 x 32-bit word — 2-bit word selector
e Number of bits for tag = 32 — (8 + 2) = 22-bit tag

Figure 82| shows the structure of the cache.

31 10 9 2 10
Address | | | |

V| Tag Data V|Tag Data V|Tag Data V|Tag Data
22 A [ 1 2 3 0 1 2 B 0 1 2 3 0 1 2 B

255 255 255 255

gaRs

0 1 2 3 2

/
7

32

Hit Data

Figure 82: Structure of the 4-way set-associative cache
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b)

2. In order for two distinct addresses to map to the same cache line, they need to
have the same index. For example, Addresses 0x0013 and 0x1013 each map to
cache line 4.

However, note that the word selection bits (2 LSBs) can be different!

1. Figure|83|shows the structure of the cache (assuming a 32-bit address).

31 65 43 0

Address | | ] |
] L
V|Tag Data
0 1 oo || 15

0

1

2

3|®

Hit Data

Figure 83: Structure of the direct mapped cache

Tables 8} [9} and [10] show the cache accesses for the address sequence provided.

Address: 62 63 64 65 66 67 68 69 70
Cachelinee 3 3 0 0 0O O O 0 O
Hit/Misss M H M H H H H H H

Table 8: Cache accesses for addresses 62 to 70
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Address: 15 16 17 ... 31 32 80 81 ... 95
Cachelinee 0 1 1 ... 1 2 1 1 ... 1
Hit/Misss M M H ... H M M H ... H

Table 9: Cache accesses for iteration 1 of the loop for addresses 15 to 32 and 80 to 95

Address: 15 16 17 ... 31 32 8 81 ... 95
Cachelinee 0 1 1 ... 1 2 1 1 ... 1
Hit/Misss: H M H ... H H M H ... H

Table 10: Cache accesses for iterations 2, 3, 4, and 5 of the loop for addresses 15 to 32
and 80 to 95

2. From the previous access tables, we can compute the following values:

* Number of accesses =9 + 5 x (18 4+ 16) = 179
* Number of misses =2 +4 + (4 x 2) = 14

* Hitrate = 15214 = 92.18%
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c)

1. Figure[84|shows the structure of the cache.

31 54 3 0
Address | | 1 |

V|Tag

27

Hit Data

Figure 84: Structure of the 2-way set-associative cache

Tables and [13[show the cache accesses for the address sequence provided.

Address: 62 63 64 65 66 67 68 69 70
Cachelinee 1 1 0 0 O O O O O
Hit/Misss M H M H H H H H H

Table 11: Cache accesses for addresses 62 to 70

2. From the previous access tables, we can compute the following values:

e Number of accesses = 179
* Number of misses=2+4+ (4 x0) =6

* Hit rate = 725° = 96.65%
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Address: 15 16 17 ... 31 32 80 81 ... 95
Cachelinee 0 1 1 ... 1 0 1 1 ... 1
Hit/Misss M M H ... H M M H ... H

Table 12: Cache accesses for iteration 1 of the loop for addresses 15 to 32 and 80 to 95

Address: 15 16 17 ... 31 32 80 81 ... 95
Cachelinee 0 1 1 ... 1 0 1 1 ... 1
Hit/Misss H H H .. H H H H ... H

Table 13: Cache accesses for iterations 2, 3, 4, and 5 of the loop for addresses 15 to 32
and 80 to 95

d)

1. e Pagesize =4 KB = 2'? B — 12-bit page offset.

page table size _ 4GB __ 232

232 528 T .
page table entry size ~ 16B ~ 24 T 2% — 28-bit virtual page

e # of virtual pages =
number.

e Virtual address size =28 + 12 = 40.

2. Figure 85/shows the virtual memory addressing scheme.

Each page table entry has a size of 16 B = 24 B. Therefore, we need to shift the
virtual page number by 4 before adding the page table base address.

3. We would need to perform the following changes:

¢ Shift the virtual page number by 2 instead of 4.

e #of virtual pages = 168 = 27 — 230 _, 30-bit virtual page #.

e Virtual address size = 30 + 12 = 42 bits.

Note that the page offset does not change.
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Virtual :
Address L Virtualpage # [  offset | ) Page
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MMY e
b Limit 20
+ Page Table Base >
A32
Physical 31 \ 1211 Y o
Address L_Physical page # |  offset |~

Figure 85: Virtual memory addressing scheme
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[Exercise 15] Direct-Mapped Cache

Consider a unified cache (shared by data and instructions) with a total capacity of 32
bytes. Each cache block has 2 words; the size of one word is 4 bytes. The addresses are
16-bit wide. The main memory is byte addressed. These parameters are valid for the
complete exercise.

Take a look at the following piece of RISC-V assembly code and its equivalent in C on
the right:

loop: addi tl1, t0, -4

1b t2, x(tl)

addi t3, t0, 4 for (i = 4; i < 7; i++)

1b td, x(t3) {

add t2, t2, t4 yli] = x[i - 4] + x[i + 4];
sb t2, y(t0)

addi to, to, 1

bne t0, t5, loop

The initial value of register t 0 is 4 and the initial value of register t5 is 7. Symbols
x and y are equal to 0x4000 and 0x2010, respectively. These symbols represent the
starting addresses of two arrays of bytes. The first instruction of this assembly code is
stored in memory at the address 0x1000. Instructions are 32-bit wide.

a) Assume that the cache is direct-mapped.

a.1) Indicate the use of each bit of the address by describing the address format in
detail. Draw the structure of the cache.

a.2) Draw the table below and fill it in with the complete sequence of memory ac-
cesses generated by the assembly code. Given an initially empty cache, for
every memory access indicate precisely the index of the corresponding cache line,
whether the memory access results in a cache hit (H) or in a miss (M), and what is
the new content of the cache line.

Address Index of Hit Content of
(hexa) the cache line | / Miss | the cache line

a.3) How many cache hits occurred? Compute the hit rate.
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b) Consider now a direct-mapped cache with a dynamic exclusion (replacement)
policy. This replacement policy uses one additional control bit per cache block, called
sticky bit, to decide if an entry should be evicted from or kept in the cache.

Hit/
Read

Miss/
Read No change

Miss/
Replace

Figure 86: Finite state machine describing dynamic exclusion policy.

The decision mechanism is best described using a finite-state machine (FSM) shown in
Figure 86, Each state of the FSM indicates the values of valid bit and sticky bit of the
cache block currently in use. The arc labels give the conditions for the state changes
and appropriate actions taken.

The first time an entry is saved (inserted) in the cache, its sticky bit is reset. After a
cache hit for that cache block, the sticky bit is set and remains set as long as only hits
happen, i.e., as long as there are no conflicting accesses (those that would result in a
miss and eviction in regular direct-mapped cache). While s = 1, the cache entry will
not be replaced, because it is considered very important. It takes two consecutive cache
misses to replace an entry whose sticky bit is set. After the first miss, the sticky bit is
reset, the conflicting access is executed, but the entry in the cache block is not changed.
When s = 0, a single miss is sufficient to evict the entry and replace it by a new one.

Assuming a direct-mapped cache with the same parameters as in question (a), but
which uses the described dynamic exclusion policy, answer the following questions.

b.1) Draw the table below and fill it in with the complete sequence of memory ac-
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cesses generated by the assembly code.

Given an initially empty cache, for

every memory access indicate precisely the index of the corresponding cache line,
whether the memory access results in a cache hit (H) or in a miss (M), the value
of the sticky bit, and what is the new content of the cache line.

Address
(hexa)

Index of
the cache line

Hit
/ Miss

Sticky
bit

Action taken
(Insert/Read/Replace/No change)

Content of
the cache line

b.2) How many cache hits occurred? Compute the hit rate. Which of the two caches
performs better for the given sequence of accesses? Why? Justify your answer.
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[Solution 15] Direct-Mapped Cache

a.1) The structure of the direct-mapped cache is given in the figure below:

15 54 3210
Address | [ [ ] |
| L
V| Tag Data
2 0 1
0
f11 1
2[e] @ Y ®
3
{11 32 £32

\>__A—F

32

y

Hit Data
Figure 87: Structure of the direct-mapped cache.

a.2) The complete sequence of memory accesses is given in the table below.

a.3) The total number of accesses is 33. Hence, the hit rate of the cache is 14/33.

b.1) The complete sequence of memory accesses is given in the table further below.

b.2) The total number of accesses is 33. Hence, the hit rate of the cache is 20/33. The
cache with the dynamic exclusion policy performs better because it keeps in the
cache the addresses that need to be accessed multiple times (in this case, the ad-
dresses of the instructions).
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Address Index of Hit | Content of the cache line
(hexa) the cache line | / Miss | (Direct-mapped cache)

0x1000 | 0 | miss | 0x1000..3 0x1004..7
0x1004 \ \ hit ‘OxlOOO..B 0x1004..7
0x4000 \ 0 \ miss \0x4ooo..3 0x4004..7
0x1008 | 1 | miss | 0x1008..B 0x100C..F
0x100C | 1 | hit | 0x1008..B 0x100C..F
0x4008 | 1 | miss | 0x4008..B 0x400C..F
0x1010 \ 2 \ miss ‘OxlOlO..3 0x1014..7
0x1014 \ 2 \ hit ‘OxlOlO..fﬁ 0x1014..7
0x2014 | 2 | miss | 0x2010..3 0x2014..7
0x1018 | 3 | miss | 0x1018..B 0x101C..F
0x101C | 3 | hit | 0x1018..B 0x101C..F
0x1000 \ 0 \ miss ‘OxlOOO..B 0x1004..7
0x1004 \ 0 \ hit ‘OxlOOO..fﬂ 0x1004..7
0x4001 | 0 | miss | 0x4000..3 0x4004..7
0x1008 | 1 | miss | 0x1008..B 0x100C..F
0x100C | 1 | hit | 0x1008..B 0x100C..F
0x4009 \ 1 \ miss ‘Ox4008..B 0x400C. .F
0x1010 \ 2 \ miss ‘OxlOlO..fﬂ 0x1014..7
0x1014 \ 2 \ hit ‘OxlOlO..3 0x1014..7
0x2015 | 2 | miss | 0x2010..3 0x2014..7
0x1018 | 3 | hit | 0x1018..B 0x101C..F
0x101C \ 3 \ hit ‘OxlOl8..B 0x101C..F
0x1000 \ 0 \ miss ‘OxlOOO..fﬂ 0x1004..7
0x1004 | 0 | hit | 0x1000..3 0x1004..7
0x4002 | 0 | miss | 0x4000..3 0x4004..7
0x1008 | 1 | miss | 0x1008..B 0x100C..F
0x100C \ 1 \ hit ‘OxlOO8..B 0x100C. .F
0x400A \ 1 \ miss ‘OX4OO8..B 0x400C. .F
0x1010 | 2 | miss | 0x1010..3 0x1014..7
0x1014 \ 2 \ hit ‘OxlOlO..S 0x1014..7
0x2016 | 2 | miss | 0x2010..3 0x2014..7
0x1018 \ 3 \ hit ‘OxlOl8..B 0x101C..F
0x101C \ 3 \ hit ‘OxlOl8..B 0x101C..F
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Address Index of Hit | Sticky Action taken (Insert/ Content of the cache line
(hexa) the cache line | / Miss bit Read/Replace/No change) | (with dynamic exclusion )
0x1000 | 0 | miss | 0 | insert | 0x1000..3 0x1004..7
0x1004 | 0 | hit | 1| read | 0x1000..3 0x1004..7
0x4000 | 0 | miss | 0 | no change | 0x1000..3 0x1004..7
0x1008 | 1 | miss | 0 | insert | 0x1008..B 0x100C..F
0x100C | 1 | hit | 1| read | 0x1008..B 0x100C..F
0x4008 | 1 | miss | 0 | no change | 0x1008..B 0x100C..F
0x1010 | 2 | miss | 0 | insert | 0x1010..3 0x1014..7
0x1014 | 2 | hit | 1| read | 0x1010..3 0x1014..7
0x2014 | 2 | miss | 0 | no change | 0x1010..3 0x1014..7
0x1018 | 3 | miss | 0 | insert | 0x1018..B 0x101C..F
0x101C | 3 | hit | 1| read | 0x1018..B 0x101C..F
0x1000 | 0 | hit | 1| read | 0x1000..3 0x1004..7
0x1004 | 0 | hit | 1| read | 0x1000..3 0x1004..7
0x4001 | 0 | miss | 0 | no change | 0x1000..3 0x1004..7
0x1008 | 1 | hit | 1| read | 0x1008..B 0x100C..F
0x100C | 1 | hit | 1| read | 0x1008..B 0x100C..F
0x4009 | 1 | miss | 0 | no change | 0x1008..B 0x100C..F
0x1010 | 2 | hit | 1| read | 0x1010..3 0x1014..7
0x1014 | 2 | hit | 1| read | 0x1010..3 0x1014..7
0x2015 | 2 | miss | 0 | no change | 0x1010..3 0x1014..7
0x1018 | 3 | hit | 1| read | 0x1018..B 0x101C..F
0x101C | 3 | hit | 1| read | 0x1018..B 0x101C..F
0x1000 | 0 | hit | 1| read | 0x1000..3 0x1004..7
0x1004 | 0 | hit | 1| read | 0x1000..3 0x1004..7
0x4002 | 0 | miss | 0 | no change | 0x1000..3 0x1004..7
0x1008 | 1 | hit | 1| read | 0x1008..B 0x100C..F
0x100C | 1 | hit | 1| read | 0x1008..B 0x100C..F
0x400A | 1 | miss | 0 | no change | 0x1008..B 0x100C..F
0x1010 | 2 | hit | 1| read | 0x1010..3 0x1014..7
0x1014 | 2 | hit | 1| read | 0x1010..3 0x1014..7
0x2016 | 2 | miss | 0 | no change | 0x1010..3 0x1014..7
0x1018 | 3 | hit | 1| read | 0x1018..B 0x101C..F
0x101C | 3 | hit | 1| read | 0x1018..B 0x101C..F
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[Exercise 16] Direct-Mapped and Annex Caches

Consider an initially empty direct-mapped data cache with a total capacity of 2 KB and
64-byte lines. Write-through and write-allocate strategies are employed. The word size
is 4 bytes. Word-addressing is used and memory addresses are 32-bit long.

a) [5 pts] Draw the structure of the cache. Clearly indicate the use of each bit of the
address.

b) [4 pts] Conflict within loops: Consider a case where two memory references A and
B in the body of the same loop (while, for, etc.) map to the same location in the
cache. If the loop is executed 10 times, the memory access pattern may be represented
as (AB)', where the superscript ('exposant, in French) denotes the number of times
that one or a set of instructions is executed. Since each access (A or B) will evict the
data corresponding to the previous access out of the cache, neither will hit, and the
behaviour of the cache can be described as

(AmBwm)'™, 1)

where subscript (l'indice, in French) M denotes that reference A is a miss (a subscript
H would denote a hit). Therefore, for the sequence of accesses (AB)', the cache miss
rate is

miss rate = 100%. (2)

Conflict between inner and outer loops: Now consider a case of a nested loop (one
inner, one outer loop) in which there is a conflict between a reference inside the inner
loop (A) and another reference outside the inner loop (B). If the outer loop is executed
10 times and the inner loop is executed 3 times per every iteration of the outer loop,
the memory access pattern may be represented as (A*B)'". For this access pattern and
assuming the cache is initially empty:

b.1) Describe the cache behavior using the same approach as in Equation (T).
b.2) Calculate the miss rate.

b.3) A cache access (hit or miss) takes tc = 1 cycle. In case of a cache miss, additional
tmem = 100 cycles are spent to access main memory. Calculate the average memory
access latency tavg.

b.4) ¢ How can we change the cache structure, while maintaining the same cache ca-
pacity, to achieve the best possible miss rate?

o Calculate the miss rate in that case.
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Main
Data
Cache

CPU Memory

Annex
Data
Cache

Figure 88: Memory hierarchy.

c) [6 pts] Let us now add another cache structure, annex cache, to our memory hier-
archy (Figure [88).

In this system, upon a memory access request, both caches are probed simultaneously:

e If an address A misses in both caches and the corresponding cache line in the
main cache has no valid data yet, the missing data is fetched from the memory
and placed in the main cache.

e If an address A misses in both caches and the corresponding cache line in the
main cache does hold valid data, the missing data is fetched from memory and
placed in the annex cache.

e If an address A misses in the main cache but hits in the annex cache, then the
history of misses and hits in the main cache line where A would be inserted is
analyzed:

— If this is the first miss for address A, the main cache remains unchanged.
First miss for A means that before this miss the cache line was referenced
using a different address B.

— If this is the second consecutive miss for address A, the data correspond-
ing to the address A is moved from annex cache to the main cache, while
the data evicted from the main cache is moved to the annex cache (swap).
Second consecutive miss for A means that there were no references to the
same main cache line using a different address B between the first and the
second miss for A.

Whenever an address hits in the annex cache, it is the annex cache that replies to
the CPU.

e If an address A hits in the main cache, the system stops looking for data inside
the annex cache, to save time.
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To illustrate how this system works on an example, let’s consider a sequence of accesses
(AB')!, where both references A and B map to the same line in the main cache, and
both caches initially empty. Reference A will miss in both caches, after which it will
enter the main cache from the memory. Reference B will miss in both caches, after
which it will enter the annex cache from the memory. The next reference is again
B, causing a second consecutive miss in the main cache. As a consequence, the data
corresponding to B will be moved from the annex to the main cache, while the data
corresponding to A will be moved from the main to the annex cache (swap). Next eight
references to B will all result in a hit in the main cache. Therefore, the system behavior
for the sequence (AB'°)! can be described as:

Anm By Braswar By, 3)

where subscript M stands for miss in both caches, H for hit in the main cache, H-A-
SWAP for hit in the annex cache followed by a swap.

Assume now that both the main cache and the annex cache are empty and that the
annex cache has the exact same structure but a much larger capacity than the main
cache. If needed, use subscript H-A to represent a hit in the annex cache.

c.1) o Describe the system behavior for the sequence of accesses (AB)!°.
¢ How many times the requested data was found in the main cache?
¢ How many times the data which was not in the main cache was found in the
annex cache?
c.2) ¢ Describe the system behavior for the sequence of accesses (A*B?)™.
¢ How many times the requested data was found in the main cache?
¢ How many times the data which was not in the main cache was found in the
annex cache?

c.3) Write the expression for the average memory access latency tayg, given the fol-
lowing information:

e Ny = number of times there was a hit in the main cache

e Nya = number of times there was a miss in the main but hit in the annex cache

e N\ = number of times there was a miss in both caches, but the data was placed
in the main

e N, = number of times there was a miss in both caches, but the data was placed
in the annex

o Accessing the main cache takes ¢c = 1 cycle. Accessing the annex cache takes ¢4
=10 cycles. In case of a cache miss, either in the main or the annex cache, addi-
tional tyem = 100 cycles are spent to access main memory and update the cache.
The time to swap data between the main and the annex cache is negligible.
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[Solution 16] Direct-Mapped and Annex Caches

a) Cache diagram

b)

31 9 8 4 30
Address | | | |

V|Tag Data
0 1 15
0
1
2
3ol @ | o | @ | @ | @
30
31
32
Hit Data

Figure 89: Direct Mapped Cache

Contflict between nested loops

1.1) (AmAfBm)"
2.2) miss rate = 2 = 50%
3.3) tavc = tc + miss rate X typm = 1 + 0.5 x 100 = 51 cycles

4.4) If the cache associativity is increased (higher than one), then both A and B can
reside simultaneously in the cache. The miss rate will then be 2 = 5%.

Annex cache

c.1) o (AmBwum)(AnBua)’
o Ng=9
o Nga=9
c2) o (AMAIQ—IBMBH-A-SWAP)(AH-AAH-A-SWAPAHBH-ABH-A-SWAP>9
o Ny =11
o Nyga =37

c.3) NH+NHA1+NM+NA [N - tc + Nuea - ta + Ny - (ta + tvem) + Na - (ta + tvem)] =

[Nt + 10 Nipp + 110 Ny + 110 Ny

NH+NH A+NM+N

274 ofﬁ Version 1.0 of 1st October 2024, EPFL ©2024



Exercise 17 Exercise Book
Memory Hierarchy Computer Architecture

[Exercise 17] Cache Memory

Consider a system with two levels of cache memories. In the first level (L1 cache), there
are two cache memories, one for instructions only (L1-I cache) and one for data only
(L1-D cache). In the second level (L2 cache) there is only one cache memory, common
for both instructions and data.

The caches are physically addressed. Addresses are 32 bits wide. The most significant
bit (MSb) of the address determines whether that address corresponds to an instruction
word (when MSb = 0) or to a data word (when MSb = 1). A word contains four bytes.
The system uses byte addressing. On eviction, the least recently used replacement
policy is applied.

L1 caches are both two-way set-associative, having 64 lines per way and four words
per line. L2 cache is direct-mapped, having 512 lines and four words per line.

The cache hierarchy is exclusive, meaning that a piece of information, if present in
the cache, can be found in either the L1 or the L2 cache, but not in both. When an
instruction (respectively, data) is found in the L1-I (respectively, L1-D) cache, we have
an L1 cache hit. If an instruction (respectively, data) is not found in the L1-I cache
(respectively, L1-D cache), it is searched for in the L2 cache:

® In case of an L2 miss, the instruction (resp. data) is brought from the main
memory to the L1-I (resp. L1-D) cache. If the target L1 cache line is already
occupied (valid), its content is moved to L2 cache, possibly evicting a valid cache
line from the L2 cache.

¢ In case of an L2 hit, the instruction (resp. data) is brought to L1 cache from the L2
cache. Since the cache is exclusive, the corresponding line in L2 cache is invalid-
ated (valid bit is reset). If the target L1 cache line was already occupied (valid), its
content is moved to L2 cache, possibly evicting an existing valid cache line from
the L2 cache.

a) Draw a detailed diagram of the L1-I or the L1-D cache (one is sufficient), labelling
clearly the width of all fields and signals.

b) Draw a detailed diagram of the L2 cache, labelling clearly the width of all fields and
signals.

€) Assuming the sequence of 20 memory accesses listed in Table|14|and that the caches
are initially empty, what is the content of the cache memories in the following mo-
ments:
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cl) After the first eight memory accesses?

c2) After the first 16 memory accesses?

c3) After all 20 memory accesses?

Access number Address
1 0x00000040
2 0x800064A0
3 0x07771040
4 0x977764A0
5 0x01112880
6 0x81114CBO
7 0x08883880
8 0x98884CRO
9 0x00000040
10 0x977764A0
11 0x01112880
12 0x98884CBO0O
13 0x02220040
14 0x822264A0
15 0x09992880
16 0x99994CBO
17 0x07771040
18 0x800064A0
19 0x08883880
20 0x81114CBO

Table 14: Sequence of memory accesses.

To answer these questions, please fill in Tables and [19) at the end of the

assignment.
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Instruction (I) | Line index | Line index

or Data (D)? inL1 in L2

Address

0x00000040

0x800064A0

0x07771040

0x977764A0

0x01112880

0x81114CBO

0x08883880

0x98884CBO

0x02220040

0x822264A0

0x09992880

0x99994CBO

Table 15: For each unique address, indicate whether it corresponds to an instruction
or a data word by writing I or D respectively, and to which line index it maps in the
respective L1 cache or in the L2 cache.
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Access | Address | L1-D hit? | L1-Thit? | L2 hit? | Miss?
number
1 | 0x00000040
2 | 0x800064A0
3 | 0x07771040
4 | 0x977764A0
5 | 0x01112880
6 | 0x81114CBO
7 | 0x08883880
8 | 0x98884CBO
9 | 0x00000040
10 0x977764A0
11 | 0x01112880
12 | 0x98884CBO
13 | 0x02220040
14 | 0x822264A0
15 | 0x09992880
16 | 0x99994CBO
17 0x07771040
18 | 0x800064A0
19 | 0x08883880
20 0x81114CRO

Table 16: For each memory access request, indicate whether it is a hit in one of the
caches or a miss in all of them by ticking the respective column.
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Address

Current location

L1-1/L1-D/L2/None

Line index

(N/A if not in cache)

0x00000040

0x800064A0

0x07771040

0x977764A0

0x01112880

0x81114CBO

0x08883880

0x98884CBO

Table 17: For each unique address in the first eight memory access requests, indicate in
which cache and line index the respective word is located after the first eight requests,
or None and N/ A if it is no longer in any of the caches.
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Address

Current location

L1-1/L1-D/L2/None

Line index

(N/A if not in cache)

0x00000040

0x800064A0

0x07771040

0x977764A0

0x01112880

0x81114CBO

0x08883880

0x98884CBO

0x02220040

0x822264A0

0x09992880

0x99994CBO

Table 18: For each unique address in the first 16 memory access requests, indicate in
which cache and line index the respective word is located after the first 16 requests, or
None and N/A if it is no longer in any of the caches.
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Address Current location Line index

L1-1/L1-D/L2/None | (N/A if not in cache)

0x00000040

0x800064A0

0x07771040

0x977764A0

0x01112880

0x81114CBO

0x08883880

0x98884CBO

0x02220040

0x822264A0

0x09992880

0x99994CBO

Table 19: For each unique address, indicate in which cache and line index the respective
word is located after all 20 memory access requests, or None and N/A if it is no longer
in any of the caches.
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[Solution 17] Cache Memory

a) The structure of one of the L1 caches is shown below in Figure Inside each L1
cache, the MSb of the address has always the same value, hence it does not need to
be stored inside the tag. The MSb of the input address is used downstream to select
whether the hit/data signals should be taken from the L1-D or L1-I cache (not shown
in the figure).

3130 10 9 43210
Address [ ] | | | |

V|Tag Data V| Tag Data

21 1 1

Hit Data

Figure 90: Structure of one of the L1 caches.

b) The structure of the L2 cache is shown below in Figure 91} Because the L2 cache is
shared by instructions and data, the MSb of the address has to be included in the tag.
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509
510

511

32 |32 |32 |32

Hit Data

Figure 91: Structure of the L2 cache.

c)
Address Instruction (I) | Line index | Line index
/ Data (D) in L1 in L2

0x00000040 | I 0x4 0x4
0x800064A0 | D 0xA 0x4A
0x07771040 |1 0x4 0x104
0x97776420 | D 0xA 0x4A
0x01112880 |1 0x8 0x88
0x81114CRBO | D 0xB 0xCB
0x08883880 | I 0x8 0x188
0x98884CBO | D 0xB 0xCB
0x02220040 | I 0x4 0x4
0x822264A0 | D 0xA 0x4A
0x09992880 | I 0x8 0x88
0x99994CBO | D 0xB 0xCB

Table 20: For each unique address, indicate whether it corresponds to an instruction
or a data word by writing I or D respectively, and what would be its line index in the
respective L1 cache or in the L2 cache.
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Access | Address | L1-D hit? | L1-Thit? | L2 hit? | Miss?
number
1 000000040 X
2 0x800064A0 X
3 0x07771040 X
4 0x977764A0 X
5 001112880 X
6 0x81114CBO X
7 0x08883880 X
8 0x98884CBO X
9 000000040 X
10 0x977764A0 X
11 001112880 X
12 0x98884CB0 X
13 0x02220040 X
14 0x822264A0 X
15 009992880 X
16 0x99994CBO X
17 0x07771040 X
18 0x800064A0 X
19 0x08883880 X
20 0x81114CBO X

Table 21: For each request, indicate whether it is a hit in one of the caches or a miss in
all of them by ticking the respective column.
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Address Current location Line index
L1-I/L1-D/L2/None | (N/A if not in cache)
0x00000040 | L1-I 0x4
0x800064A0 | L1-D OxA
0x07771040 | L1-1 0x4
0x977764A0 | L1-D 0xA
0x01112880 | L1-I 0x8
0x81114cCBO | L1-D 0xB
0x08883880 | L1-I 0x8
0x98884CB0O | L1-D 0xB

Table 22: For each unique address in the first eight requests, indicate in which cache
and line index the respective word is located after the first eight requests, or None

and N/A if it is not anymore in any of the caches.
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Address Current location Line index
L1-I/L1-D/L2/None | (N/A if not in cache)
0x00000040 | L1-I 0x4
0x800064A0 | L2 0x4A
0x07771040 | L2 0x104
0x977764A0 | L1-D 0xA
0x01112880 | L1-I 0x8
0x81114CBO | L2 0xCB
0x08883880 | L2 0x188
0x98884CB0O | L1-D 0xB
0x02220040 | L1-I 0x4
0x822264A0 | L1-D 0xA
0x09992880 | L1-I 0x8
0x99994cCB0O | L1-D 0xB

Table 23: For each unique address in the first 16 requests, indicate in which cache and
line index the respective word is located after the first 16 requests, or None and N/A
if it is not anymore in any of the caches.

286 ofﬁ

Version 1.0 of 1st October 2024, EPFL ©2024



Solution 17

Memory Hierarchy

Exercise Book

Computer Architecture

Address Current location Line index
L1-I/L1-D/L2/None | (N/A if not in cache)
0x00000040 | L2 0x4
0x800064A0 | L1-D 0xA
0x07771040 | L1-1 0x4
0x977764A0 | L2 0x4A
0x01112880 | L2 0x88
0x81114CB0 | L1-D 0xB
0x08883880 | L1-I 0x8
0x98884CBO | L2 0xCB
0x02220040 | L1-I 0x4
0x822264A0 | L1-D 0xA
0x09992880 | L1-I 0x8
0x99994cCB0O | L1-D 0xB

Table 24: For each unique address, indicate in which cache and line index the respective
word is located after all 20 requests, or None and N/A if it is not anymore in any of

the caches.
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[Exercise 18] Caches and Virtual Memory

Consider a system whose memory hierarchy includes a virtual memory with the fol-
lowing characteristics:

¢ 32-bit virtual addresses

* 32-bit physical addresses

¢ 32-bit data

* 0x800 byte pages

* 32-bit (4 bytes) page table entries
* NoTLB

¢ Byte addressing

The system has a cache (that is not used to access the page table). The physical address
is used to access the cache. Consider two cache types:

1. Direct-mapped with 16 lines and 4 word blocks (4 x 32-bit)

2. 4-way set associative with 4 lines and 4-word blocks (4 x 32-bit)

a) Draw a diagram of the memory hierarchy for both cache types.

b) Determine the access sequence (virtual addresses) generated by executing the first
iterations of the following code (consider both instructions and data). You can find the
page table on Table

0x1000 main: lw t2, 0x3000(zero)
0x1004 lw t4, 0x3004 (zero)
0x1008 1w £t3, 0x3008 (zero)

0x100C 1loop: beq t2, zero, next

0x1010 1w a0, 0 (t4)
0x1014 jal ra, square
0x1018 sw a0, 0(t3)
0x101C addi t3, t3, 4
0x1020 addi t4, t4, 4
0x1024 addi t2, t2, -1
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0x1028 j loop
next:

0x2000 square:mul a0, a0, a0
0x2004 ret

Address Value

0x3000 0x0000 0002

0x3004 0x0000 3110

0x3008 0x0000 3210

0x3110

0x3210

Table 25: Data in memory

) Determine the corresponding sequence of physical addresses obtained by simulat-
ing the address translation in the virtual memory. The page table of this program
resides in the main memory starting at address 0 (first physical page), the operating
system has thus set the value of the Page Table Base register to 0x0000. The state
of the page table is given below.
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Address V Value

0x0000 1 OxO0E

0x0004 0 O0x11

0x0008 1 0x06

0x000C 1 o0x0C

0x0010 1 0x07

0x0014 0 0x0D

0x0018 1 0x08

Table 26: Page table

d) Simulate both caches using the access sequence found at the preceding question.
Determine the hit rate in both cases and show the state of each cache at the end of the
simulation. Which cache has a better performance ? Why ?
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[Solution 18] Caches and Virtual Memory

a) The memory hierarchy is shown in the following diagram:

31 1110 0
Address [ Virtual page # | _ offset |  0x0000 Page
> Tagle
wy  [s=21 I
p2ONINO:
: : 0x3000
: Limit—* | : > (main)
. Page Table Base '
e mmmmmmmemmmmmmmmmmmm————— 0x3800
(square)
0x4000
Physical page # | offset —
Direct- Tag I I I
Mapped 37 87 43210
4-Way Set Tag [ [ []
Assiociative 31 6543210

Page 0

Page 6

Page 7

Page 8

Figure 92: Schematic of the virtual memory addressing

b) and ¢)

Memory access sequence:
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Virtual address Physical address Direct-mapped 4-way set assoc.

1 0x1000 0x3000 Miss Miss
2 0x3000 0x4000 Miss Miss
3 0x1004 0x3004 Miss Hit
4 0x3004 0x4004 Miss Hit
5 0x1008 0x3008 Miss Hit
6 0x3008 0x4008 Miss Hit
7 0x100C 0x300C Miss Hit
8 0x1010 0x3010 Miss Miss
9 0x3110 0x4110 Miss Miss
10 0x1014 0x3014 Miss Hit
11 0x2000 0x3800 Miss Miss
12 0x2004 0x3804 Hit Hit
13 0x1018 0x3018 Hit Hit
14 0x3210 0x4210 Miss Miss
15 0x101C 0x301C Miss Hit
16 0x1020 0x3020 Miss Miss
17 0x1024 0x3024 Hit Hit
18 0x1028 0x3028 Hit Hit
19 0x100C 0x300C Miss Hit
20 0x1010 0x3010 Hit Hit
21 0x3114 0x4114 Miss Hit
22 0x1014 0x3014 Miss Hit
23 0x2000 0x3800 Miss Hit
24 0x2004 0x3804 Hit Hit
25 0x1018 0x3018 Hit Hit
26 0x3214 0x4214 Miss Hit
27 0x101cC 0x301cC Miss Hit
28 0x1020 0x3020 Hit Hit
29 0x1024 0x3024 Hit Hit
30 0x1028 0x3028 Hit Hit
31 0x100C 0x300C Miss Hit
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d) The state of the direct-mapped cache with the consecutive values of each element is

given in the table below:

0x301C
0x421C
0x301C

0x3018
Ox4218
0x3018

0x3614
Ox4214
0x3014

0x3610
0x4216
0x3010

0x302C

0x3028

0x3024

0x3020

The hit rate is 3.
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The state of the 4-way set associative cache is given below:

008€EX0| 0TZ¥X0
V08EXO| vIZVX0
808EX0| 8TZ¥X0
208EX0| OTZ¥X0
000¥X0| OTT¥X0
r00vX0| YTT¥X0
800¥X0[ 8TTI¥X0
J007X0| OTTI¥X0
000EX0| OTOEXO| 0ZOEXO
700EX0| PTOEXO| ¥ZOEXO
800€X0| 8TOEX0| 8COEXO
J00€X0| DTOEX0| DCOEXO

24
31

The hit rate is
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[Exercise 19] Understanding Virtual Memories

Consider a virtual memory system with the following properties:

* 48-bit virtual byte-addresses
¢ 64-Kbyte pages
* 40-bit physical byte-addresses

a) Draw the structure of the virtual-to-physical address translation scheme, labelling
clearly the width of all fields and signals. How many pages are there in the physical
memory?

b) If all pages are in use, how large will be the page table of each process in bytes?
Assume that the valid bit and all other control and protection bits take in total 8 bit-

s/page.

€) Add to the previous system a fully associative 4-entry TLB and redraw the structure
of the translation circuit.

d) Consider the following sequence of virtual address accesses. If the TLB is empty at
the beginning, which accesses are hits and which are misses? What are the tag values
at the end? Assume Least Recently Used replacement policy.
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OxXFFFF

FFEF

FFEFF

0x0000

1000

FFFEC

0x0000

1000

FFFE

0x0000

1000

FFEF

0x0000

1001

0000

0x0000

1001

0001

OxAAAA

3200

1234

0x0000

1001

0002

OxAAAA

3200

2345

OxXFFFF

EFO00

0000

OxXFFFF

EF00

0000

OxXFFFF

FFEF

0000

0x0000

1000

FFEC

0x0000

1001

0000
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[Solution 19] Understanding Virtual Memories

a)
Program
#1
Virtual Program
. #2
memaories
Program
#3
o o o o o o o
o o o o o o o
o o o o o o o
o o~ < O <3} < O
X X X X x X x
o o o o o o o
ing Ny g M M N &~ golgm
Lol o Lol ol o] o ) O
Physical solg2l |gg|e2|eeleel |22 [2%le%
memory Solr o Saolseoelsel|f o = ek salg e
o o o o o o o
o o o o o o o
o o o o o o o
o N < O <3} < (®)
X X X X x X x
o o o o o o o

Figure 93: Virtual memory and physical paged memory

Version 1.0 of 1st October 2024, EPFL ©2024 297 of



Exercise Book
Computer Architecture

Solution 19

Memory Hierarchy

16 bit= 64 kbytes

) 1615 0
Virtual I I oot I
Address \ ofise

Page
Table
39 Y 1615 Y 0
Physical Address | | offset |
24 bit = up to 16M pages
Figure 94: Translation Scheme
Virtual all 1615 0
Address L Virtualpage # |  offset | 40 - Page
/ i Ta::)'le
w021 .
: * E
W0 O
 Limit ' 124
\ Page Table Base 40 :
f16
40
Physical 39 Y 1615 Y 0
Address | Physical page # |  offset

Figure 95: Virtual Address translation in paged MMU

b) Each entry of the page table has 24 bits of physical page number and 8 bits of control

bits. There are 4 bytes/entry.

There are 232 possible virtual pages = 4 Giga entries. 4 Bytes/entry - 4 Giga entries =

16 Gbytes!

Clearly unrealistic! The Page Table will need to be stored cleverly. See COD p.587 for

some ideas.
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c) TLB is a small cache in the CPU to avoid reading the page table on every access. The
following representation is a generic structure:

- TLB Physical page
Virtual page number I v Tag address
1 LN
1 e Physical memory
1 ° -~
> 1 N
0
1 .\X/
Page Table
Physical pa
V' or disk ress
1 v
1 T A
> 1 (e
0 o
1 o/ Disk storage
1 [
0 .\

Virtual 47 1615 0
Address | virtual page # | offset |
%
£32
\' Tag Physical page nhumber
0 O]
TLB Hit<3t1®| O
2 O
3 O-=—
Y- 4
£24 f16
39 Y 1615 0
Physical Physical page # | offset
Address  [physical address tag | Cache index

d) TLB Hits and Misses
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Address Hit/Miss
OxFFFF FFFF FFFF Miss
0x0000 1000 FFFC Miss
0x0000 1000 FFFE Hit
0x0000 1000 FFFF Hit
0x0000 1001 0000 Miss
0x0000 1001 0001 Hit
OxAAAA 3200 1234 Miss
0x0000 1001 0002 Hit
OxAAAA 3200 2345 Hit
OxFFFF EF00 0000 Miss
OxFFFF EF00 0000 Hit
O0xFFFF FFFF 0000 Miss
0x0000 1000 FFFC Miss
0x0000 1001 0000 Miss
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In the TLB:

0 0x0000 1001

1 0x0000 1000

2 OxFFFF FFFF

3 OxFFFF EF00
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[Exercise 20] Hierarchical Virtual Memory

A RISC-V processor translates 32-bit virtual addresses (memory is byte-addressed) into
32-bit physical addresses according to the diagram below:

Virtual 31 22 21 12 11 0
Address L DIRIND | PGIND [  offset |

3@_} »@—) PHYPG]Not used | P

padir [ | 31 0 31 0

GPD PGT

A special 32-bit register pgdir contains the base address of the GPD table (General
Page Directory). A GPD entry is determined by pgdir and DIRIND (Directory Index,
bits 31 to 22 of the virtual address) as shown in the diagram above, and contains the
base address of a PGT table (Page Table). The PGT’s address and PGIND (Page Index,
bits 21 to 12 of the virtual address) determine the entry in the PGT that contains the
most significant part PHYPG (Physical Page), of the physical page address. In addition
to PHYPG, each entry in the PGT contains a P (Present) bit indicating the presence of
the page in memory.

a) What is the size of the PHYPG field in the PGT tables? What is the size of the
virtual pages in this system? What is the maximal size occupied in memory by a user
program’s GPD and PGT structures? Bonus: Discuss the advantages and drawbacks of
this hierarchical translation structure by comparing it to the non-hierarchical structure
of page tables.

b) To speed up address translations, the processor uses a fully associative TLB (Trans-
lation Lookaside Buffer) with 16 entries. Draw the diagram of the TLB and indicate the
use and size of every field (component) of the structure.

¢) The inability to translate a virtual address using the TLB generates a page fault ex-
ception. Supposing that the RISC-V processor is responsible for managing the TLB,
write the code of the exception handler that finds the address of the physical page
and updates the TLB. Saved registers (s0-s7) should not be modified. To write to the
TLB, the processor uses a privileged instruction: tlbwr r, s (TLB write random),
unavailable to normal programs. This instruction writes the contents of two ordinary
RISC-V registers r and s to a randomly selected entry of the TLB. Indicate the use
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of the 64 bits of r and s to load a line of the TLB according to your description in
part b). Register mar (Memory Address Register) contains the address whose access
triggered a TLB miss. Registers pgdir and mar are accessible through a special in-
struction movsp r, spec thatloads the value of spec into r, where spec is either
pgdir or mar and r is an ordinary RISC-V register. The Operating System routine
sleep_and_swap () loads the missing page into memory and updates the PGT. It
takes as a parameter in a0, the address of the PGT’s corresponding entry.

d) Can the replacement policy influence the performance of the system? Explain. What
hardware and architecture extensions are required to implement a Least Recently Used
(LRU) replacement policy?
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[Solution 20] Hierarchical Virtual Memory

a) The virtual address is 32-bit wide and the offset is 12-bit wide. Given that the phys-
ical address is also 32-bit wide, the resulting size of the PHYPG field is 20 bits (32 - 12).
The size of a virtual memory page in this system is 2'> = 4 KB since the offset is 12-bit
wide. If a program were to use the whole virtual address space, all the GPD and PGT
structures would be used. The resulting occupied memory is:

GPD: 251ze(DIRIND) antrieg x 32 Lits — 910 o 4B — 4KB

entry

PGT: QSize(DIRIND) tables x 2Size(PGIND) entries x 32 bits _ 210 « 910 « 4B = 4MB

table entry

Thus the occupied memory is 4KB + 4MB.

Bonus: A hierarchical translation structure is advantageous when the addressing space
is used sparsely. For example, if a program only uses two consecutive pages of the
virtual memory, a GPD of 4KB and a PGT of 4KB as well are enough to facilitate trans-
lations. The total size of 8KB is considerably smaller than the monolithical table of a
non-hierarchical translation structure (2%° x 4B = 4MB) for the same program. The
main drawback is the additional step in the translation process (having to traverse two
tables instead of one). However, with a TLB in the system, this longer translation time
is visible only in case of a page fault. Therefore, this drawback does not significantly
impact performance.

b) The diagram of the TLB is given in the figure below:

Virtual 31 2221 1211 0
Address [ DIRIND | PGIND | offset |
[20
v Tag Physical page number
0 O
TLB Hit<ate| O-= s
15 O
420 f12
Physical 31 y 1211 ‘ 0
Ad)(/iress [ Physical page # | offset |

) The use of the 64 bits of registers r and s is illustrated below:

The code of the interrupt handler is given below:
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31 2019 0
Register r: Virtual Page #
31 2120 0
Register s: Physical Page #|V
pg_fault:
addi sp, sp, -4 #sp <— sp - 4
sw ra, 0 (sp) #fmem|[sp] <- ra
movsp t0, pgdir #t0 <- pgdir
movsp tl, mar #t1l <- mar
srli t2, tl, 22 #t2 <— DIRIND
slli t2, t2, 2 #t2 <— t2 * 4
add t2, t0, t2 #t2 <— t0 + t2
1w t0, 0(t2) #t0 <- GPD[DIRIND]
srli t4, tl, 12 #t4 <- VIRTPG
andi t2, t4, O0x3ff #t2 <— PGIND
slli t2, t2, 2 #t2 <— t2 * 4
add t2, t0, t2 #t2 <— t0 + t2
1w t0, 0(t2) #t0 <- PGT[PGIND]
andi t3, t0O, Ox1 #test P bit
bne t3, zero, skip #skip if not O
add a0, t2, zero #a0 <- t2

# We need to store t0 and t4 on the stack since we
# don't know if the following function will change
# them or not. By convention t0 and t4 are

# temporary and could be changed

addi sp, sp, -8 #sp <- sp - 8

sSwW t0, 0 (sp) #mem|[sp] <- tO0

sw t4d, 4 (sp) fmem[sp + 4] <- t4

jal ra, sleep_and_swap #call function

1w t0, 0 (sp) #t0 <- mem[sp]

1w td, 4 (sp) #td <— mem[sp + 4]

addi sp, sp, 8 #sp <— sp + 8
skip:

srli tO0, tO, 12 #£t0 <= t0 >> 12

slli tO0, to0, 1 #t0 <- t0 << 1

ori t0, t0, 1 #t0 <-— PHYPG | V

tlbwr t4, tO #TLB update

1w ra, 0(sp) #ra <- mem[sp]

addi sp, sp, 4 #sp <— sp + 4
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ret

d) The performance of the system is influenced by the replacement policy in use. For
example, in a random replacement policy, an entry that is about to be used can be
evicted from the TLB right before it is accessed.

A Least Recently Used policy can be implemented by adding a counter for each line
of the TLB. The counters are incremented at each clock cycle. The counter of an entry
(line) is reset in case of a successful translation (TLB hit). If a miss occurs, the line with
the highest counter value is evicted from the TLB. Comparing the counter values can
be done either in hardware with a specialized circuit, or in software by allowing the
programmer to access the registers of the counters.
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[Exercise 21] TLB Miss Procedure

Consider a RISC-V system with virtual memory. Virtual addresses are 32-bit wide,
byte addressing is used, the physical memory has a size of 64 MB and pages are 64
KB in size. Translation of virtual addresses for each access is done with the help of
a TLB (Translation Look-aside Buffer) that has 8 entries. When the address cannot
be translated by the TLB, an exception is generated and control is relinquished to the
operating system.

This RISC-V processor has an additional 3 special registers, a memory access register
mar that contains the address of the last memory access, a pt register that points on
the current program’s page table and a t 1b register to access the TLB. These special
registers are 32-bit wide. The t 1b register is write-only, i.e., its contents cannot be read,
it can only be used to update the TLB, e.g., in case of a TLB miss. The replacement
policy is implemented in hardware. Writing to the t 1b register writes its value to the
TLB at a location chosen by the replacement policy. The bits of register t 1b are used
as follows:

31 0
$tlb 100...00 | Virtual Page # | Physical Page #

The size of an entry in the TLB is smaller than 32 bits, thus some of the most significant
bits must be set to "0” by the programmer. The three special registers can be accessed
with an instruction called spmov, as shown in the following examples:

spmov tlb, tO
spmov t0, mar

a) Draw the structure of the TLB and the page table. Indicate the size of all fields,
supposing that 6 bits are used for control in the page table (including the validity bit
and the dirty bit).

b) Supposing that all pages of the program that generated the exception are in the
physical memory, write an operating system RISC-V procedure that handles the TLB

miss, i.e., accesses the page table and updates the TLB.

The following elements must be taken into consideration:

¢ The operating system has already determined what caused the exception, the
procedure to be written only handles the TLB miss
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¢ All registers must be preserved
* Register ra contains the return address
¢ The stack can be used

¢ Ignore the page table control bits

c) Give a precise list of all that needs to be done when the desired page is not in
memory. What is the use of the dirty bit?

d) Suppose two identical programs with different data are executed in the system. To
optimize the use of physical memory, the operating system could map certain pages
on the same physical area. What are these pages? Explain.

308 ofm Version 1.0 of 1st October 2024, EPFL ©2024



Solution 21 Exercise Book
Memory Hierarchy Computer Architecture

[Solution 21] TLB Miss Procedure

a) Figure [96/shows the structure of the TLB. In case of a TLB miss, figure [97|shows how
the page table is accessed and its structure.

Virtual 31 1615 0
Address | virtual page # | offset |
A16

control| Tag Physical page number

0]= O
TLB Hit--r+t® o — ®

..|= O-—
71= Q-

6 bits f10 A16
Physical 25 Y 1615 0
Ad{iress | Physical page # | offset |

Figure 96: Structure of the TLB

Virtual 31 1615 0
Virtual # ffset
Address | Virtual page | offse | 26 X Page
/ i Table
?
MMy = |
E TLB (8 entries) @:
' ' /10
i 2.1
E register $tlb . (16
26
Phvsical 25 Y 1615 Y 0
Ad)(/iress | Physical page # | offset

Figure 97: Structure of the page table

b) At the beginning of the procedure, the registers that will be used are saved on the
stack. Register mar is accessed to obtain the address of the missing page which is
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used to compute the address of the entry in the page table residing in main memory:.
This entry contains the corresponding physical page number. The virtual and physical
page numbers are combined as indicated in the exercise and written to the TLB using
the special register t 1b. Before leaving the procedure, the saved registers are restored.

tlb_proc:
addi sp, sp, -16 # decrease stack pointer
sw t0, 12 (sp) # push tO
swW tl, 8(sp) # push t1l
sSwW t2, 4(sp) # push t2
sw t3, 0(sp) # push t3

tlb_manage:
spmov t0, mar # move fault address to tO
spmov tl, pt # get page table pointer
srli tO0, t0, 16 # get the virtual page number
slli t2, t0, 1 # align to the entry size
addi t3, zero, 3 # t3 = 3
xori t3, t3, -1 # t3 = not 3
and t2, t2, t3 # align to the memory word
add t2, tl, t2 # compute the entry address
1w t2, 0(t2) # t2 <- mem[t2], read table
andi tl1, tO0, Oxl # test the last bit of index
beq tl, zero, aligned # if zero, the entry is even
srli t2, t2, 16 # align the odd entry

aligned:

andi t2, t2, Ox3ff # get the physic. page number

slli tO, t0O, 10 # virt. page number << 10

or t0, t0, t2 # prepare the tlb entry

spmov tlb, tO # set new tlb entry
recover:

1w t3, 0(sp) # pop t3

lw t2, 4(sp) # pop t2

lw tl, 8(sp) # pop tl

lw t0, 12(sp) # pop tO

addi sp, sp, 16 # increase stack pointer
ret:

ret # return from tlb_proc

¢) When the desired page is not present in memory it must be loaded from the hard
drive and its entry in the page table must be updated. Before doing that a page in
memory must be evicted, i.e. written to the hard disk. If the selected page has been
modified, i.e. its dirty bit is set to "1” in the page table, then the page is written to the
hard disk so as not to lose the modifications and its state in the page table is updated,
i.e. the dirty bit is set to 0" and it is indicated that it is not present in memory.

310 of Version 1.0 of 1st October 2024, EPFL ©2024



Solution 21 Exercise Book
Memory Hierarchy Computer Architecture

d) The codes of both programs are not modified and are identical. Thus, the virtual
pages containing the code of the program could be mapped on the same physical page,
reducing the amount of occupied physical memory.
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[Exercise 22] Hierarchical Virtual Memory

In real virtual memory systems, it is common to use a hierarchical page table to trans-
late virtual addresses. Hierarchical page tables have the advantage of generally oc-
cupying less memory space. The following figure shows the structure of a 3-level hier-
archical translation system.

38 0
Virtual
Adldrl:ass | level 1 | level2 | level3 | offset |
n ny ny
/
Y Y
page table mbk
base register _.7§2> AG1 - AG1 > AGt
/ / /
732 732 732
Y
3> - = ;
= > AG2
732
> 32
page table page table page table
level 1 level 2 level 3 physical

address

Figure 98: Structure of the virtual address

The Page Table Base Register (PTBR) contains the physical page number of the
single/unique/only first level (level 1) page table. The L1 field of the virtual address
serves as an index in the first-level page table to obtain the number of another phys-
ical page table that contains one of the second-level page tables. Similarly, the L2 and
L3 fields serve as indexes in the second and third-level tables. Finally, the third-level
page tables contain the numbers of the physical page tables that correspond to desired
physical addresses and that are to be combined with the offset specified in the vir-
tual address. Thus, to translate a virtual address, we successively access the first-level
page table, then access one of the second-level page tables and finally a third-level one.
There is a single first-level page table, but potentially several second and third-level
page tables. The PTBR and the elements of all page tables (of any level) are 32-bit
words that are organized as follows:

Consider a virtual memory system with the following characteristics:
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31 24 23 43 0
0000
Reserved for the Physical Page #

Operating System

Figure 99: Organization of the 32 bits for the PTBR and page table entries

39-bit virtual addresses

32-bit physical addresses

4-Kbyte pages

Byte addressing is used

a) What is the size of the offset field in the virtual address? What is the size n of
tields L1, L2 and L3? What is the size of a page table at each level? Is it greater, smaller
or equal to the size of a physical page?

b) Clearly explain the functionality of AG1 blocks and the AG2 block. For example,
give their logic diagram if they were to be implemented in hardware.

The translation described in the logic diagram below is normally performed by the
operating system software after a miss in the TLB.

c¢) Write an addrgenl RISC-V function that implements the functionality of the three
AG1 blocks. Four registers, a0 to a3 are used store the function’s arguments. Registers
a0 and al contain the virtual address in the format described below. Register a2 con-
tains a physical page number in the format previously discussed and shown in figure
Finally, register a3 contains the level number of the page table for which the ad-
dress must be generated. Register a0 is used by the function to return the physical
address of the corresponding page table’s element.

d) Write an addrgen2 RISC-V function that implements the functionality of the AG2
block. Three registers, a0, al and a2 are used to store the function’s arguments. Re-
gisters a0 and al contain the virtual address in the format described in the preceding
question. Register a2 contains a physical page number in the format shown in figure
Register a0 is used to return the physical address corresponding to the received
virtual address.

The most significant bit of the page table’s elements is reserved for the operating sys-
tem. When its value is "1’, the physical page number is valid and present in main
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, 7bits I 9bits |, 9 bits : 12 bits |
/’ /’I ) I I I 1
1 2 bitsy 1 | 1
25 bits it S | | | !
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$a0 (32 bits) $al (32 bits)

Figure 100: Distribution of the 39 bits of the virtual address in $a0 and $1

memory. If its value is "0, the translation cannot be performed.

31 24 23 43 0 31 24 23 43 0

1 0000]| |O Invalid entry 10000
Reserved for the Physical Page # Reserved for the Physical Page #
Operating System Operating System

Figure 101: Usage of the first bit for the entries information

e) Write a t ranslate RISC-V function that performs a complete translation of virtual
addresses into physical ones, using functions addrgenl and addrgen2. Arguments
are passed to the function through registers a0, al and a2. The first two contain the
virtual address in the format described in part ¢), while the third register contains
the value of the PTBR. The function uses register a0 to return the physical address
corresponding to the received virtual address if the translation is possible. The function
returns the value "1” in register a1l in the case of a successful translation, and the value
’0” in case of a page fault.
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[Solution 22] Hierarchical Virtual Memory

a) i) The size of the offset field is determined by the size of a physical page. Since
the offset field must be capable of addressing each byte in every physical page (byte
addressing), it must have enough bits to cover an entire physical page. The size of a
physical page is 4 KB, hence the offset must have 12 bits to be able to address each byte
in a page.

ii) The size n of fields L1, L2 and L3 can be computed from the size of the virtual
address and the size of the offset field. Given that the sizes of all levels are equal, we
can compute the value as follows:

size(virtual address) — size(of fset)

3

(39 — 12)

3
= 9

iii) The size of a page table is the space occupied by all its entries. Thus, we need to
know the size of each entry and the number of entries per page table.

¢ The entries of all page tables (of all levels) are 32-bit wide (4 bytes)

* 9 bits of the virtual address (fields L1, L2 and L3) are used to point on an entry in
the corresponding page table. 9 bits allow pointing on 2° entries

Thus, the size of a page table is the total size of its entries, i.e. 2° x 4 = 2!! bytes =
2 Kbytes. Given that the size of a physical page is 4 Kbytes, the size of a page table is
half the size of a physical page.

Note: Given that the beginning of all page tables is pointed on by a physical page
number, half of the pages where the page tables reside are not used.

b) The functionality of the AG1 and AG2 blocks simply consists of concatenating some
tields of their inputs in order to generate a physical address. Their functionality is
illustrated by the following two figures.

An AG1 block, shown in figure[102)generates the physical address of a page table entry.
The physical page number is provided by the 20-bit field of the first block input. The
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Content of the PTBR or The entry number
an entry of the page table in the page table
31 24 23 43 0 9 bits
0S reserved Physical Page # 0000 Level n

Y /
Physical Page # 0 Level n 00

20 bits 1 bits 9 bits 2 bits

Figure 102: Structure of an AG1 block

second input provides the page table entry number. In order to find the entry offset,
the latter input must be multiplied by the size, in bytes, of a page table entry, i.e. by 4.
That’s why the 9 bits of the second input are shifted 2 bits to the left when constructing
the physical address.

Content of the PTBR or Offset of the
an entry of the page table virtual address
31 24 23 43 0 12 bits
0S reserved Physical Page # 0000 Offset
Y Y
Physical Page # Offset
20 bits 12 bits

Figure 103: Structure of the AG2 block

The AG2 block, shown in figure concatenates the physical page number corres-
ponding to the virtual address with the offset in the same page (the offset field of
the virtual address)

c) Figure shows the steps taken to find the physical address. The corresponding
RISC-V code is given next.
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Left shift $a0 by 20 bits Right shift $al by 12 bits (remove offset)
| 0 | levell | [level 1] level2 | level3 | offset |
) |
\J/Step 1c
5 bits 9 bits 9 bits 9 bits
T evert level2 | level3 |
if $a3=1 (Level 1) if $a3=3 (Level 3)
Left shift by 5 bits Left shift by 23 bits
9 bits 9 bits 9 bits 5 bits 9 bits 23 bits

[ClevelT T level2 level 3 [ level 3

if $a3=2 (Level 2)
Left shift by 14 bits

9 bits 9 bits 14 bits

[levelz T levels [T

Rigth shift by 23 bits
23 bits 9 bits
level 1, 2 or 3

Left shift by 2 bits

21 bits 9 bits 2 bits
8 bits 20 bits 4 bits

Left shift by 8 bits

20 bits 12 bits
| Physical page #

Return physical address of the input
20 bits 1 bit 9 bits 2 bits
| Physical page # .Ievel 1,2or 3-

Figure 104: Algorithm steps of the AG1 block
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addrgenl: slli t0, a0, 20 # Step la

srli tl1, al, 12 # Step 1b

or t0, tl, toO # Step 1c

try_1lvll: addi tl, a3, -1
bne tl, zero, try_1vl2

levell: slli t2, tO, 5 # Step 2, if level 1
j entry_no

try_1lv1l2: addi tl1, tl1, -1
bne tl1, zero, level3

level2: slli t2, tO, 14 # Step 2, 1if level 2

Jj entry_no
level3: slli t2, t0O, 23 # Step 2, if level 3
entry_no: srli t2, t2, 23 # Step 3

slli tl1, t2, 2 # Step 4

slli t0, a2, 8 # Step 5

or a0, to, t1 # Step 6

ret # function returns

Remarks:

1. Either of the add and or operations can be used to concatenate the offset and the
beginning address of the page table.

2. Given that addrgenl does not call any functions, there is no need to save any
registers. It only uses input, output and temporary registers.

3. Steps 3 and 4 could actually be merged by performing a 21-bit shift right instead
of 23. This would allow reducing the number of instructions.

d) The addrgen2 function simply concatenates the physical page number and the
offset field of the virtual address. This concatenation can be performed by either of
instructions add and or. Similarly to addrgen1, it does not call any functions and no
registers need to be saved. Its code is given below:

addrgen2: slli t0, a2, 8 # physical page number on msb
1i tl, OxFFF
and tl1, al, tl # extract the offset
or a0, to, t1 # concatenation
ret # function returns

e) The translate function simply calls addrgenl three times and addrgen2 once.
Before each call, it prepares the inputs and saves the appropriate registers.
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# Save the return address to avoid erasing
# it when the functions addrgenl and
# addrgen2 are called

addi sp, sp, -4

sw ra, 0(sp)

t0: the actual level (counter of the level)

tl: the number of levels+l (so the limit value of the level
counter. Determines the number of calls of addrgenl)

t2: a physical page number in the format PTBR

S

addi t0, =zero, 1
addi tl, zero, 4
add t2, zero, a2

# Verify the validity of the given physical page number in the
# format PTBR. If the MSB is 1 (if the value in the register is
# negative) the physical page number is valid. Otherwise, the
# function returns indicating a page fault.
is_valid: slt t3, t2, =zero

beg t3, zero, page_flt

# Prepare the input registers before calling the function
# addgenl. The registers a0 and al already contain the
# virtual address, nothing is needed to update them.

add a2, zero, t2

add a3, zero, tO

# Save the content of the registers t0 and tl (they are
used in the translate function). t2 is not saved because
# we don't need the content anymore.
addi sp, sp, -12
sw a0, 8(sp)
sw t0, 4(sp)
sw tl1, 0 (sp)

=

# Call the function addrgenl
jal ra, addrgenl

# Stock the entry's content of the actual level in t2.
# The contents of this register will be in PTBR format.
lw t2, 0(a0)
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# Restore the value of the saved registers
lw tl1, O0(sp)
lw tO0, 4 (sp)
sw a0, 8 (sp)
addi sp, sp, 8

# Increment the level counter by 1 and if the 3rd level
# is not reached, stay in the loop.

addi tO0, tO, 1

bne t0, tl, is_valid

=

——— The last step; the call of the addrgen2 function -

=

Verify the validity of the physical page number given in
the PTBR format. IF the msb is 1 (if the wvalue in the
register is negative) the physical page number is valid.
Otherwise, we return the function indicating a page fault.
slt t3, t2, zero
beq t3, zero, page_flt

H oo S

Prepare the input register before calling the function
addrgen2. The registers a0 and al already contain the
virtual address, there is no update to do for these
registers.

add a2, zero, t2

R

=

Save the content of the registers t0 and tl (that are used
by the program). t2 will not be used anymore by the

# function.

addi sp, sp, -8

sw tO0, 4 (sp)

sw tl, O(sp)

=

# Call the addgen2 function.
jal ra, addrgen2?

# Restore the state of the saved registers.
1w t1, 0 (sp)
lw tO0, 4 (sp)
addi sp, sp, 8
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The return value 1is already in a0 (returned by addgen2?).
It is not modified before the return of the function. The
value 1 is put on the register vl to indicate the success
of the function.

addi al, zero, 1

+H H= H FHF

end:
# Restore the value of the saved register at the beginning
# of the function and return to the function that called
# translate.
1lw ra, 0 (sp)
addi sp, sp, 4
ret

# If a entry was invalid during the research, a page fault
# 1is indicated setting the vl value to zero. Once the value
# is set the function returns.
page_flt: add al, zero, zero

j end

A more compact version of the translate function calls addrgenl and addrgen2
in the same loop. In this case, addrgenl is called for levels 1,2 or 3 and addrgen2 is
called in the last iteration of the loop. The code of this version is given below. Most of
the comments were removed as they are identical to the ones in the previous version.

translate: addi sp, sp, -4
sw ra, 0(sp)

addi t0, zero, 1

# The limit to end the loop is now 5, because we also call
# the addgren2 function in the loop.

addi tl, zero, 5

add t2, =zero, a2
is_valid: slt t3, t2, zero

beq t3, zero, page_flt

# We prepare the parameters and save the registers as addrgen2
# was called.
add a2, zero, t2
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addi sp, sp, -12
sw a0, 8 (sp)
sw tO0, 4 (sp)
sw tl1, O(sp)
# We determine which function to call here. If the level
# number is 4, we call addrgen2, otherwise we call addrgenl.
# To check it, we decrement the limit of the loop by 1 (tl).
addi t1, tl1, -1
beq tl1, t0, last_step
# If we call addrgenl, all the parameters to this function must
# be added.
add a3, zero, tO
jal ra, addrgenl
Jj continue
last_step: jal ra, addrgen2
continue:
# The following instruction is useless after a call of
# addrgen2, but it is mandatory after the function addrgenl.
lw t2, 0(a0)
1w tl, 0 (sp)
lw t0, 4 (sp)
1w a0, 8(sp)
addi sp, sp, 12
addi t0, tO0, 1
bne t0, tl, is_valid
addi al, zero, 1
fin: lw ra, 0(sp)
addi sp, sp, 4
ret
page_flt: add al, zero, zero
Jj fin
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[Exercise 23] Virtual Memory

Consider a slightly simplified version of the addressing mode of the Intel IA-32 in
Protected Mode. The virtual and physical addresses are 32 bits and the memory is
byte-addressed. All pages are made up of 4K bytes and the translation is done in two
steps. First, a special register of the processor (CR3) points to the Page Directory, a
special page for each process which, in turn, points to 1024 pages (maximum), which
compose the Page Table itself. Then, each of these pages contains 1024 pointers to the
physical pages where the data is stored.

CR3 register indicates the number of the page of the memory which contains the Page
Directory in the bits 31-12 and the rest of the bits are ignored.

Similarly, each 32-bit element in the Page Directory indicates the number of the
memory page that contains the corresponding Page Table in bits 31-12. A ‘1" in bit
0 indicates that the corresponding Page Table exists, while a ‘0" in this bit means all
other bits have no meaning and no addresses corresponding to the address range in
question has been allocated by the operating system. The other bits are not used for
the translation.

In turn, each 32-bit element in the Page Table indicates the number of the memory page
that contains the required data in bits 31-12. Here again, a ‘1’ in bit 0 indicates that the
corresponding page exists, while a ‘0’ in this bit means all other bits have no meaning
and no addresses corresponding to the address range in question has been allocated
by the operating system. The other bits are not used for the translation.

The following figure shows the utilisation of bits of virtual address:

31 22 21 12 11 0
Page Directory [ Page Table Page Offset
Index Index

a) Design the translation scheme described above and clearly indicate the bits that
come into play in different phases of translation.

b) Assume that CR3 = 0x37215aef and the physical memory contains these:
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Physical address

0x12015470
0x12315470
0x37215048
0x37215120
0x37215124
0x37215480
0x7a125470
0x7al125474
0x7al25el4
0x7a125384
0x7a125388
0x7a126470
0x7al26474
0xaefl120d0
Oxaefl20d4
Oxaefl2344
Oxaefl2348
Oxaefl2dl4
Oxaefl2dl8

Oxaefl2eld

Virtual address

0x12345473
0x12445473

0x12385474

Result of a 32bit load

0x7al26372
0x37215067
0x12015aef
Oxaefl2067
Oxaefll066
0x12315aef
0x7a315abd
0x37215473
0x37215067
0x7a126123
Ox7al25el4
Oxaefl2345
Oxaefl2237
Oxaefl2344
0x37215067
0x12315067
0x12015067
0x7a125001
0x37215066

0x7al126067

Find the bytes read by the following virtual addresses and explain the translation pro-
cess:
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Note that Intel processors are little-endian. Indicate whether any of these virtual ad-
dresses are not translatable. What would the processor or the operating system do if a
program accesses these addresses while being executed?

€) A ‘1" in bit 4 of one element in the Page Table indicates that data from the memory
page in question should never be cached: they are always read from the memory
without affecting the contents of the cache. What applications do you think that such
a bit could have?

d) Why do you think it is a good idea to make the reading of the table by two suc-
cessive levels of indirection, as described above, rather than one? Specify at least one
advantage and one disadvantage of the two-level scheme.
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[Solution 23] Virtual Memory

a) The solution is provided in Figure [105

31 2221 1211 0
Virtual Page Directory | Page Table Page offset
Address index index
CR3 Register 10
31 1211 0 y
[Page Directory base] unused | | <;2 | 10 12
20, — D\ 32/
7 <<12 Q-/ 7 Page
Directory
L4
|
31 1211 10
Page Table base | unused | | <<2
1
20, 32, Page Table
[<<12 + 7
7 r1==12] N [
31 1211 10
Page Address base | unused | |
Physical
1 \\ Address
20, S r——1 £ Page
7 >l=<12] D% 0
! 8,
H 4
RO~
H 7 0
 — T

Figure 105: The virtual memory translation process.

b) The solution is provided in Figure

) This scheme could be used to prevent some data from being stored in the cache. For
example, when a process which does not reuse its data uses the cache, it will cause
unnecessary cache pollution.

Another case is when the data is volatile and its value can be changed by some external
units. Then, this bit ensures that the most recent data is fetched from the memory
whenever needed.

d) The two-level scheme enables the page table size to be kept small. With this scheme,
the page directory is 4K (2'° entries) and each page table is 4K (2'° entries). Otherwise,
the page table size would have been 4M (2?° entries). Alternatively, if the page table
size had to be kept small, the page sizes would have to be increased.

However, the two-level scheme is slower as the address translation process needs more
operations. This leads to performance, energy and/or silicon-area overheads.

326 ofm Version 1.0 of 1st October 2024, EPFL ©2024



Exercise Book

Computer Architecture

Solution 23

Memory Hierarchy

ejeq

!

|

VLVICTINLX0 7

[

ssalippy obed

!

1] joztusxq

Anu3 a|qel abed

!

7 P TIZTATX0 7

ejeq

q

7 ELVSTIVLX0 7
ssaippy 2bed

[ !

7 T _ _m N._u:.xoi
A13u3 s|qe) abed

q

7 P1AZTATVX0 7

SSaippy 9|qel abed iljhed4 ELTX0 Ssalppy 9|qel obed
vLEX0 q
T _ _N._”.mmﬁnoi 70 _ _._”._”.mmﬁnoi T _ _N._”.mm:ﬁnoi
A13u3 Auojdauiqg abed Anu3 Aioydauiqg abed Anu3z Auoydauq abed
v 1aX0 q v 1axo,

7 0CTISTIZLEXO 7 7 PZTISTIZLEXO 7 7 0ZTISTZLEXO 7
ssalppy A10303.1Q 9bed ssaippy A103d9.1Q 9bed ssalppy A1030341q 9bed

me gt e
[ 1 | [sreexo| | [ | | | | | secexo] [ [ || | stecexo]
SSaIppY [eNUIA €40 SSaIppY |eNUIA €40 SSaIppY |eNUIA €40

VLYSBECTX(Q = SSSIPPY TEN3laITA ELVSVYVZTIX0 = SSSIPPY Ten3lITA ELVSVECTIX0 = SSSIPPY TEn3aTA

Figure 106: Address Translation
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[Exercise 24] Virtual Memory

Consider a virtual memory system having the following properties: 48-bit virtual ad-
dresses, 32-bit physical addresses, and 4-Mbyte pages. The system uses word address-
ing; one word contains 4 bytes.

a) Assuming that a virtual address is interpreted as a virtual page number concaten-
ated with an offset, as in Figure answer the following questions:

Virtual
Address

[ virtual page# |  offset |

Figure 107: Structure of the virtual address

a.1) What is the size of the offset field?
a.2) How many virtual pages can there be in this system?
a.3) How many physical pages can there be in this system?

a.4) What is the size in bytes of a linear page table, supposing that one page-table entry
takes one word?

a.5) Draw a diagram of the classical translation process, clearly indicating the width
of all signals.

a.6) How many physical pages are needed to store one page table?

b) A different, hierarchical implementation of virtual address translation is shown in

Figure [108]

To obtain a physical page number, it is required to go through two levels of indirection.
The page-table-base register contains the address of the first-level page table. The level
1 field of the virtual address serves as an index in this table. An entry in the first-level
page table contains the starting address of a second-level page table. The level 2 field
indexes a second-level page table. An entry in the second-level page table contains the
desired virtual-to-physical address translation. The width of the level 2 field of the
virtual address is 20 bits.

For the virtual address translation shown in Figure and the system parameters
listed at the beginning of the exercise, answer the following questions:
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Virtual
Address

| level 1 | level 2 | offset |

20,

address
generator

page table address
base register 732i generator|[

/ /
/32 /32

/ f_‘_\ / Physical
732 N/ /32 7 address

L

page table page table
level 1 level 2

Figure 108: Hierarchical virtual address translation

b.1) Supposing that a program occupies the whole virtual address space, how many
physical pages are needed to store all required first-level and second-level page
tables?

b.2) Supposing that a program occupies the following range of virtual address space

e first address: 0x0800 0000 0000
e last address: OxOBFF FFFF FFFF

how many physical pages are needed to store the required first-level and second-
level page tables?
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[Solution 24] Virtual Memory

Pages have a size of 4 Mbytes, i.e. 2?2 bytes or 2*° words .

a) a.1) Since the memory is word-addressed, the offset must be able to index every
word in a page and thus must be 20 bits wide.

a.2) The virtual address has 48 bits. Bits 47 down to 20 are used for the virtual page
number. The system thus contains 2% = 256 M virtual pages.

a.3) The physical address has 32 bits. Bits 31 to 20 are used for the physical page
number. The system thus contains 2'? = 4 K physical pages.

a.4) Since a page table entry occupies one word, the size of a page table is 28 4
bytes = 1 Gbyte.

a.5) The translation process is shown below:

. 47 2019 0
Virwal " ffset |
Address Irtual page orrse _ Page
i Tat;le
MM [
Y v ,

7
32
Physical 31 Y 2019 Y 0
Ad:;ress | Physical page # | offset

Figure 109: Virtual address translation

a.6) Since one page table takes 1 Gbyte and the page size is 4 Mbytes, a page table
spans 2%V /22 = 2% = 256 pages.

b) Given that the level 2 field is 20 bits wide, the level 1 field must be 8 bits wide.
Therefore, the first-level page table divides the virtual address space into 256 parts
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of 2% words each (the size of one page). Each part has a corresponding entry in the
tirst-level page table.

b.1) If a program occupies the whole virtual space, one first-level page and 256
two-level pages are required. Given that each of these pages can fit in a single
physical page, 257 physical pages are needed to store all required translations.

b.2) The specified virtual-address space-range spans from entry 0x8 to entry 0xB in
the first-level page. Therefore, 5 physical pages are needed to store all required
translations (one first-level page plus 4 second-level pages). This amounts to
5 x 4 Mbytes = 20 Mbytes of physical memory space.
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[Exercise 25] Virtual Memory

Consider a virtual memory system having the following properties: 56-bit virtual ad-
dresses, 32-bit physical addresses, 1-MiB pages, and byte addressing. Words contain 4
bytes.

a) Assuming that a virtual address is interpreted as a virtual page number concaten-
ated with an offset, answer the following questions:

a.1) What determines the size of the offset field? Calculate it.
a.2) How many virtual pages can there be in this system?
a.3) What is the maximum number of physical pages this system can support?

a.4) Assuming that the control and protection bits take in a total of 20 bits per page
table entry and that a program uses the entire virtual address space:
e How large would the linear page table have to be (in bytes)?
e How many physical pages would be needed to store the linear page table?

e Would the linear page table fit in the memory? Why?

b) The memory-management unit contains a translation lookaside buffer (TLB) to
speed up the address translation. The system has a cache, which is accessed using
physical addresses. Linear page table is used. The CPU issues a load word instruction.

b.1 List all the steps taken to load a word from the main memory to the CPU, taking
into account all the events that can occur. No need to show the updates in any
structure (cache, TLB).

b.2 Assuming that the complete page table is present in the main memory:
e What is the minimal number of main memory accesses required for one load

word instruction?

e What is the maximal number of main memory accesses required for one load
word instruction?

c) A different, hierarchical implementation of virtual address translation is shown in
Figure To obtain a physical address, it is required to go through two levels of
indirection:
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o The page-table-base register contains the base address of a first-level page table.
¢ Thelevel 1 field of the virtual address serves as an index in the first-level page table.

o An entry in the first-level page table contains the base address of a second-level page
table.

o The level 2 field (20-bit wide) of the virtual address serves as an index in the second-
level page table.

¢ An entry in the second-level page table contains the base address of the desired
physical page.

o The final physical address is obtained by adding the base address of the page with
the offset.

A snippet of the memory content is shown in Table For simplicity, addresses are
shown as word-aligned and data is shown as words, even though the system uses byte
addressing. An entry in the page table contains only the 32-bit base address of another
page, there are no control nor protection bits. The first-level page table starts at the
memory address 0x0000 0000.

Assume the following sequence of virtual addresses issued by the CPU: 0x00 0100 0100
0004,
0x00 0200 0020 00A4, and 0x00 0300 0010 00AO.

c.1) Find the corresponding physical addresses.

c.2) If the TLB in this system is initially empty, fully associative, having four lines and
one address translation per line:

e Draw the diagram of the TLB, indicating the use of each bit.

e Show the TLB content after the given sequence of virtual addresses.
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Virtual
Address L1evel 1 | level 2 | offset |
20,
page table address address
base register 732 generator generator
/ /
732 _ 32
L1 -
Physical
> 32 )77 address
page table page table
level 1 level 2

Figure 110: Hierarchical virtual address translation
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0x0000 0000 | 0x0020 0000
0x0000 0004 | 0x0040 0000
0x0000 0008 | 0x0060 0000
0x0000 000C | 0x0080 0000

0x0010 0014 | 0xO001F FFFF
0x0010 0018 | OxO1FF FFFF

0x0020 00AO0 | 0x0010 0000
0x0020 00a4 | 0x0090 0000

0x0030 0000 | 0xO003F FFFF
0x0030 0004 | OxO3FF FFFF

0x0040 0040 | 0x0030 0000
0x0040 0044 | 0x00AO0 0000

0x0050 OO0AO | OxOO5F FFFF
0x0050 00A4 | OxO5FF FFFF

0x0060 0008 | 0x0050 0000
0x0060 000C | 0x00BO 0000

0x0070 000F | Ox007F FFFF
0x0070 O00AO | 0xO7FF FFFF

0x0080 0000 | 0x00CO 0000
0x0080 0004 | 0x0070 0000

Table 27: Memory content. Byte addressing is used. Word-aligned addresses are
shown on the left.
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[Solution 25] Virtual Memory

a) a.1) The virtual page offset is determined by the size of a memory page. Pages have
a size of 1 Mbytes, i.e. 2 bytes. Since the memory is byte-addressed, the offset

m

ust be able to index every byte in a page and thus must be 20 bits wide.

a.2) The virtual address has 56 bits. Bits 55 down to 20 are used for the virtual page

number. The system thus contains

236

= 64 G virtual pages.

a.3) The physical address has 32 bits. Bits 31 to 20 are used for the physical page
number. The system thus contains 2'? = 4 K physical pages.

a.4) Each page table entry contains a physical page number (12 bits) and metadata
(20 bits), so each entry is 32 bits or 4 bytes. The size of a page table is 2°°x 4
bytes = 256 Gbytes.

The number of pages needed to store the page table is 23 /220 = 218,

The number of pages required for a linear page table is much larger than the

m

aximum number of physical pages the system can support. The linear page

table does not fit in memory.

b) b.1) e

b.2) e

First we search for translation of the load’s virtual address in the TLB

If itis a TLB hit, we search the cache for the data using the translated physical
address

e Ifitis a cache hit, we load the data

e Ifitis a cache miss, we load the data from memory
If it is a TLB miss, we find the translation in memory, update the TLB, and
then go back to the first step in this list
If we have both a TLB hit and a cache hit then we will require no accesses to
main memory:.

If the TLB misses then we will require one memory access to read the trans-
lation. If the cache misses, then we will require one memory access to read
the data. The worst case is when both TLB and cache miss, when we will
require two memory accesses.

¢) Given that the level 2 field is 20 bits wide, the level 1 field must be 16 bits wide.

c.1) Ox

0001 00010 00004:
Level 1 field = 0x0001

e Address of the 1*' level page table entry =

= (Base address 1% level page table) + (Level 1 field) x (Entry size) =
= 0x0000 0000 + 0x0001 x4 = 0x0000 0004
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Base address 2"? level page table = 0x0040 0000
Level 2 field = 0x00010

Address of the 2" level page table entry =
= (Base address 2"¢ level page table) + (Level 2 field) x (Entry Size) =
= 0x0040 0000 + 0x00010x4 = 0x0040 0040

Base address physical page = 0x0030 0000
Offset = 0x00004

Physical Address = (Base address physical page) + Offset =
= 0x0030 0000 + 0x00004 = 0x0030 0004

0x0002 00002 000A4:

Level 1 field = 0x0002

Address of the 1 level page table entry = 0x0000 0000 + 0x0002x4 =
0x0000 0008

Base address 2"¢ level page table = 0x0060 0000
Level 2 field = 0x00002

Address of the 2" level page table entry = 0x0060 0000 + 0x00002x4 =
0x0060 0008

Base address physical page = 0x0050 0000
Offset = 0x000A4
Physical Address = 0x0050 0000 + 0x000A4 = 0x0050 00A4

0x0003 00001 000AO:

Level 1 field = 0x0003

Address of the 1 level page table entry = 0x0000 0000 + 0x0003x4 =
0x0000 000C

Base address 2"? level page table = 0x00800000
Level 2 field = 0x00001

Address of the 2" level page table entry = 0x0080 0000 + 0x00001x4 =
0x0080 0004

Base address physical page = 0x0070 0000
Offset = 0x000A0
Physical Address = 0x0070 0000 + 0x000A0 = 0x0070 00AO

c.2) The TLB diagram and its contents are shown in Figure 111}

Version 1.0 of 1st October 2024, EPFL ©2024 337 of@



Exercise Book Solution 25

Computer Architecture Memory Hierarchy
- 55 20 19 0
ijldrt;'easls | virtual page # |  offset |
i36
Valid Tag Physical Page Address
1 0x000100010 0x00300000
1 0x000200002 0x00500000
1 0x000300001 0x00700000
0
32
Physical
Address

Figure 111: TLB
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[Exercise 26] Virtual Memory

Consider a virtual memory system having the following properties: 64-bit virtual ad-
dresses, 32-bit physical addresses, 64 kiB pages, and word addressing. Words contain
4 bytes. The system uses a hierarchical virtual-to-physical address translation scheme.
Virtual addresses have a total of five fields, as illustrated in Fig.

¢ reserved (not in use),

page global directory,

page middle directory,

* page directory, and

offset

31 0
PA:| Physical page # | offset |

63 0
VA:|Reserved|PGD[PMD]PD]| offset |

Figure 112: Structure of the virtual address.

There is only one page global directory (PGD) in the system; it occupies the entire first
physical page (starting at address 0x0). An entry in the PGD contains (in the least
significant part of the entry) the physical page number of the page in memory where
the corresponding page middle directory (PMD) is. An entry in the PMD contains (in
the least significant part of the entry) the physical page number of the physical page in
memory where the corresponding page directory (PD) is. An entry in the PD contains
the physical page control bits (in the most significant part of the entry) and the physical
page number (in the least significant part of the entry) of the physical page in memory
where the corresponding page, containing data or instructions, is. An entry in PGD,
PMD or PD occupies exactly one word. Each directory occupies an entire physical

page.
a) What is the size of the offset field (in bits)?

b) How many physical pages are there in this system?

c) What is the total capacity of the physical memory (in bytes)?

d) What is the size of every of the PGD, PMD, and PD fields (in bits)?
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e) Let us for a moment imagine that this system uses a linear translation scheme instead
of the above-described hierarchical one. Assuming that the same number of the most
significant bits of the virtual address are reserved (ignored) in both systems, how many
pages would be needed for storing a linear page table?

f) Coming back to the hierarchical translation scheme and assuming that a program
uses the entire virtual address space (except, of course, the reserved bits), how many
physical pages would be needed for storing all the required directories?

g) Draw a detailed hierarchical virtual-to-physical address translation scheme. You
can start by repeating the sketch in Fig. and then continue by adding all that is
missing.

h) How many pages are occupied by all the directories required by a program that uses
the following virtual address space range:

¢ FROM 0x0000 0C00 3000 C003 (included)

e TO 0x0000 1400 3000 €003 (excluded)

VA:|Reserved|PGD[PMD]pPD]| offset |
Memory ¢ ¢ ¢ ¢ ¢

0x0
ox1| PGD

PMD

PD

DATA

Figure 113: Virtual-to-physical address translation.
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[Solution 26] Virtual Memory

a) A page is 64 KiB which is 2! bytes or 2!* words. So the width of the offset field is 14
bits.

b) The size of the physical address is 32 bits. Since the offset is on 14 bits, the size of
the physical pages number field is 32 — 14 = 18 bits. Thus, there are 2'® pages.

c¢) The physical address is 32-bit wide and word-addressed. So there are 2°2 words of
4 bytes, which is 23 bytes or 16 GiB.

d) Each directory occupies an entire physical page. So the number of bits of each field
is 14 bits.

e) The size of the virtual page number field would be 3 x 14 = 42 bits. So we would
need 2*? entries (words), which amount to 242/2!* = 2% pages.

f) We need 1 page to store the PGD, 2'* for the PMD and 2'* x 2!
PD.

= 228 pages for the

d) The translation scheme is shown in Fig.

h) We need 1 page to store the PGD, 3 pages for the PMD, and 2 x 2'* + 1 for the PD,
as shown in Fig. Thus, 5 + 2'5 pages in total.

PGD | PMD PD Offset
From | 0x0003 | 0x0003 | 0x0003 | 0x0003
To 0x0005 | 0x0003 | 0x0003 | 0x0003
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VA:|Reserved|PGD[PMD]PD]| offset |

Memory 31 1413 14\L o14 1 14
0x0
ox1| PGD <—1o0 .. o] pGD |
. !
L
18
31 1413 0
D | pvD |
PMD
!
—><<14—
18
31 Y 1413 ¥ 0
o [ | P |
!
——»{<<14l—
“es 18
31 4 1413 ¥ 0
DATA O [ offset |
hd
[
n * 0
| Value |

Figure 114: Virtual-to-physical address translation.
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PD
PMD

. 214 pages
PGD
: 2_ l ' . .

5 >
1 - 1 Page

1 Page 3 Pages 21442144, Pages

Figure 115: Pages occupied by all directories for this range.
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Part IV: Instruction-Level Parallelism

[Exercise 1]

Consider the following RISC-V code:

lw x1, 0(x0)
lw x2, 0(x1)
add x6, x5, x4
add x3, x1, x2
lw x4, 0(x6)
sub x2, x0, x4
addi x7, x1, 4
add x4, x1, x3
sub x6, x7, x4

O 00 J o U W DN

a) Show all RAW, WAR, and WAW dependencies in that code.

b) Draw an execution diagram representing each processor cycle executing this code.
Assume there is a five-stage pipeline (“Fetch”, “Decode”, “Execute”, “Memory”,
“Writeback”), without any forwarding paths (i.e., “Decode” cannot read values that
are being written by “Writeback” in the same cycle, it has to wait for one cycle). What
will be the IPC of that code? What would be the ideal IPC?

) Assume the code is executed on a processor possessing all forwarding paths. Draw
the execution diagram. What is the IPC on this processor?

d) Sometimes, running a program on a pipelined processor is not perfect: There are
bubbles appearing in the pipeline. Show how a better compiler could optimize the
program to remove the bubbles on the processor without forwarding paths. Hint: Do
not try to reorder all instructions, but look for the bubbles and make a local reordering.
Can you get rid of all the bubbles?
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[Solution 1]

a)

1w x1, 0(x0)

X6, 5, x4
add x3,
1w x4,
sub x2,
addi x7,
add x4, x1, x3

sub x6, x7, x4

Figure 116: RAW dependencies (Check if a register is being read from after a write)

1w

1w

add

add

1w

sub

addi

add x4,\x1, x3

sub x6, x7, x4

Figure 117: RAW dependencies (cont.)

b) Figure shows the execution diagram. IPC = (9 instructions) /(24 cycles) = 0.375

c) Figure shows the execution diagram. IPC = (9 instructions) /(15 cycles) = 0.6
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1w x1, 0(x0)
1w x2, 0(x1)
add x6, x5, x4
add %3, , X2
1w
sub
addi

add

sub x6, x7, x4

Figure 118: WAR dependencies (Check if a register is being written to after a read)

1w x1, 0(x0)
1w 0(x1)
add x5, x4
add x1, x2
1w

sub
add

add

sub x7, x4

Figure 119: WAW dependencies (Check if a register is being written to after a write)

pipeline/dynamic scheduling 1.b

1: |F |[D|E [M|W

2: F D |E W

3: F E |M|wW

4: F D |E w

5: F|DI|E [M|W

6: F E[M|wW

7: F|DI|E [M|W

8: F|D|E|M|wW

9: F D |[E |[M|w

Figure 120: Execution diagram
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d)
1 1w
3 add
nop
nop
2 1w
5 1w
7 addi
nop
4 add
6 sub
nop
nop
8 add
nop
nop
nop
9 sub

x1,
X6,

X2,
x4,
x7,

X3,
X2,

X6,

pipeline/dynamic scheduling 1.c

© XN RN

F [D |E [M|W
F D |[E [M[W
F |D [E [M[W
F [D [E [M|W
F [D[E [M|W
F D |[E [M[W
F |[D [E [M|W

F [D[E [M|W

F [D |E [M

0 (x0)
x5, x4

0(x1)
0(x06)
x1, 4
x1l, x2

x0, x4

x1, x3

x7, x4

Figure 121: Execution diagram with forwarding paths
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nop
nop

nop

nop
nop

nop
nop
nop

pipeline/dynamic scheduling 1.c

F

E

W

n|(g [m

m|O |m (=X

nlo[m|z]s

nlo[m|z]s

nlo[m|z]s
nlo[m|z]s

nlo[m|z]s

nlo[m|z]s

nlo[m|z]s

nlo[m|z]s

nlo[m|z]s

nlo[m|z]s

mlom[z|s
mlom[z|s
o|mlz]s

<=

=

Figure 122: Execution diagram with modified code
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[Exercise 2]

Consider the following RISC-V code :

lw x1, 0(x5)
addi x5, x1, 1
lw x1, 0(x6)
add x3, x0, x5
addi x2, x6, -1
addi x4, x3, -5
add x3, x2, x4
lw x2, 0(x7)
or x4, x2, x1
0 addi x7, x3, -9

R W 0 J oy U1 b W N -

a) Show all RAW, WAR and WAW dependencies in that code.

b) Draw an execution table which represents each cycle of a processor executing
this code. Assume there is a four-stage pipeline (“Fetch”, “Decode”, “Execute”,
“Writeback”), with all forwarding paths. The writeback stage writes to registers in the
tirst half of the cycle, and decode stage reads the register file in the second half of the
cycle. Memory accesses are done at the “Execute” stage. How many cycles are needed
to execute the code?

C) Assume now a pipeline with seven stages (“Fetch”, “Decode”, “Execute”, three
“Memory” cycles and “Writeback”), with all forwarding paths. Arithmetic and logic
operations are done at the Execute stage and can be forwarded from any of the 3
Memory stages. The results from Memory operations are only available at the end of
the last Memory stage. The writeback stage writes to registers in the first half of the
cycle, and decode stage reads the register file in the second half of the cycle. Draw the
execution diagram. How many cycles are needed to execute the code?

d) How many cycles are needed to execute instructions 1 to 3 on the processor from
the preceding question? It would be better to execute them in the order 1, 3, 2, but
something makes that impossible. Make some modifications to the code (but leave the
semantics as is) so that it becomes possible to swap instructions 2 and 3. How many
cycles are needed to execute 1, 3, 2 now?
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[Solution 2]

a) The dependencies are as follows:

e RAW:

- 12 for x1
- 3—9 for x1
- 5—7 for x2
- 8—9 for x2
— 4—6 for x3
- 7—10 for x3
- 6—7 for x4
- 2—4 for x5

e WAR:

- 2—3for x1
7—8 for x2
6—7 for x3
7—9 for x4
12 for x5
- 8—10 for x7

e WAW:

- 13 for x1
- 58 for x2
- 4—7 for x3

- 69 for x4

b) 13 cycles are necessary to execute the code with the 4-stage pipeline. The execution
is represented in Figure 123

C) 22 cycles are necessary to execute the code with the 7-stage pipeline. The execution
is represented in Figure [124]
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pipeline/dynamic scheduling 2.b

w |F |D |E W
addi F D"E

o
Q
a
-
 [odm |5
nlo[m]s
3

M [Ogdm

=

M (Odm
I'I'I:
=

Figure 123: Execution diagram with 4-stage pipeline

pipeline/dynamic scheduling 2.c

w IF |D |E [MIMIMBW

addi F p JE [M#MIAMIW

Iw F |D |E [MiM2M3W

add F [oJE [MBMAMIW

addi F E [M®M2AM3W

addi F |D JE ¢miMAMIW

add F o e [MmiMamIw

Iw F E [M]M2M3IW

or F Ve [Mim2AMIW
addi F |D |E [MIM2M3W

Figure 124: Execution diagram with 7-stage pipeline
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d) 12 cycles are needed to execute instructions 1 to 3 on the processor with the 7-stage
pipeline. We cannot execute the given code in the order 1, 3, 2, because instruction 3

has a WAR dependency with instruction 2.

A WAR dependency is purely a register naming issue. Provided we have enough re-
gisters, we can change the assignments to rename x1 to another register and avoid the
naming dependency.

By replacing x1 by x2 in instructions 1 and 2, we get the following code:

1w
addi
lw
add
addi
addi
add
lw
or

0 addi

R W 0 J o U1 b W N -

X2,
x5,
x1,
X3,
X2,
x4,
X3,
X2,
x4,
x7,

0 (x5

X2,
0(x
x0,
X6,
x3,
X2,

)
1
)
x5
-1
-5
x4

0(x7)

X2,
x3,

x1
-9

After this change, we can easily swap instructions 2 and 3 to obtain code that is se-
mantically identical to the original code, and which avoids a few stall cycles.

1w
lw
addi
add
addi
addi
add
lw
or

0 addi

= O 0 J o U b DN W

X2,
x1,
x5,
X3,
X2,
x4,
X3,
X2,
x4,
x7,

0

0(
X2,
x0,
X6,
X3,
X2,

(x5
X6

)
)
1

x4

0(x7)

X2,
x3,

x1
-9

The execution with the modified code is shown in Figure [125]

It now takes 11 cycles to execute the first 3 instructions in the order 1, 3, 2.
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pipeline/dynamic scheduling 2.d

w IF |D |E [MIMIMBW

Iw F |D|E [MIM2M3W

addi F D JE $MiMIAMIW

add F [pJE [MBMAMIW

addi F |D|E IMRM2M3W

addi F |D JE $M1MAMIW

add F o e [MiMamIw

Iw F [D |E [M]M2MBW

or F p [E [MimMAMIW
addi F |D |E [M]M2M3W

Figure 125: Execution diagram of 7-stage pipeline with modified code
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[Exercise 3]

Consider the following RISC-V code for a word-addressed, 16bit address, 32bit data
processor. (The x0 register is always zero).

0 1w

1 1w

2 1w
loop

3 beq
4 1w

5 addi
6 1w

7 mul
8 swW

9 addi
10 addi
11 3j
end

x4,
x5,
X6,

x5,
x1,
x4,
X2,
X2,
X2,
X6,
x5,
loop

A (x0)
B (x0)
C (x0)

x0,

end

0(x4)

x4,

1

0(x4)

x1,

X2

0(x06)

X6,
x5,

1
-1

#
#
#

H= S S S S o e S e

x4 = M[A]

x5 = M[B]

x6 = M[C]

if x5=x0 goto end
x1l = M[x4]
x4 = x4 + 1
x2 = M[x4]
x2 = x1 = X2
M[x6] = x2
X6 = x6 + 1
x5 = x5 - 1
goto loop

a) Identify all RAW, WAR and WAW dependencies (ignore the pipelined structure of
the processor). Consider the first two iterations of the loop.

b) Draw an execution diagram of the code. Assume a five-stage pipeline (“Fetch”,
“Decode”, “Execute”, “Memory” and “Writeback”), with all forwarding paths (From
E to E, from M to E and from W to D). How many cycles are needed to execute the
program? Specify on the diagram which forwarding paths are used. Also point out
the cases where forwarding does not solve dependency issues.

Remarks

¢ For the cycle count of the whole program, stop counting cycles at the “Writeback”
phase of the last execution of instruction 3.

* When executing a jump or a branch instruction, the PC gets modified at the end
of “Memory”.
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[Solution 3]
© @& O
@ ® &
2% ¢
(®
@

Figure 126: RAW dependencies

Figure 127: WAR dependencies

211

Figure 128: WAW dependencies

a) Dependencies

b) Execution diagram
Total schedule length (until W of last execution of instruction #3): 40 cycles

The RAW dependencies are handled in the following way:

® (-4 inexistant
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F [D |E |[M|W

F |D |E [M|W

F |[D |E |[M|W

F |[D |E [M[W

D [E M |W
FD‘EMW

F

F |[D [E MW

F |[D [E M |W
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Figure 129: Execution diagram
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¢ (-5 inexistant

¢ 1-3 the value x5 bypasses M
¢ 1-10 inexistant

¢ 2-8 inexistant

¢ 2-9 inexistant

¢ 4-7 inexistant

* 4-7 the value x1 bypasses M during the first decode; inexistant during subsequent
decodes

¢ 5-5 inexistant
* 5-6 the value x4 bypasses E

* 6-7 the first read of x1 is impossible, a bubble is inserted, afterwards, a M bypass
is needed

e /-7 inexistant
¢ 7-8 the value x2 bypasses E
* 9-9 inexistant
¢ 9-8 inexistant

e 10-3 inexistant
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[Exercise 4]

Consider the following RISC-V code for a hypothetical word-addressed, 16-bit address,
32-bit data processor.

For this exercise, you can assume that a new instruction mult has been added to the
RISC-V ISA. This instruction is defined as: mult rA, rB, rC,corresponding to the
pseudocode: rA = rB x rC.

0 1w x4, 34 (zero) # x4 = M(34)

1 1w x5, 35(zero) # x5 = M(35)

2 addi x6, x4, O # x6 = x4

3 loop: 1w x2, 1(x4) # x2 = M(x4 + 1)

4 mult x2, x2, x2 # X2 = x2 * X2

5 beq x5, zero, fin # if x5 = zero then go to fin
6 1i x2, -1 # x2 = -1

7 1w x1, 0(x4) # x1 = M(x4)

8 begq x1, zero, fin # if x1 = zero then go to fin
9 addi x4, x1, O # x4 = x1

10 add x4, x4, x6 # x4 = x4 + x6

11 addi x5, x5, -1 # x5 = x5 -1

12 3j loop # go to loop

13 fin:

a) Identify all RAW, WAR, and WAW dependencies (ignore the pipelined structure of
the processor). Consider the first two iterations of the loop.

b) Draw an execution diagram of the code. Assume a six-stage pipeline (“Fetch”,
“Decode”, “Execute”, “Memoryl”, “Memory2”, and “Writeback”), with all forward-
ing paths (From E to E, from M1 to E, from M2 to E, and from W to D). How many
cycles are needed to execute the program? Specify on the diagram which forwarding
paths are used. Also, point out the cases where forwarding does not solve dependency
issues.

Remarks

¢ For the cycle count of the whole program, stop counting cycles at the “Writeback”
phase of the second execution of instruction 5.

* When executing a jump or a branch instruction, the PC gets modified at the end
of “Memory2”.
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[Solution 4]

a) Dependencies

—> = critical

Figure 131: WAR dependencies

,9°°%

©®
®Yene®

Figure 132: WAW dependencies

Zoom-in on M1/M2
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RE!
RF;
|F D E M1—f—-M2 W

Figure 133: Pipeline structure

* Load values only available at end of M2!
* Only ALU results can be bypassed at the end of M1!
Tacc = 2 cycles

l:l LD/ST Data Memory |
[ ]AL ops & Cache

etc. l Ml}—'—-[MZ etc.

H

Figure 134: Zoom-in on M1/M2

b) Total schedule length (until W of second execution of instruction #b5): 40 cycles

Situations where forwarding is not enough

e Bubbles are still added for:

- Any instruction with a dependency from a Load 1 cycle before generates 2
bubbles

- Any instruction with a dependency from a Load 2 cycle before generates 1
bubbles

¢ Bubbles are avoided for any dependency from ALU operations
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Figure 135: Execution diagram
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[Exercise 5]

Consider a processor with a simple seven-stage pipeline: “Fetch”, “Decode”, two “Ex-
ecute” stages, two “Memory” stages, and one “Writeback”. All logic and arithmetic
operations are done in the first E1 stage, except multiplication which takes until E2.
The processor designer asks if it would be better to add detection logic for control
hazards, or additional forwarding paths. He considers the two following alternatives:

1. The processor has no forwarding paths. Reading a value in the RF can only be
done one cycle after a write. If the processor encounters a jump (both conditional
and unconditional), it continues to read and decode subsequent instructions. At
the end of E2, the processor knows if the branch should be taken or not. If it
is taken, the pipeline gets flushed, the instructions in the preceding stages are
discarded and the processor jumps to the correct instruction. If not, execution
continues.

2. The processor has the following three forwarding paths: From E1 to E1, from
E2 to E1, and it can read a value from the RF during the same cycle it is written
(Register file forwarding). However, there is no control hazard logic: all instruc-
tions entering the pipeline are executed until the destination of a jump is known
(which is, as above, at the end of E2). Therefore, the code has to contain delay
slots.

Consider the following benchmark program. You can assume that a new in-
struction mult has been added to the RISC-V ISA. This instruction is defined as:

mult rA, rB, rC,corresponding tothe pseudocode: rA = rB % rC.
1000: loop: 1w tl, 0(al)

1004: addi al, al, 4

1008: beq al, a3, end

1012: add tl1, tl1l, a2

1016: 1w a0, 0(t1l)

1020: jal ra, quad

1024: add t2, t2, a0

1028: Jj loop

1032: end:

2000: quad: mult a0, a0, a0

2004 : mult a0, a0, a0

2008: jalr zero, ra, O

At the beginning, a1 points to a vector of several elements: [13,12,11,7,14,---]and a3

points to the third element of the vector.
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a) Simulate the code using the first processor. How many cycles are needed to execute
the code? How many cycles are wasted because of data hazards? How many because
of control hazards? (The program terminates when fetching the instruction at end:).

b) Insert nop operations where needed such that the execution is correct on the second
processor. Simulate the resulting code. How many cycles are needed? How many
cycles are wasted because of data hazards?

c) Are all those nop’s necessary? Reorder the instructions to replace the nop’s. How
many are still remaining?
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Figure 137: Execution diagram for processor 2
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Total number of cycles 49
Lost cycles due to data hazards 22

Lost cycles due to control hazards 12
b)

Total number of cycles 31

Lost cycles due to data hazards 1

c)

loop: 1lw tl, 0(al)
addi al, al, 4
beq al, a3, end
nop
nop
nop
add tl1, tl, a2
1w a0, 0(tl)
jal ra, quad
nop
nop
nop
j loop
add t2, t2, a0
nop
nop

end:

quad: jalr zero, ra, O
mult a0, a0, a0
mult a0, a0, a0
nop

Remarks

¢ There cannot be any jumps or branches in the delay slot;

¢ There cannot be any instructions in the delay slots of jal as they would be ex-

ecuted again after the jalr;

* We keep the first three nop’s to handle unconditional jumps more easily.
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[Exercise 6]

Consider a processor with a simple seven-stage pipeline: “Fetch”, “Decode”, “Ex-
ecute”, three “Memory” stages and one “Writeback”. The processor designer asks if
it’d be better to add detection logic for control hazards or additional forwarding paths.
He considers the two following alternatives:

1. The processor has no forwarding paths. Reading a value in the RF can only be
done one cycle after a write. If the processor encounters a jump (both conditional
and unconditional), it continues to read and decode subsequent instructions. At
the end of E, the processor knows if the branch should be taken or not. If it
is taken, the pipeline gets flushed, the instructions in the preceding stages are
discarded and the processor jumps to the correct instruction. If not, execution
continues.

2. The processor has the following two forwarding paths: From E to E and it can
read a value from the RF during the same cycle it is written (Register file for-
warding). However, there is no control hazard logic: all instructions entering
the pipeline are executed until the destination of a jump is known (which is, as
above, at the end of E). Therefore, the code has to contain delay slots.

Consider the following benchmark program. You can assume that a new in-
struction mult has been added to the RISC-V ISA. This instruction is defined as:
mult rA, rB, rC,corresponding to the pseudocode: rA = rB * rC.

1000: loop: 1w tl, 0(al)
1004: beq tl, zero, end
1008: add t1, tl, a2
1012: 1w a0, 0(tl)
1016: jal ra, square
1020: add t2, t2, a0
1024: addi al, al, 4
1028: Jj loop

end:
2000: square: mult a0, a0, a0
2004: jr ra

At the beginning, a1l points to a vector of two elements: [151, 0].

a) Simulate the code using the first processor. How many cycles are needed to execute
the code? How many cycles are wasted because of data hazards? How many because
of control hazards? (The program terminates when fetching the instruction at end:).
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b) Insert nop operations where needed such that the execution is correct on the second
processor. Simulate the resulting code. How many cycles are needed? How many
cycles are wasted because of data hazards?

c) Are all those nop’s necessary ? Reorder the instructions to replace the nop’s. How
many are still remaining?
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[Solution 6]

a)

Total number of cycles 42
Lost cycles due to data hazards 21

Lost cycles due to control hazards 8 (note that, even with a perfect branch predictor,
6 out of these 8 cycles would still be lost due to data hazards)

b)

Total number of cycles 34

Lost cycles due to data hazards 11

c)
loop: lw tl, 0 (al)
beq tl, zero, end
nop
nop
jal square
add t1, tl1l, a2
1w a0, 0(tl)
Jj loop
add t2, t2, a0 # can be swapped with next instruction
addi al, al, 4
end:
square: jr ra
mult a0, a0, aO0
nop
Remarks

¢ There cannot be any jumps or branches in the delay slot;

* We keep the first two nop’s to handle unconditional jumps more easily.
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Figure 138: Execution diagram on processor 1
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Exercise 7

[Exercise 7]

lw
addi
1w
add
addi
addi
add
1w
or

0 addi

O 0 J o U b W N

x1,
x5,
x1,
X3,
X2,
x4,
X3,
X2,
x4,
x7,

0 (x5)
x1l, 1
0(x6)
x0, x5
x6, -1
x3, -5
x2, x4
0(x7)
x2, x1
X3, -9

a) Draw the execution diagram for this code for five different architectures and com-
pare the number of cycles required.

Architecture #1

Multicycle, unpipelined processor.

Execution latencies:

ALU Operations 4 cycles

Memory Operations 6 cycles

Architecture #2 6-stage pipelined, no forwarding paths

RF;

F D }|—{ E }—|—-{M1}—|—{M2 W

Figure 140: Architecture #2

Architecture #3 6-stage pipelined, some forwarding paths
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RE]
RE;

|F D %Ml%—wz W

Figure 141: Architecture #3

Architecture #4 6-stage pipelined, all forwarding paths

RF;

F D %Ml}—lﬁm W

Figure 142: Architecture #4
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Architecture #5 Dynamically scheduled, OOO, unlimited RS and ROB size, 1 ALU
(latency 1), 1 Memory Unit (latency 3)

RF;

A

D [} ROB W
MEM 1

v

—> < > ¢
< > ><¢

F D E/M1/... w

Figure 143: Architecture #5

from F&D from EUs
Unit 1 ! 1 1 1 and RF

Op Tagl Tag2 Argl Arg2

ALU1:

ALU2:

ALU3:

—

L. ALU

Figure 144: Architecture #5 - ALU reservation station

from F&D from EUs
Unit 1 ! 1 1 1 and RF

Op Tagl Tag2 Argl Arg2

MEM1:

MEM2:

MEM3:

——

L MEM

Figure 145: Architecture #5 - MEM reservation station

At the beginning of each cycle:

E phase Issue ready instructions - from all RSs, issue as many ready instructions as
there are FUs available.
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from F&D

Unit T il T 1 —

PC  Tag Register Address Value

from EUs

head
-~to MEM
and RF

tail

Figure 146: Architecture #5 - Reordering buffer (ROB)

W phase Writeback results in order - remove top entry from ROB if completed.

At the end of each cycle:

D phase Load result of decoding stage - To the relevant RS, including ready register
values; To the ROB, to prepare the placeholder for the result.

E phase Broadcast results from all FUs - To all RSs (incl. deallocation of the entry); To
the ROB.
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[Solution 7]

a) Architecture 1

1w
addi
1w
add
addi
addi
add
1w
or

0 addi

R W 0 J o U1 b W N -

x1,
x5,
x1,
X3,
X2,
x4,
X3,
X2,
x4,
x7,

pipeline/dynamic scheduling 7.c

O© 00 N O U1 A WIN -

—
o

Figure 147: Execution diagram for architecture 1

0(x5)
x1l, 1
0(x6)
x0, x5
x6, -1
x3, -5
x2, x4
0(x7)
x2, x1
x3, -9

46 cycles, CPI = 4.6

b) Architecture 2

S o S S S S o e S o

oD oY B DD D oY RO

cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
cycles
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Solution
Architecture #2
RAW dependences

1:|F|D|EMiMwy responsible for stalls
2: |F|p|p|p|DYD|E MM W /
3: FIF|F|F|F|D|E MMl
4: F|D|D|DYD|E [M1jM2|W
5 F|F|F|F|D|EMIMAW
6: o F|p|p|pYp|E Milm2w
7: F FDDDDDEMIMZW\
8: Flr|F[F|F[p]EMimW
o p|p|D|pYo|E MM w
10: FIF|F|F[F|D|E MiM2|w

CPI =3.3

Figure 148: Execution diagram for architecture 2

¢) Architecture 3

pipeline/dynamic scheduling 7.c

1: |F [D |E |[MIM2W

2: F D [E [MIM2PW

3: F |D |E [MIMIW

4 FID E [M1]M2W

5: F [D |E [MIM2W

6: FID E MIMIW

7: F [D|E [MIM2W

8: F |D |E [MIM2PW

9: F.D E [MIMIW
10: F |D |E [MIMIW

Figure 149: Execution diagram for architecture 3 (no M1 to E path)

d) Architecture 4
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pipeline/dynamic scheduling 7.c

1: |F [D|E [M[MoW

2: F D [E MM |W

3: F D |E [M|M|w

4 F[D]E MM |W

5: F [D|E |[M?M|W

6: F ID[E ™ |M|wW

7: FloJe [m|m|w

8: F |D|E [M MW

9: FIIIDEMP4W
10: F |D|E [M|M|wW

Figure 150: Execution diagram for architecture 4

e) Architecture 5

Solution
Architecture #5

Structural hazards

M1|M2|M3§W in the ROB

F|D AW
F | D [M1M2M3| W
FID| Ya| 4 /////
F

D}y A W
Data hazards
/F D A W ‘ - resulting in a

delay in

M3§W execution

=
o

o
=<
=
<
N

@ NSO HRBWNR
[S]
>
w=

W

"
e

Structural hazard CPI — 1 5
— L]

on the ALU

Figure 151: Execution diagram for architecture 5
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[Exercise 8]

Consider a processor with a pipeline corresponding to the following figure:

{E |
L=
E multiply

E|E|E|E

Figure 152: Pipeline structure

The mul has another latency compared to the other instructions.

All forwarding paths are implemented. The writeback stage writes to registers in the
tirst half of the cycle, and decode reads the register file in the second half of the cycle.
When an instruction stalls, all preceding stages stall too. If two instructions arrive at
the Memory stage at the same time, the older one gets priority over the more recent
one. The Writeback stage contains a reordering buffer and the writebacks are only
made if necessary, and are commited in-order.

Assume that the processor always does a sequential execution, with static branch pre-
diction “not taken”, writes the branch destination address to the PC during the Execute
stage, and flushes the pipeline in case the branch is taken.

loop: 1lw t0, 0(t2)
1w td, 0(t3)
mul tO0, tO0, t4
add t1, tl, tO
addi t2, t2, 4
addi t3, t3, 4
bne t5, t2, loop

o U W NP O

Where the initial value for t 5 equals t2+38.

a) Draw RAW, WAR and WAW dependencies.

b) Draw an execution diagram of the code, and specify the forwarding paths used.
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¢) What is the branch penalty when a branch is taken ?

d) Calculate the IPC.

Assume now that the pipeline does not get flushed when a branch is taken. (The
correct branch address is still available at the end of the E stage). This means that
the compiler has to take care of the branch penalty (and has to insert delay slots at
appropriate positions).

e) Do the minimal amount of modifications such that the above code gets executed
correctly.

f) A compiler will try to maximise performance by eliminating stalls and make the
best use possible of the delay slots. Apply these optimisations to the code and give the
best possible code.

g) Draw the execution diagram of the code and specify all forwarding paths used.

h) Calculate the IPC.
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[Solution 8]

a)

Figure 154: WAR dependencies

()
© O
® \0

7

Figure 155: WAW dependencies

b)
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pipeline/dynamic scheduling 8.b

w |F D |E |M|W
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Figure 156: Execution diagram before modifications

¢) Branch penalty = 2
d) IPC = 14/27 = 0.518

e) Minimal modifications

0 1loop: 1w St0, 0($t2)

1 lw  St4, 0(St3)

2 mul $t0, $t0, S$t4
3 add S$tl, $tl, $tO
4 addi $t2, S$t2, 4

5 addi $t3, $t3, 4

6 bne $t5, S$t2, loop
7 nop

8 nop

f) Optimised

0 loop: 1lw $t0, 0(St2)

1 1w  St4, 0(St3)

4 addi $t2, st2, 4

2 mul S$t0, $t0, $t4
5 addi s$t3, s$t3, 4

6 bne $t5, S$t2, loop
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7 nop

3 add $tl, $tl, $tO

g)

pipeline/dynamic scheduling 8.9
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Figure 157: Execution diagram of optimised code

h) IPC = 14/22 = 0.64 (without counting the nop’s)
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[Exercise 9]

Consider a RISC-V processor with a pipeline corresponding to the following figure:

lw |IF | DX | LD

mul | IF | DX | EX

other | IF | DX

Where the stages are:

IF Instruction Fetch
DX Decode and Execute
LD Memory read

EX Second half of execute for the multiplication

Register read is done at the beginning of DX, writing at the end of LD, EX and DX.
Branch decision is done at the end of DX, and the destination address gets written into
the PC.

The processor neither has forwarding paths nor can stall the pipeline: All hazards
and conflicts have to be solved by the compiler or the programmer, who must insert
instructions which do not cause hazards, or nop’s.

The program uses the neg pseudoinstruction of the RISC-V ISA. This pseudoin-
struction is translated in the following way: neg rA, rB maps to the instruction:
sub rA, x0, rB.

You can also assume that a new instruction mult has been added to the RISC-V ISA.
This instruction is defined as: mult rA, rB, rC,corresponding to the pseudocode:
rA = rB x rC.

Consider the following program:
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0 loop: 1w

1 neg
2 1w

3 neg
4 mult
5 add
6 addi
7 addi
8 addi
9 bne
10 reinit: addi

t1,
tl,
t2,
t2,
tl,
t3,
t3,
t4,
t5,
t5,
t5,

0(t3)
tl
0(t4)
t2

tl, t2
t3, tl
t3, 4
t4, 4
t5, -1
zZero,
zZero,

a) Give all RAW dependencies.

b) Draw the execution diagram representing the execution of this code in the pipeline

(stop at mult in the second iteration of the loop).

¢) Does this program work correctly? Explain the different problems, and correct the
program inserting only nop’s.

d) Draw the execution diagram of the modified code.

e) Calculate the CPI.

f) Optimise the program, this time by reordering some instructions, and try to remove
as many nop’s as possible.

g) Draw the execution diagram of the optimised code.

h) Calculate the CPI.
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[Solution 9]

a)

b)

Figure 158: RAW dependencies

pipeline/dynamic scheduling 9.b

I

Figure 159: Execution diagram

c¢) Problems with the execution of the code: (Only dependencies of instructions that
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come one after the other are critical in the given pipeline, thus only those dependencies
are shown on the execution diagram)

* blue stages: Old value of register t1 (or t2) is negated instead of the value loaded
from the memory. Also there is a race (thus a conflict) between the D and L stages
to store the value of negated or memory read result to the register t1 (or t2).

¢ yellow stages: The value added to the content of t3 is not the multiplied value
but one of the values read from memory.

¢ red stages: The value of t5 is reset to 10 even if the execution continues from the
instruction labelled as loop. Thus, this loop will be executed infinitely!

All these problems are a consequence of the fact that the DX stage cannot be delayed
since the pipeline does not have the capability to stall. Therefore, for each of the prob-
lem situations described above we have to insert a nop. The corrected code would be
as follows:

loop: 1w tl, 0(t3)
nop
neg tl1, tl
1w t2, 0(t4)
nop
neg t2, t2
mult tl, tl, t2
nop
add t3, t3, tl
addi t3, t3, 4
addi t4, t4, 4
addi t5, t5, -1
bne t5, zero, loop
nop

reinit: addi t5, zero, 10

d) addi t5, zero, 10 is no more executed. The branch followed by a nop now
correctly branches to the label 1oop:.

e) CPI = 23 cycles / 15 instruction = 1.53 (The nop instructions do not count in the
calculation)

f) What we need to do is to replace some instructions such that the instructions we
move do not have the dependencies that cause the hazards and conflicts and do not
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pipeline/dynamic scheduling 9.d

w |1 |D|L
nop 1
neg I |D

nop I
neg 1 |D
mult 1 IDIE
nop I
add 1 ID
addi I |D
addi I |[D
addi I |[D
bne I |D
nop I |D

nop I
neg I [D

nop I
neg I |D
mult I [D|E
nop I

Figure 160: Execution diagram of modified code
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change the functionality of the code, thus respect their own dependencies. We can
move instruction 2 in the original code under instruction 0 since instruction 2 does not
have any dependency on instructions 0 and 1. This move actually removes two nop’s
from the code. One nop is filled by instruction 2 by being placed under instruction 0.
The nop under instruction 2 becomes replaced by instruction 1.

Other than this move, instructions 6, 7 and 8 of the original code can be replaced.
These instructions operate on a single register (read and write to the same register).
Each of these instructions can be moved inside the region where the register they
operate on is neither read nor modified. Thus, instructions 7 and 8 can be moved into
the place of the nop that is under the mult instruction.

Similarly, instructions 6 and 7 can be moved into the place of the nop under the bne
instruction. For the code presented below, one of the above replacement possibilities
is selected and its execution diagram is depicted.

loop: 1w tl, 0(t3)
1w t2, 0(t4)
neg tl, tl
neg t2, t2
mult tl, tl, t2
addi t5, t5, -1
add t3, t3, tl
addi t3, t3, 4
bne t5, zero, loop
addi t4, t4, 4
reinit: addi t5, zero, 10

g) In figure the instructions which have been reordered are highlighted in green.
h) The CPI of this optimised code is: C'PI = 18 cycles/15 instructions = 1.2

Speedup = (1.53 — 1.2)/1.53 =~ 0.22 (22% faster execution time)
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pipeline/dynamic scheduling 9.g

w |1 |D L

Figure 161: Execution diagram of optimised code
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[Exercise 10]

Consider a processor which executes RISC-V instructions, and which has a six-stage
pipeline: Fetch, Decode, Executel, Execute2, Memory, Writeback. Logic operations
(and, or, sl11, ...) are done in E1, but the results from arithmetic operations are
available at the end of E2. Jump destination gets loaded into the PC at the end of E2,
and the processor has no control hazard logic (it cannot stall the pipeline).

Consider the following program (all constants are in decimal)

addi t0, =zero, 100
addi t2, zero, 2
3% t2, 900(tO0)
addi t2, zero, O
1w tl, 1000 (zero)
loop: add t2, t2, tl
addi t1, t1, -1
bne tl1, zero, loop
add t3, t2, zero
slli t2, t2, 2
add t2, t2, t3
slli t2, t2, 2

R P O oo Jo Und WK O

= O

a) What is the value of t 2 at the end of the execution ? Explain why.

b) Explain what characterises a RAW dependency. Does the instruction

addi t1, t1, -1

have such dependencies? If so, specify which instruction it depends on.

c) Assume that another version of the processor has no forwarding paths, and cannot
do register file bypass (Decode and Writeback cannot access the same register at the
same time). The processor inserts stall cycles in case of data hazards. Draw the execu-
tion diagram showing the execution of the program. What is the IPC on this processor?

d) Consider a second version of our processor, for which we add a forwarding path
from E2 to E1 (There is still no register file bypass available.) Modify the execution
diagram, show where the forwarding path is used, and calculate the IPC.
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e) Is it possible to make some changes to the second processor (without changing the
pipeline structure, or the instruction latency) to make that code execute faster? Briefly
present different solutions. Could jump prediction be useful?

f) Alternatively, assume that we do not change the second version of the processor:
Could we optimise performance by reordering some instructions? If yes, show the
optimised code and calculate the IPC. If not, explain why.
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[Solution 10]

a) The execution and the results of each instruction for the given program is given
below

addi t0, zero, 100 # tO <— 100
addi t2, zero, 2 # t2 <= 2
sw t2, 900 (t0) # M[1000] <- 2
addi t2, zero, O # t2 <= 0
1w tl, 1000(zero) # tl <— M[1000]=2
loop: add t2, t2, tl ¥ £t2 <—= 2
addi tl1l, tl, -1 # tl <- 1
bne tl1, zero, loop # go to loop
add t3, t2, zero # £t3 <- 2 (delay slot)
slli t2, t2, 2 # t2 <— 8 (delay slot)
add t2, t2, t3 # t2 <= 10 (delay slot)
loop: add t2, t2, tl # t2 <= 11
addi tl1, tl1, -1 # tl <= 0
bne tl1, zero, loop # continue
add t3, t2, zero # £t3 <= 11 (delay slot)
slli t2, t2, 2 # t2 <- 44 (delay slot)
add t2, t2, t3 # £t2 <= 55 (delay slot)
slli t2, t2, 2 # t2 <= 220

At the end of the execution, the value 220 is stored in register t 2. Note that delay slots
are always executed (whatever the result of the branch is) affecting the final value of
register £ 2.

b) RAW (Read After Write) dependencies are characterised by an instruction reading a
register which is modified (written) by a previous instruction.

addi t1, t1, -1

has RAW dependences on the following instructions:

1w tl, 1000 (zero)

and itself (due to the loop). Note that the instruction bne t1, zero, loop has
RAW dependency on this addi instruction.

c) Figure shows the complete execution of the above code assuming the processor
has no forwarding paths (including the register forwarding path).
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Figure 162: Execution diagram, no forwarding path
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Notes on the organization of Figure[162}

* On the left of the diagram the code to be run can be found.

* The arrows shown on top of the diagram point to the earliest cycle end where a
register which causes a RAW dependency is written to the register file. The red
of these arrows depicts the end of cycles which frees the pipeline from stalling
(while the grey dotted arrows do not have direct significance on the execution,
and are just given for informative purposes).

¢ The cycles where the pipeline is stalled is shown with dark background
* The delay slots instructions are always executed after the branch.

¢ The fact that logic instructions are completed at the end of E1 stage does not
help avoiding the pipeline stalls. Since the pipeline is a rigid structure even if the
result of the execution is obtained early it can only be written to the register file
as if it is executed in two execution stages.

The IPC of this execution is (18 instructions) /(55 cycles) ~ 0.33

d) Figure [163|on page [396] depicts the complete execution of the above code assuming
the processor has a forwarding path between the end of the E2 stage and the beginning
of the E1 stage.

The IPC of this execution is (17 instructions)/ (40 cycles) ~ 0.43

e) Since there is a single forwarding path these E2 stage output values do not persist
and are lost if the shown value can not be used in that cycle. There are such cases in
the execution where the opportunity to use the forwarding path is missed because the
forwarded value is only available at the beginning of one cycle (e.g., the forwarding
path cannot be used for the sw instruction because it has a RAW dependency on the
tirst 2 instructions). If the E2 stage output cannot be used this is shown with a grey
arrow while red arrows are used when the forwarding path can help avoiding stalls.
The IPC of this processor pipeline version is approximately 0.43 as shown under the
diagram. The improvement with respect to the first execution is (0.43 - 0.33)/0.33 = 0.3
= 30%.

f) Possible improvements:
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Figure 163: Execution diagram, with forwarding path E1 to E2
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* Putting an extra forwarding path between the end of M stage and the beginning
of E1 stage. If the second execution is compared with the first we see that the
single forwarding path is only useful if an instruction has a RAW dependence
on a single previous instruction. If there are multiple instructions on which an
instruction has RAW dependencies, then the forwarding path becomes useless.
An example is the stall during the sw instruction. Having this extra forwarding
path will avoid the stalls due to multiple RAW dependencies;

¢ Introducing an extra forwarding path between the end and the beginning of E1
stage: This will provide the results of logical instructions to be transferred to the
next instruction through the forwarding path thus avoid some of the stalls;

* Register file forwarding can of course be introduced to decrease the stall one cycle
for stalls depending on the register file;

¢ Branch prediction will eliminate the use of delay slots. This simplifies the work of
the compiler and the code becomes more readable. As for the performance, nops
will not be needed (when delay slots can not be filled with other instructions),
which will lead to a better performance;

g) We cannot improve the code by reordering the instructions because the data
dependencies of instructions are such that instructions can not be reordered
without changing the semantics of the code (except for addi t0, zero, 100 and
addi t2, zero, 2, but still a change in the order does not bring any improve-
ment).
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[Exercise 11]

Consider a processor which executes RISC-V instructions, and has a five-stage
pipeline: “Fetch”, “Decode”, “Execute”, “Memory”, “Writeback”. RF reading is done
during Decode, and writing during Writeback. There is a single forwarding path from
M to E. Control hazards never stall the pipeline and the processor therefore needs two
delay slots (the PC gets modified in case of jumps or branches at the end of Execute).

In addition to the usual RISC-V instructions, this processor also implements mult and
multi which multiply two registers or a register with a constant respectively. These
instructions take three cycles in the Execute stage instead of only one. During the first
and second cycles, the pipeline gets stalled, and the other states (F, D, M, and W) are
blocked.

Consider the following code:

2000: addi t1, =zero, 2
2004: addi tO0, =zero, 1000
2008: 1w t2, 0(t0)
2012: multi t2, t2, 7
2016: addi t1, t1, -1
2020: bne tl, zero, 2008
2024 : sw t2, 100(t0)
2028: addi tO0, tO0, 4
2032: addi t0, tO0, -4

a) Draw the execution diagram for the execution of that code (until the instruction at
address 2032). Specify when the forwarding path gets used.

b) What is the CPI?
¢) Why does this architecture have two delay slots, and not another amount?

You will now implement part of the control logic for the pipeline. More precisely,
you have to write the logic which controls the pipeline progress according to the de-
coded instruction. When D decodes a new instruction, the mcycle signal gets asserted
(mcycle = 1) if the instruction is a three-cycle instruction (in this case either mult or
multi); or mecycle = 0 if it is a normal instruction. Using this signal, you must gen-
erate advance, which specifies if the pipeline must advance or not. Also, the two bit
signal cycle must be generated for the Execute stage. For normal instructions, it has to
be zero, whereas for three-cycle instructions it must count up to 2.

d) Complete the timing diagram with the advance and cycle signals:
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Figure 164: Pipeline and control signals
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Figure 165: Timing diagram for the control signals

e) Draw the finite state machine which implements this behaviour, and generates the
signals.
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[Solution 11]

a)

pipeline/dynamic scheduling 11.a

addi |r |p |E [M|wW
addi FIDI|E IMoW
lw F p [E [Mow
multi F o Ve [e e [m|w

addi F D |E IMoW
bne E D "E

=

SwW F
addi F
Iw
multi F p [E |E [E [M]|w
addi F D |E MW
bne F D [E
SwW F
addi F
addi
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=
=

=

m (o |mi=
=
=

Figure 166: Execution diagram

b) CPI = 30/15 = 2

¢) The sw and addi instructions at addresses 2024 and 2028 are instructions executed
during delay slots.

By the time a branch instruction reaches the end of E stage, two more instructions
have entered (e.g., in the above code sw and addi instructions) the pipeline. The slots
occupied by these two instructions are called “delay slots”.

d) The time diagram of (part of) the pipeline stall control is given below.

In Figure we see the execution pipeline stage performing different operations for
different instructions. The multiplication operation is performed during Mul Instr
Exec cycles. As required the multiplication execution is performed in three cycles
while operations corresponding to other instructions (such as instr 1, instr 2 etc.) are
performed in a single cycle. We can summarise the signal waveform for Mul Instr Exec
as follows: In the first cycle the mcycle bit is set right after the clock since mcycle is
a register bit. The advance signal becomes 0 together with the mcycle becoming 1 (at
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Figure 167: Solution of time diagram for pipeline control signals

this step advance is controlled by mcycle). This is required to stall the pipeline for the
next cycle. At the beginning of the next cycle, the state machine detects that a multi-
cycle operation is being performed (since mcycle = 1), keeps advance at level 0 and
updates cycle as 1.

In the beginning of the 3rd cycle, the state machine sets the advance signal to 1 so that
at the end of the 3rd cycle (at the beginning of the 4th cycle), information for the next
instruction can be loaded to the execution stage input register. At the same time cycle
is set to value 2. In the beginning of the 4th cycle, the state machine returns to the state
where a single cycle operation is performed, setting cycle to 0 and allowing the ad-
vance signal being controlled by the mcycle signal (this is needed to restart the 3 cycle
stall if there is again a multicycle operation). When we analyse the above behaviour
we see that the state machine requires only three states and each state corresponds to
a different value of the cycle signal. The state transitions of this state machine, as well
as the outputs generated during each state are shown in the figure below. We see that
the only input to the state machine is mcycle.

mcycle=1

Figure 168: Finite state machine transitions
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state | advance cycle

0 mcycle 0
1 0 1
2 1 2

Table 28: Output signals in each state
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[Exercise 12]

Consider the following code (all constants are in decimal):

0 addi t0, =zero, 100
1 addi tl, zero, 200
2 1w t0, 0(tO0)

3 1w tl, 0(tl)

4 loop: 1w t2, 0(tl)

5 add t2, t2, tl

6 SW t2, 0(tl)

7 addi t1, t1, 4

8 addi t0, t0, -1

9 bne t0, zero, loop
10 end: addi t3, =zero, 400

This code will be executed on a RISC-V processor with a five-stage pipeline (“Fetch”,
“Decode”, “Execute”, “Memory”, “Writeback”), which possesses the forwarding paths
from E to E, and from M to E. It also has register file forwarding (Writes happen in the
first half of W, reads happen in the second half of D). Jump decisions are taken at the
end of E when the destination address is written into the PC. The F state is blocked
until the correct jump address is known every time a jump or a branch is decoded.
The processor has separate data and instruction caches, which allows F and M to be

independent (like in usual RISC-V pipelines).
a) Give all RAW dependencies in this code.

b) Draw the execution diagram of the code, running on the specified processor. Stop
your simulation at the instruction at label end. Assume that M [100] = 2. Specify which
forwarding paths are used. What is the CPI of this program?

Assume now that the processor has a unified data and instruction cache, which is
single-ported. F and M cannot access the cache at the same time. This can lead to
structural hazards, which have to be solved. These situations happen when a 1w or sw
is in M. The pipeline controller must insert a stall either at F or M.

¢) In what stage must the stall be inserted? Why? Draw the execution diagram for the
code using the modified pipeline. Specify all forwarding paths that have been used.
What is the CPI?

To lower the branch penalty, a branch predictor is added to the processor. It is imple-
mented using a single bit. When a jump instruction is in F and the prediction bit is 1,
the controller writes the destination address into the PC at the end of F. If the bit is 0,
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the PC is incremented as usual.

If at the end of E we notice that the prediction was wrong, the correct address is written
into the PC and the end of E and the instructions in the pipeline are flushed.

The prediction bit gets inverted when the prediction was wrong, and stays at its value
if the prediction was correct.

d) Suppose that the initial value of the prediction bit is 1 and that M [100] = 2. Calcu-
late the CPI for the processor with branch predictor (running the same code as above).
Hint: Use the execution diagram from the preceding question and show the differ-
ences, instead of drawing a new one.
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[Solution 12]

a) Dependencies are given in the following graph. The labels on the arrows represent
the register name creating the dependency.

Figure 169: RAW dependencies

b) On Figure blocked stages are represented by red backgrounds. It can be seen
that there are blocked stages because of jump and memory instructions even though

all forwarding paths are available. Jump instructions stall the pipeline until they get to
the end of E.

c) If M is chosen to stall allowing F to access the cache, the whole pipeline will be
blocked. Therefore, the controller must block F. Figure shows execution with a
unified cache.

The cycles where F is blocked to let M access the cache are shown against a green
background. All other blocked states (because of RAW dependencies or jump hazards)
are highlighted in red. The CPI is now C'PI = 32 cycles/17 instructions ~ 1.88.

d) Since the prediction bit is 1 at the beginning, the prediction is correct on the first
time, but wrong for the second time. We lose two cycles in case of a prediction error,
because the PC gets updated two cycles after F, at the end of E. In case of a correct
prediction, we do not lose any cycles. Therefore, compared to the situation without
branch predictor, the execution takes two cycles less.
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pipeline/dynamic scheduling 12.b

addi [F |p |[E |M oW
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Figure 170: Execution diagram

pipeline/dynamic scheduling 12.c

addi [F |p |[E [M oW
addi F D |E |MoW
Iw F o [mw

Iw F [D[E [M%W
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Figure 171: Execution diagram with modified pipeline
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[Exercise 13]

Consider a pipeline consisting of seven stages: “Fetch”, “Decode”, “Executel”, “Ex-
ecute2”, “Memoryl”, “Memory2”, “Writeback”. All arithmetic operations except mul-
tiplication are done in E1, multiplication results are ready at the end of E2. Memory
operations always need both M1 and M2.

The following processor implements the pipeline described above and executes two
programs:

PC1 PC2 }0: RF1 “F—]
Thread R i ) RF2 -
L
F==D=fE1==E2==M1==M2==W
1

Figure 172: 2-way multithreaded pipeline

This structure is called “2-way multithreaded”. The processor has two register files
(RF1 and RF2) and two program counters (PC1 and PC2), which are used for pro-
grams 1 and 2, respectively. The Thread signal selects from which program the next
instruction is fetched, and changes its value at every cycle. This signal also is inserted
in the pipeline and moves forward along the instruction, because we have to remem-
ber to which program the instruction belongs: It is necessary to read and to write to the
correct RF during D and W. In case of a data hazard, the pipeline is stalled as usual,
and Thread stays at its value.

For this exercise, you can assume that a new instruction mul has been added to the
RISC-V ISA. This instruction is defined the following way: mul rA, rB, rC,which
corresponds to the pseudocode: rA = rB % rC. The subi instruction was also ad-
ded to perform subtraction with an immediate value. subi rA, rB, imm corres-
pondstorA = rB - imm

Consider the following programs:
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Program A
addi t0, t0, 4
add tl, tl, tO
add t2, zero, tO
1w t0, 0(tl)
mul t3, t2, tO0
add t0, zero, t2
add t3, t3, tO
Program B
1w tl, 0(tO0)
1w t2, 4(t0)
addi tl, tl, 4
add t3, tl, t2
subi t3, t3, 4
SwW t3, 0(t2)

a) Assume that the only forwarding path is E2 — E1, as mentioned on the figure.
(There is no register file forwarding). Draw the execution diagram showing the ex-
ecution of the two programs on that processor. The processor starts by fetching the
first instruction of program A and fetches the first instruction of program B during the
second cycle. Specify when the forwarding path is used.

b) If we added the forwarding path from E1 to E1, would we get a better performance?
If yes, present a simulation showing such a situation. If no, explain why.

c) If we added the forwarding path from M2 to E1, would we get a better performance?
If yes, show where this forwarding path would be useful in the simulation or give a
simulation in which it would be useful. If no, explain why.

d) If we added register file forwarding, would we get a better performance? If yes,
show where this forwarding path would be useful in the simulation or give a simula-
tion in which it would be useful. If no, explain why:.

e) Assume that we change the arithmetic unit with a smaller one, but for which all
operations take two cycles. All results are ready at the end of E2. What consequences
would that change have on performance? Explain your answer. Explain in your own
words what is the usefulness of a multithreaded processor.
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[Solution 13]

a) Figure shows the execution of both programs, where program A is in blue, and
program B in yellow. From the diagram, we can conclude that execution lasts 29 cycles.

pipeline/dynamic scheduling 13.a

stagel1 |2 [3 |4 |5 |6 |7 [8 |9 |10|11]|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29
addi |F |p [E1|E2MIM2W
Iw F |D |E1|E2|M1MIAW
add F | Je1|e2|mimdw
Iw F |D |E1|E2|MIMIW

addi F |D |E1|E2?M1MI W

subi F |D |E1|E2?MIMI W

Figure 173: Execution diagram

b) The forwarding path from E1 to E1 is useless because fetch alternates between the
two programs. Therefore we cannot forward any data back to the same stage, because
it will contain an instruction from the other program during the next cycle. The data
has to be given to an instruction from the same program.

c) The forwarding path from M2 to E1 can be useful to improve the performance. In
case of a stall, waiting time can be reduced, and it can also avoid stalls. It is useful
because the data we have at M2 belongs to the same program as those in D, which
might have a dependency on it. During the next cycle, the data will be available on the
forwarding path, and the instruction having the dependency will be in E1 and will be
able to use the data from the forwarding path. Therefore, it is possible to give data not
to the next instruction, but to the one after.

It is also possible to find a situation in the execution diagram for the two programs
for which the existence of the forwarding path would lower the execution time. These
situations are represented by red arrows on the following diagram. The red crosses
show which stages would disappear with the changes.
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Figure[I74]shows the forwarding path possibilities brought by the M2 to E1 forwarding
path, and Figure shows the execution once the paths are implemented.

pipeline/dynamic scheduling 13.c (1)

stage|1 (2 (3 |4 |5 |6 |7
addi |F |D |E1|E2?MIMABW
Iw F | |E1]E2] M1 MAW
add F |p Je1|e2|mi
Iw F |D |E1/E2[M]]

@
o]

10]11/12)13|14|15[16(17|18|19(20(21|22|23|24|25|26|27| 28|29

M1l M
EXM1MAW
E2| M1 Mtw
D JE1|E2|M1M

-
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Q QO
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7 o ==
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E1|E2[M1M
E1|E2MiMAw

3
=
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n U’é

Figure 174: M2 to E1 forwarding path possibilities

pipeline/dynamic scheduling 13.c (2)

stagel1 |2 |3 |4 |5 |6 |7 |8 |9 |10{11[12{13|14]15{16/17]|18[19]20]|21]|22|23]24]25|26|27]28]29
addi |F |D |E1|EM1M2PW

lw F |D |E1|E2|MIMBW

add F |p Je1[e2|MiMBW

Iw F |D |E1/E2|M1MBW

add F |D [E1|E2|MIMIW

addi F |D |E1|E2MIM2W

Iw F |p [E1]e2lmimaw

add F |p Je1[e2|mimaw

mul F D [E1|E2|MiMBW

subi F |p YE1|E2AMIMAW

add F |D |E1|E2¢MIMIAW

sw F |p Je1|e2|mimaw
add F |p Ye1|e2|MimAw

Figure 175: Execution diagram with M2 to E1 forwarding paths implemented. Note
that the forwarding path from add to mul can’t be used as there is still a dependency
with 1w.
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d) This forwarding path can improve performance because it can lower the wait time
in case of a stall. Figure shows situations where register file forwarding is useful
and Figure shows the execution once the register file forwarding is implemented.

pipeline/dynamic scheduling 13.d (1)

stagel1 |2 |3 (4 |5 |6 |7 |8 |9 [10[11]12/13|14{15|16|17]18]19|20|21|22|23|24|25|26/27|28|29

addi |F |D |E1/E2PMIM2W

Iw F |p |E1|e2| MMy w
M1

add F |p E1]E2

Iw F |D |E1|E2 \41 M\gw
add F D |E1le2mimIw
addi F D [Exle2tmimdw

subi F D [e1|ex¢mimaw

Figure 176: Register file forwarding possibilities

pipeline/dynamic scheduling 13.d (2)

stagel1 |2 [3 |4 |5 |6
addi |F |D |E1|E2¢M1 M2
Iw F |D |E1|E2|M1M2
add F b Je1e2[ M1 M2
Iw F [D|E1
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Figure 177: Execution diagram with Register File forwarding paths implemented
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e) For the first processor, even though most operations complete in E1, they still have
to traverse E2. It does not matter if calculations are performed in E2 or not. Changing
the execution unit only changes how the calculations are distributed, but does not
change their latency. Therefore, total cycle count and performance will not change.

The idea behind multithreaded processors is to insert independent instructions into
the pipeline to reduce the number of data hazards. Since the register files are distinct,
the instructions coming from different programs become totally independent. If sev-
eral mutually independent instruction streams are interleaved, the distance between
the dependencies increases, which makes them easier to solve, or even makes them
disappear. At the limit, if we have a n-way multithreaded processor, where n is lar-
ger or equals the number of stages in the pipeline, it will be impossible to have data
hazards. In that case, there can only be one instruction from some program at a time
in the pipeline. Unfortunately, this only works if there are n threads scheduled for
execution.
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[Exercise 14]

In this question, you will use a VLIW processor to evaluate the values of the first few
Fibonacci numbers. The Fibonacci numbers are defined by the recurrence relation

Fi=Fi 1+ Fiy,

where £y = F} = 1. To evaluate the first n Fibonacci numbers iteratively, we can write
a C code like this:

F[O] = 1; F[1] = 1;
for (i=2 ; i<n ; i++)
Fli] = F[i-1] + F[i-2]1;

Assuming that the F [ ] will be stored to the memory starting from the address 0x1000,
for n = 6 the corresponding assembly code for RISC-V would be like this:

addi tO0, zero, 1

sSwW t0, 0x1000 (zero)
addi tl1, zero, 1
sSwW tl, 0x1004 (zero)

addi t5, zero, 16
add to6, zero, zero
loop:

1w t0, 0x1000(t6)
1w tl, 0x1004(t6)
add t2, t0, t1l

sSwW t2, 0x1008 (t6)
addi to6, t6, 4

bltu t6, t5, loop

Our VLIW processor uses the same assembly except that we can specify which instruc-
tions could be run in parallel. To do this, we write each block of instructions that could
run in parallel on a single line and separated by &. For example, assuming that the
instructions on lines 1 and 3 could be run in parallel and so do the ones on 2 and 4, we
can replace the first 4 lines of the code with:

addi tO0, zero, 1 & addi tl1, zero, 1
sSw t0, 0x1000 (zero) & sw tl, 0x1004 (zero)

Missing instructions in a block will be automatically filled with nop. A line with a
single & character means all nop.

For all the questions, at the end of the execution, the values of the F' array should be
in the memory starting from the address 0x1000. You can use registers freely, i.e., you
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Figure 178: VLIW Processor Pipeline.

can assume that all the temporary registers t 0-t 6 are free and need not to be restored
at the end.

a) Assume that our processor has 2 load/store units, 1 branch/jump unit, and 2 ALU as
shown in the Figure It has RISC-V like 5 stage pipeline: Fetch, Decode, Execute,
Memory, and WriteBack where all forwarding paths (of a classical RISC-V processor) are
enabled (E—E, M—E, W—D) (they’re not shown on the figure). For the branch/jump
unit, we have E—B and M—B forwarding paths enabled.

You can also assume that you have a branch predictor that always evaluates to “true”
and in the case of a branch instruction the next instruction is fetched without any delay
slots. The Fetch and Decode stages will be flushed if the prediction is wrong. For ex-
ample, in the given code, the instruction on line 8 would come after the branch on line
13 without any delay slots and the mentioned flush will occur at the end of the loop.

In the given assembly code, considering only one iteration of the loop (lines 8 to 13),
show all the (intra-loop) dependencies and write that part of the code (without modify-
ing the instructions) in our VLIW assembly to get the maximum IPC using parallelism.
You can reorder the instructions to construct the blocks properly. Draw the execution
diagram of one iteration, showing the pipeline stages and forwarding paths used.

b) Now, modify the code for the loop in any possible ways (lines 7 to 13) to finish
execution in the least possible number of clock cycles for the case of n = 6. This time,
you are allowed to remove or modify the instructions. Write your resulting code in our
VLIW assembly and draw the execution diagram of the whole loop.
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c) Assume that the value of n is determined dynamically and it is loaded to t 5 prior
to the start of the code snippet; i.e., line 5 of the code is removed and t 5 is assumed to
be determined during run time. Also assume that we now have one load/store less, i.e.,
a processor with 1 load/store, 1 branch, and 2 ALU. Modify the initial code for the loop
to make use of the parallelism as much as possible. Write your resulting code in our
VLIW assembly. Compare the number of clock cycles required to complete executing
this code with the code you have written for question |1/ for n = 1000 (you can ignore
overflow problems).
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[Solution 14]

a) The dependencies are as follows (the numbers represent the line numbers of the
instructions):

e RAW:

- 8—10 for t0
- 9—=10for t1
- 10—11 for t2
- 12—13 for t6

e WAR:

- 8=12fortb
- 912 forté
- 11=12for t6

* WAW: Nothing.

The possible solution for the maximum IPC is given below.

1w t0o,
&

add t2,
sw t2,
bltu t6,

0x1000 (to)

t0o, tl
0x1008 (t6)
t5, loop

& 1w tl, 0x1004(tH5)

& addi t6, to6, 4

The execution diagram for this code is given in Figure There are two M—E, one
E—E, and one E—B forwardings used.

b) Since we are given in the question that only the values in the memory at the end
of the execution is important but not the values in the registers, we can change our
code as following. Note that, we used loop unrolling and in addition, we avoided the
unnecessary load instructions.

add t2,
sw t2,
sw t3,
sw t4,
sw tb,

t0, tl

0x1008 (zero)
0x100c (zero)
0x1010 (zero)
0x1014 (zero)

& add t3, tl, t2
& add t4, t2, t3
& add t5, t3, t4
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pipeline/vliw 15.a

1:lw |F D |E [MoW
1:lw |F |D |E IMOW
2:nop
3:add E DV
4:sw
4:addi
5:bltu

q
Y

M| (o |m
=<
=

Figure 179: Execution Diagram of a).

The execution diagram is given in Figure There are seven E—E and two W—D
forwardings used.

pipeline/vliw 15.b

l:adq[: D |E oWe

25w |F [pJE [M]w]

2:add |F D‘E )

3:sw FlpoJE [m|w]
3:add FIpVE sw

4isw F |pJE [m w|
4:add F DVE oW

Sisw FloYE [m]w]

Figure 180: Execution Diagram of b).

¢) We can avoid unnecessary load instructions since the numbers are calculated in the
loop and the results can be used directly from the registers. In addition, to eliminate
the dependency caused by the register t 6, which is used for address calculation, we
can calculate the value of it at the beginning of the loop and adjust the memory offset
accordingly. The new code is:

loop:

addi t6, t6, 4 & add t2, t0, tl
add t0, tl, zero & add tl, t2, zero
sSwW t2, 0x1004(t6) & bltu te6, t5, loop

The first implementation of the loop was taking 5 - 1000 + 3 = 5003 clock cycles in the
tirst processor. The new implementation takes 3-1000+4 = 3004 clock cycles in the new
processor. So, in spite of having one load/store unit less, we still have approximately
40% performance gain.
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[Exercise 15]

Consider the superscalar processor of Figure 181 with the following properties:

— The Fetch and Decode Unit outputs up to 3 instructions per cycle. If one of the
fetched instructions is a branch, then the successive instructions are not fetched,
nor decoded. A branch predictor is available. The predicted branch destination
is fetched on the cycle following the fetch of the branch instruction.

— The following functional units are available:

e Arithmetic Logic Unit (ALU) that executes arithmetic and logic instructions,
as well as branching instructions.

e Multiplication unit that is used for multiplication.

e Load/Store unit that is used for memory access.
Each functional unit has a reservation station that can store up to 20 instructions.

— The processor has a reorder buffer for preserving in-order instruction commit.
The reorder buffer can store 25 instructions and can commit up to 3 instructions
per cycle.

— The result buses carry results generated by the functional units to the reservation
stations. If the functional unit requires more than one cycle, then the results are
available at the end of the last cycle.

— The implemented pipeline starts with a stage for fetching (F) followed by a stage
for decoding (D) the instruction. Then, one or more stages for execution fol-
low. The instructions executed by the ALU require a single execution stage (EA),
the multiplication needs two execution stages (E1, E2) and the memory accesses
require one address computation (EM) and one memory stage (M). Finally, the
writeback stage (W) commits the instruction and deletes it from the reorder buf-
fer.

— The multiplication unit can execute just one multiplication instruction at a time.
On the other hand, the load/store unit can execute two instructions at a time—
one in the address computation stage and one in the memory stage.

— The processor executes RISC-V instructions. You can assume that a new instruc-
tion mult has been added to the RISC-V ISA. This instruction is defined as:
mult rA, rB, rC,corresponding tothe pseudocode: rA = rB % rC.
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Instruction + E
Fetch & Decode Unit ¥
(3 instructions/cycle) ¥ N
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A 4
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1 4 1
Reservation Reservation Reservation
Station Station Station ALU: EA
1 l 1 :
Register MULT: E1, E2
File Multiplication| | Load/Store MEM: EM, M
ALU ) .
Unit Unit
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Reorder Buffer w

(3 instructions/cycle)

| A 4

Figure 181: The superscalar processor.

Consider the following section of code.
01 loop: 1w tl, 0(sl)

02 1w t2, —-4(sl)

03 mult t3, t2, t2

04 add t3, t3, tl

05 SW t3, 0(s2)

06 addi s2, s2, -4

07 addi s1, sl1, -8

08 bne sl, zero, loop

a) Simulate three executions of the loop using the superscalar processor. Assume that
there is a perfect cache that always hits and that a perfect branch predictor decided
correctly that the branch is taken twice.

i) Draw an execution table which represents each cycle of the processor. Mark with x
the stalls resulting from data hazards and with o the stalls resulting from structural
hazards including the case of instructions not ready for a commit. To answer this
question, use the provided template.

ii) What is the achieved CPI?

iii) What would be the ideal CPI of this processor?

b) Find in which cycle the writeback (W) stage of the instruction from line 5
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(sw t3, 0(s2)) from the first execution of the loop is executed. Consider the situ-
ation of the reorder buffer at the beginning of this cycle. For referencing the instruc-
tions when answering this question, use the instruction numbers given in the answer
template for question

i) List all instructions for which there is a valid entry in the reorder buffer.
ii) Which instructions have their results available in the reorder buffer?

iii) Which instructions are ready to commit assuming that the reorder buffer has
enough bandwidth?

iv) Consider now two cycles later, as before, focus on the beginning of the cycle. List
the instructions whose entries in the reorder buffer were modified. For each in-
struction specify shortly the reason for the modification.

c) In the lectures it has been shown that loop unrolling can increase the performance
of VLIW processors. We want to check whether it can also increase the parallelism of
instruction execution for superscalar processors, by simulating what a compiler could
do. Assume that s1 is a multiple of 24 at the beginning.

i) Thus, unroll the loop twice to have three executions of the original code. Rename
registers, remove redundant instructions, if any, and reorder the code to increase
the performance. Write the resultant code in the provided template. It is not ne-
cessary for the code to be optimal, but try to improve the performance.

ii) Draw an execution table which represents each cycle of the superscalar processor
executing the optimised code from (i). Mark with x the stalls resulting from data
hazards and with o the stalls resulting from structural hazards. For drawing the
execution table, use the provided template.

iii) What is the new CPI?

iv) What is the speedup gained with the loop unrolling and the performed optimisa-
tions? What is the main reason for this speedup?
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[Solution 15]

a)

i) Figure[I182shows the execution diagram.

112((3|4|5|6|7 |89 (|10]11]12]|13|14|15[16[17| 18|19
1 |lwt1, 0(s1) F|D|EM| M| W
2 [lw t2, -4(s1) F|D|o|EM| M| W
3 Imult t3, t2, t2 F|D| x X x | E1|E2 | W
4 |ladd t3, 3, t1 F|D| x| x| x| x |[EA|W
5 [sw t3, 0(s2) F|D|x|x|x|x|x|EM M|W
6 |addis2, s2, -4 F|D|EAlo|o|o|o0o]|]o]|oO]|W
7 |addisi, s1, -8 F| D|EAlo|o|o|o]|o|W
8 |bne s1, zero, loop F|D|x|EAlo|o|o]| o] o |W
9 |lw t1, 0(s1) F|D|IEM{M|o|o]|o|o|W
10]lw t2, -4(s1) F|D|o|EM[M|o|o|o|W
11{mult t3, t2, t2 F|D| x| x x |[E1|E2| o | 0o | W
12]add t3, t3, t1 F|D|x| x| x| x|EA|]o|W
13|sw t3, 0(s2) F| D X | x| x| x |EM M| W
14]addis2, s2, -4 F| D|EA|l|o|o|o|o]|o]|o|W
15|addi s1, s1, -8 F|D|o|EAlo|o|o]|oOo|W
16|bne s1, zero, loop F|D|x|x|EAlo|o]|o|o|W
17]lw t1, 0(s1) F|D|x|EM M|o|o]|o|W
18]lw t2, -4(s1) F|D|x|o|EM[M|o|o|W
19[mult t3, t2, t2 F|ID|x | x| x| x|E1|E2| 0 |W
20|add t3, t3, t1 F|{D| x| x X | x x |EA| W
21|sw t3, 0(s2) F|ID|x|x|x|x|x|x |EM M|W
22]addis2, s2, -4 F|{D|o|o|EAlo|o|o]|o]|]o|W
23laddisl, s1, -8 F|D|o|o|EAlo|o]| o] o|W
24|bne s1, zero, loop F|D/| x X | x |[EA| o o| o | W

Figure 182: The execution diagram when the loop is executed three times.

ii) The CPI for the three executions of the loop shown on Figure[182]is
CPI =19 cycles / 24 instructions = 0.792 cycles/instruction
iii) The given superscalar processor has 3 functional units. Thus, in an ideal situation,

it would execute 3 instructions per cycle, from what follows that the ideal CPI
would be

CPligeal = 1 cycles / 3 instructions = 0.333 cycles/instruction

b) The writeback stage (W) of the instruction from line 5 from the first execution of the
loop is executed in cycle 11.
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i) The reorder buffer has a valid entry for each instruction that is fetched, but that is
still not committed. At the beginning of cycle 11, the reorder buffer keeps entries
for instructions 5-24.

ii) In the reorder buffer, the result for an instruction is available after its last execution
stage ends. At the beginning of cycle 11, instructions 5-11 and 14-16 have their
results available in the reorder buffer.

iii) Ready to commit are the instructions that will be committed in the following cycle.
Assuming that the reorder buffer has enough bandwidth, at the beginning of cycle
11, the instructions 5-11 are ready to commit.

iv) Atthe beginning of cycle 13, the following instructions have their entries modified.

i) 01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

loop:

1w
addi
addi
mult
1w
1w
add
mult
1w
1w
add
mult
sSwW
sSwW
add
sSwW
bne

t2,
tl,
sl,
s2,
t3,
t5,
t4,
t3,
to,
s5,
s4,
t6,
s6,
t3,
to,
s6,
s6,
sl,

— The instructions 5-10 committed, thus their entries are invalidated.

— The execution stages of instructions 12, 17, 18, and 22 finished and they have
their results available.

-4 (s1)
0(sl)
sl, —-24
s2, —-12
t2, t2
12 (s1)
16 (sl)
t3, tl
t5, tb
4 (s1)
8(sl)
t6, t4
s5, sb5
12 (s2)
8(s2)
s6, s4
4 (s2)
zero, loop

ii) Figure shows the execution diagram of the optimised code.

iii) The new CPI for the optimised code shown in Figure [183]is
CPI = 14 cycles / 18 instructions = 0.778 cycles/instruction
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10

11

12 (13 ] 14

Iw 12, -4(s1)

Iw t1, O(s1)

m|m|n|-=

addisl, s1, -24

addis2, s2, -12

mult t3, t2, t2

MMM |OO|O|N
m
>

Iw t5, 12(s1)

Iw t4, 16(s1)

add t3, t3, t1

Olo|VN|lo|lu|d|lw|N]|-
MMM |O|0O |0

mult t6, t5, t5

10|lw s5, 4(s1)

KNI S

11{lw s4, 8(s1)

EM

MM MO|O|0|0 |Xx

12[add t6, t6, t4

13|mult s6, s5, s5

14|sw t3, 12(s2)

X8|g|=

-n-nﬂUUUxonEoozém

15|sw t6, 8(s2)

EM

16]add s6, s6, s4

17|sw s6, 4(s2)

X | X | X |O [X |X

18|bne s1, zero, loop

m|m|m|o|o|o|x o |o|x |x BT IS

O|0|0|x |x |x|x|o |Z|TT Iz

OXXXET;ZEE

oxgzéé

W

W

EM
0

2|

Figure 183: The execution diagram when the loop is unrolled twice.

iv) The speedup gained with the loop unrolling and the performed optimisations is
Speedup = (19 — 14) /19 ~ 0.263 (26.3% faster execution time)

The main reason for this speedup is that by unrolling the loop we are decreasing
the data hazards and we are able to use more functional units in parallel.
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[Exercise 16]

Consider a RISC-V processor implemented as a synchronous 4-stage pipeline as in
Figure using a single clock signal common to all synchronous elements. The four
stages are Fetch, Decode (which also reads needed operands from the register file), Ex-
ecute (which executes ALU instructions or computes the address for memory instruc-
tions), and Memory (which accesses memory when needed). The writeback to the re-
gister file happens at the end of the Memory stage. The processor has no forwarding
paths but needs to have implemented appropriate stall signals to respect dependencies
in the code.

j1 from Branch logic 'EZZbILER1
s > r 1
4 DataR, EnableW |«
AddrW |«
> EnableR; DataW ke
> AddrR;
PC DataR;
I
ENpc SEL
P1 Y v O_T P2 P3
ﬂ ) >3 EnableW >[5
y | 'H Addrw . }
: 0 o EnableMEM N
F —— D I 1
i d B i ML
L U ]
T =l =]
EN

P1

Figure 184: The 4-stage pipeline.

Note that some parts of the pipeline are shown in greater detail. For instance, the
Decode logic communicates with the Register File through two sets of signals: AddrR,
to indicate the address to read, Dat aR, to receive the read data, and EnableR, which
is active to indicate that the corresponding address should indeed be read (that is, that
AddrR, is a required operand for the instruction). Also, the Decode logic produces
the address of the destination register AddrW and the corresponding enable signal
EnableW (to indicate whether the instruction writes back into the register file), and
these are introduced in the pipeline for use in the writeback phase. Similarly, it pro-
duces an enable signal EnableMEM to indicate if the instruction is a store instruction,
also inserted in the pipeline for the Memory stage. Finally, note some detail for the
Program Counter; ignore completely whatever signal comes from the branch logic.

a) Show the execution of the following piece of code in the pipeline, indicating as usual
which stages of each instruction are executed in each cycle. Indicate how many cycles
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are needed for the whole execution (from the first Fetch to the last Memory stage used).

add x1l, x2, x3
1w x2, 0(x1)
sub x3, x1, x4
lw x3, 0(x5)
addi x6, x3, 1
addi x7, x1, -8

b) Detail all the logic needed to detect data hazards, stall the pipeline, and to insert
bubbles. Specifically, indicate how to connect the enable inputs ENzc and ENp;, and
the select input SEL. Note that the pipeline registers P2 and P3 cannot be disabled
and that you are not allowed to use signals other than those indicated in the figure.
Consider exclusively arithmetic and logic instructions as well as loads and stores (that
is, focus on data hazards and disregard completely control hazards). Use comparators,
arithmetic operators, and logic gates to implement the requested circuitry.

Consider now two of the above pipelines (A and B) in parallel to implement an
in-order superscalar processor. Of course, it will need a register file with four read
ports and two write ports.

Since it executes instructions in order, it does not need any Reservation Station nor
Reordering Buffer: simply, the new processor fetches two instructions at a time and
the instructions advance from Decode to Execute under the following conditions:

* (a) both of them advance if there is no dependency
* (b) only the first one advances if the second one has a data hazard

* (c) none advance if they both have a data hazard

Note that if the second instruction is stalled in the Decode phase due to hazards,
both Fetch units (or the single, double-width Fetch unit) are stalled until the critical
instruction can advance (this is because the processor executes instructions in order
and the first pipeline cannot ever process in the same cycle and the same stage
instructions following the correspondent ones in the second pipeline).

c) Show the execution of the same piece of code above in the new processor. Assume
for now that if two instructions need to commit two results to the same register at the
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same time, this can be accomplished without delaying the second write. How many
cycles are needed now?

d) Show in detail the logic between the registers for the signals AddrW,, EnableW,,
AddrWs, and EnableWp of pipeline registers P3A/P3B and the ports Addrw,,
EnableW; AddrW,, and EnableW, of the register file. Note that the SRAM of the
Register File implements a perfectly synchronous write (writes on the rising edge
DataW, at address AddrW, if EnableW, is active) but cannot accept simultaneous
writes on the two ports to the same address. The behaviour described in the previous
question (without any stall due to a write conflict) must be implemented.

e) Draw the pipelines of the superscalar processor with the same level of detail as that
of Figure Describe precisely the modifications to the stall logic (without necessar-
ily drawing it) to generate the signals ENyc, ENp1a, SELa, ENp1p, and SEL;. Still ignore
the existence of control instructions (jumps, branches, etc.) and ignore exceptions.
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[Solution 16]

a) Figure shows the code execution in the pipeline. The whole execution requires
13 cycles.

F |D|E M

‘n
m (O m <

A Ul A W N -
M

Figure 185: Simplescalar pipeline diagram.

b) See Figure
EnableW(E)
AddrW(E) —
AddrR1 — EnableR;: 1 J
)
AddrRy — EnableR,—1 ENpe
_[ ENp;
H SEL
Addrw(M) — —+
9 )
+—1

EnableW(M)

Figure 186: Hazard detection and stalling logic.

c) Figure shows the execution of the code on the superscalar. It takes 11 cycles to
finish.

d) See Figure
e) See Figure
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1: |F |D|E M
2: |F E [M
3: D |[E [M
4: F |D
5! F_-D E |M
6: F D |[E [M

Figure 187: Superscalar pipeline diagram.

AddrW, AddrW,
B
1 EnableW,
s
EnableW,
\_ —
AddrWg l_ AddrWw,
EnableWg EnableW,

Figure 188: Logic between the registers.
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j4 from Branch logic

—4@1

Fg

»n —>EnableR;p
g —»AddrRlB
o lousts  enabi,
& —>{EnableR5g AddrWy |«
<, —>{AddrRzp DataWyg [«
0O «<—DataRyp
> EnabIeRlA RF
» AddrRq EnableW, [«
DataRia AddrW, <
> EnableRopa DataW, [«
> AddrRoa
DataRZA
SEL,
P1A L[] V P2A P3A
&l 0 > EnableW >
B ) . ] Addrw > ]
o1\ S|l Enablemem S|
—— Dy ) N
] i Ea it Ma
o (8 8
L
ENp1a
Dg/RF signals SEL,
pie {1l 1 T p2s P38
=] NE EnableW >3
B ) _ ] Addrw _ ]
D 0 - EnableMEM n
—ii— Us | i
1 S Eg |- ~{ Ms
L i i
L
ENp1g

Figure 189: Pipelines of the superscalar processor.
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[Exercise 17]

a) Consider a processor which executes integer instructions and is implemented as

given in Figure[190]

A
L
[y
A A4

| S ———

—>
dest, 5
_’ -
dest, ;
H
dest; 5

E_N- :
JPC; |- :
1 v src, v

src, —
Fi D, N
Bl nop—|
EN q

nop—

stall

Figure 190: A processor with three pipelines for executing integer instructions.

The processor can fetch and decode one instruction per cycle. Once the instruction is
decoded, it is dispatched to one of the three pipelines, depending on the instruction

type:

¢ Integer multiplication is executed in pipeline 1, in two Execute stages (Emni1, Em2).

¢ Other integer arithmetic operations are executed in pipeline 2, in stages A; an
As.

* Memory access operations are executed in pipeline 3, in stages (M;) and (M,).
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¢ For all pipelines, the corresponding Writeback stage writes to the registers in the
tirst half of the cycle, and the Decode stage reads the register file in the second
half of the cycle (i.e., the processor can forward data from all Writeback stages to
the Decode stage).

* The processor has no other forwarding paths.

The processor has appropriate stall signals to respect data dependencies in the code,
as detailed in Figure[190}

In all subsequent questions, assume that there is a perfect cache that always hits.
You can also assume that a new instruction mul has been added to the RISC-V ISA.
This instruction is defined as: mul rA, rB, rC, corresponding to the pseudocode:
rA = rB x rC.

Consider the following program:

01 addi x1l, x1, 8
02 add x2, x1, x1
03 slli x1l, x1, 1

04 sw x2, 0(x1)
05 1w x4, 0(x6)
06 mul x2, x3, x4
07 mul x5, x5, x5
08 srli x4, x2, 4
09 sSwW x5, 0(x1)

A Show the execution of this program on the processor detailed in Figure [190]
Mark all stalls with X and mark when any of the Writeback to Decode forwarding
paths is used. Use the provided template on the last page of the exercise.

B Calculate the achieved IPC and compare it to the ideal IPC for this processor.

C Are the Writeback stage of each instruction always performed in order? If not,
why is this not a problem? Justify your answer concisely (1-2 sentences).

D Can structural hazards occur at Writeback, i.e., is it possible that multiple
pipelines need to write back to the register file at the same time? If yes, what is the
minimal number of ports the register file needs to have to resolve the hazard and
guarantee correct functionality? Justify your answer concisely (1-2 sentences).

b) Consider now a 2-thread processor, given in Figure Each thread has its own
Fetch and Decode stage (the threads are completely independent). The subsequent
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PC, |- :EI_' En WJ

Priority JIa L A LA S\
PC, | Unit LA —{ W
e T

H

Figure 191: 2-thread processor with three pipelines.

pipelines and their stages are identical to the ones described in Part 1, with the for-
warding paths only from the Writeback to the Decode stages.

Instructions can be issued from the threads simultaneously: Each fetched instruction
is given to the corresponding Decode stage if it is free. If the instructions of the two
threads require different pipelines, both instructions are decoded and dispatched to
the corresponding Execute stages in parallel.

However, if, on a given decode cycle, both instructions need to be dispatched to the
same pipeline, only one of them can be decoded and can proceed, and the other one
needs to be stalled. This conflict is resolved by the priority unit, based on the following
principle:

* On odd clock cycles, Thread 1 has priority over Thread 2; on even clock cycles,
Thread 2 has priority over Thread 1.

¢ Unless the thread with the higher priority needs to be stalled due to a data
hazard, its instruction is decoded and sent to the appropriate Execute stage.

¢ If the thread with the higher priority needs to be stalled due to a data hazard, the
thread with the lower priority is allowed to proceed instead (unless it is also
stalled by the hazard detection logic).

The execution of the processor is demonstrated in Figure [192]

In all subsequent questions, assume that there is a perfect cache that always hits.

434 ofﬁ Version 1.0 of 1st October 2024, EPFL ©2024



Exercise 17
Instruction-Level Parallelism

Exercise Book
Computer Architecture

cycle: cycle:
101 102 103 104 105 106 107 100 101 102 103 104 105 106
F, YD\ E.i| Eno | W [, DN M, [ M, | W
F, NOJ A [A | W FIx/ b, [m|{m|w
F. DN M, | M, | W F, | D, | E..| E, | W
FAx ] o, [m [ m|w Ao, Al AW
T1and T2 need the same pipeline ThelFetch of T2 starts a cycle later
v ->T1 has priority; T2 stalled due to the previous stall

T1 and T2 need different pipelines

T1 and T2 need the same pipeline

->no stall ->T1 has priority; T2 stalled
cycle: cycle:
150 151 152 153 154 155 156 157 120 121 122 123 124 125 126 127 128
F, | D, | E.i| B | W F, | D | B |Ew [W
F, [ D, |A |A | W F, | D, | A, | A, !WI
F, /D M, | M, | W | X | x "N D, [m[Mm]w
FEAxX ] x|o, [m]m]w El x| x ko wm[m|w

!

T2 has priority, but stalled due to data hazard

>T1 proceeds

!

->T1 stalls, T2 proceeds

Figure 192: Execution examples for the 2-thread processor.

Consider the following programs:

¢ Program 1:

01 addi x1l, x1, 8
02 add x2, x1, x1
03 slli x1l, x1, 1
04 sw x2, 0(x1)
05 1w x4, 0(x6)
06 mul X2, x3, x4
07 mul x5, x5, x5
08 srli x4, x2, 4
09 sSwW x5, 0(x1)
* Program 2:
01 1w x5, 0(x7)
02 addi x4, x5, 8
03 mul x5, x5, x5
04 swW x5, 0(x7)
05 addi x1l, x1, 4
06 mul X3, x3, x1
07 add X3, x5, x5
08 slli X3, x3, 2
09 sSwW x3, 0(x7)

Both data hazards resolved, T2 has priority,

The instructions of program 1 are fetched by Thread 1, and the instructions of program

435 of@

Version 1.0 of 1st October 2024, EPFL ©2024



Exercise Book Exercise 17
Computer Architecture Instruction-Level Parallelism

2 are fetched by Thread 2 of the processor. The processor starts by fetching the first
instruction of program 1 and the first instruction of program 2 in cycle 1.

A Show the execution of this program on the processor detailed in Figure [191]
Mark all stalls with X and mark the used forwarding paths. Additionally, mark
the cycles where the Decode stages of the two threads are conflicting (encircle the
D and corresponding X stages as shown in the examples in Figure [192). Use the
provided template in the last page of the exercise.

B Calculate the achieved IPC and compare it to the ideal IPC for this processor.

C Are the Writeback stage of the instructions of each thread always performed in
order? If not, why is this not a problem?

D What is the relationship of the writebacks of one thread with respect to the
other? Justify your answer concisely (1-2 sentences).

E Can the implemented priority policy lead to starvation of one of the threads,
i.e., is it possible that one of the threads is continuously denied access to the
pipelines? Justify your answer concisely (1-2 sentences).

F Can structural hazards occur at Writeback, i.e., is it possible that multiple
pipelines need to write back to a register file at the same time? If yes, what is
the minimal number of ports each register file needs to have to resolve the haz-
ard and to guarantee correct functionality? Justify your answer concisely (1-2
sentences).

c) Consider the implementation of the stall logic of the 2-thread processor in Fig-

ure[191]

A Does the hazard detection logic of the 2-thread processor differ from the logic of
the processor in Figure [190¢ If yes, briefly describe how the stall signals in the
2-thread processor needs to be generated.

B In Figure the stall signal created by the hazard detection logic (marked stall
in the figure) is used as the enable signal (EN) for the Decode pipeline register
and PC. Does the same hold for the 2-thread processor in Figure[I91f If no, briefly
describe the difference between the two implementations.
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[Solution 17]

a)

A The execution of the program is given in the filled template on the next page.
B The achieved IPC is 9/20 = 0.45. The ideal IPC is 1.

C As all three pipelines have the same length, the Writeback stages are always per-
formed in order.

D As only one instruction per cycle is issued, and the pipelines are of equal length,
only one instruction will be in the Writeback stage in a given cycle and structural
hazards cannot occur.

b)

A The execution of the program is given in the filled template on the next page.
B The achieved IPC is 18/24 = 0.75. The ideal IPC is 2.

C As each thread decodes at most one instruction per cycle, and all pipelines are of
equal length, the Writeback stages of each thread are always performed in order.

D The Writebacks of the two threads are completely independent since the threads
use different register files (data hazards between the threads cannot occur).

E Starvation cannot occur, since the priority of the threads changes in each cycle—if
a thread is stalled in a given cycle, it will certainly have priority and be able to
execute in the next.

F In a given cycle, there can be at most two instructions from two different threads
in the Writeback stage—since they will be written into different register files,
structural hazards cannot occur.
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c)

A A hazard can occur only between instructions belonging to the same thread, so
the processor requires separate hazard detection logic for thread 1 and thread 2.
Each instruction needs to be tagged with the ID of its corresponding thread, so the
hazard detection logic can determine the origin of the instruction and generate
each stall signal accordingly.

B In this processor, the priority unit determines which instruction(s) can be de-
coded based on the data hazards and the cycle priority. Hence, the stall signals
from the hazard detection logic are not connected directly to the registers of the
decode stages—the priority unit produces the enable signals.
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[Exercise 18] Dynamically Scheduled Processor

Consider a dynamically scheduled processor, implemented as given in Figure The
processor can fetch and decode one instruction per cycle. Once the instruction is de-
coded, it is dispatched to one of the functional units, depending on the instruction

type:

¢ Floating point addition and multiplication (fmul, fadd) are executed in the
tloating point unit, in three execution stages (X;, Xz, X3).

¢ All other arithmetic and logic instructions are executed in the Arithmetic Logic
Unit (ALU), in stages A; and A,.

* Memory access operations are executed in the Load /Store unit, in stages M;, M,
and Ms;.

—— 1l

Figure 193: The dynamically scheduled, out-of-order processor.

Each functional unit has a reservation station (RS), which operates as follows:

* Results of the Decode stage are loaded into the relevant RS at the end of the
decoding cycle, together with the ready operands.

¢ In case some value is not available, the tag of the corresponding operand indic-
ates the instruction that produces the value. Once the operand becomes available
and the value is written into the RS, the tag is removed.
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¢ The state indicates whether RS entry is (i) invalid (i.e., empty), or the instruction
is either (ii) executing or (iii) waiting to execute.

* The result of each functional unit is available at the end of the last cycle of ex-
ecution. At the end of the cycle, all RS entries are updated (so that the result
can be used on the following cycle) and the entry corresponding to the executed
instruction is deallocated from the RS (i.e., its state is set as invalid).

The processor has a reorder buffer (ROB) for preserving in-order instruction commits
and can commit a single instruction per cycle. The ROB operates as follows:

* Results of the Decode stage are loaded into the ROB at the end of the decoding
cycle, to prepare the placeholder for the result (by updating the fields corres-
ponding to the PC, the tag, and either the target register or address).

¢ The results from all functional units are written into the ROB at the end of the last
cycle of execution. The instruction tag is removed at the same time.

* The entry is removed from the ROB at the end of the Writeback of the corres-
ponding instruction.

In all subsequent questions, assume that there is a perfect cache that always hits.
All reservation stations and the reorder buffer are of unlimited size. The processor
executes RISC-V instructions.

Consider the following program:

01 lw x2, 0(x1)
02 fmul x3, X7, x2
03 fadd x4, x4, x4
04 addi x1l, x1, -1
05 1w x2, 0(x1)
06 1w x5, 0(x6)
07 fmul x7, x7, x2
08 addi x5, x5, 1
09 lw x2, 0(x5)
10 sub x1l, x2, x1
11 lw x3, 0(x5)
12 lw x4, 0(x6)
13 fmul x3, x3, x4
14 addi X6, x6, 4
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a) Explain concisely (1-2 sentences) the mechanism that the processor may use to de-
termine whether an instruction depends on any of the preceding instructions. What is
the role of the ROB in this process? What are the possible situations?

b) In the provided template, show the complete execution of this program on the
processor from Figure [193] Mark with x the stalls resulting from data hazards and
with o the stalls resulting from structural hazards including the case of instructions
not ready for a commit.

c) In the provided template, indicate the states of each reservation station and the
reorder buffer during the following points of program execution:

i) The beginning of the cycle following the one when instruction 2 is committed
(STATEL1).

ii) The beginning of the cycle following the one when instruction 7 is starting to ex-
ecute (STATE2).

iii) The beginning of the cycle following the one when instruction 8 is finishing exe-
cution (STATE3).

Use the following notation to fill out the template:

i) The tag corresponds to the name of the RS entry where the corresponding instruc-
tion is placed; it is composed by the name of the RS (ALU, MEM, FLOAT) and the
ordinal number of this entry in the RS. RS entry names are indicated on the left of
the RS entries in the provided template.

ii) Inthe State field, denote the state of the instruction as W (waiting) or E (executing).
Invalid entries do not need to be shown.

iii) In the ROB, the top (first) line of the table always represents the Head (i.e., always
fill the ROB starting from the top line).

iv) For the PC values, use the instruction numbers given in the code above.

v) In the Arg and Value fields, simply indicate whether the corresponding value is
available (A) or missing (M) at the observed points in time. You are not required
to calculate any actual values.

d) What is the achieved CPI for this execution?
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e) Would replicating any of the three functional units result in a lower CPI in the case of
this program? If so, which unit(s) would this program benefit from replicating? Elab-
orate your answer concisely (1-2 sentences) and justify your answer with an example
from the execution.
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[Solution 18]

a) The ROB plays a very important role in the decoding process. It allows the decoder
to know if there are any operations scheduled to modify the location it wants to access.
To check the decode simply looks to see if there are any writes to the memory it wants
to access, starting from the tail of the ROB. If it finds that there is a pending operation
that will modify the value D will get the information that it needs from the ROB.

* Case 1: ROB has value but has not committed it to memory or RFE. Decode takes
value from the ROB.

¢ Case 2: ROB doesn’t have the value but has the register or address of interest.
Copy of the tag that is in the ROB.

Instructions are added to the tail of the ROB so it will always get the most updated
value. If nothing is found in the ROB then there are no dependencies.
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d)
23

e) Given the execution diagram of part B, adding a Load/Store unit would make the
execution faster. For example, starting and finishing instruction 6 one cycle faster
would allow instructions 8 and 9 to finish one cycle earlier, gaining one cycle over-
all.
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[Exercise 19] Comparing Processor Pipelines

Consider two processor pipelines, shown in Figures[194and

01
02
03
04
05
06
07
08
09
10

F

0.4 Teka |

RF
F l LEl l E2 IJM I W)
0.4 Taka | 0.4 Taka Tea | TcIkA | TcIkA | 0.4 Teika
Figure 194: Pipeline A.
P Y — 5
: e | | | | ;
D 3 EL—E2 - E3 - M1 M2 W
0.4 T | 0.6 Teia | 0.8 Taia | 0.6 Teia | 0.6 Teka | 0.4 Teja 0.4 T
Figure 195: Pipeline B.
addi x0, x0, 4
mul x1, x1, x0
addi X2, x2, -1
add x1l, x1, x1
addi X6, x6, 1
lw x5, 0(x3)
mul x5, x5, x3
div x4, x4, x7
add x4, x0, x4
sub x6, x0, x5

Listing 4.1
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The pipelines have the following properties:

* Arithmetic and logic operations are completed in the final Execute stage (i.e.,
stage E2 in Pipeline A and stage E3 in Pipeline B) and can be forwarded using
any given forwarding path.

¢ The results of the memory operations are only available at the end of the last
Memory stage of each pipeline.

* In both pipelines, the Writeback stage writes to registers in the first half of the
cycle and the Decode stage can read the register file in the second half of the
cycle.

¢ Pipeline A operates at a frequency of 100 MHz. Pipeline B is obtained by in-
serting additional pipeline stages into Pipeline A in order to increase operation
frequency. The latency of each stage of both pipelines is given in the figures as
a function of the clock period of Pipeline A, Ti;4. The clock frequency of each
pipeline is the maximum frequency which guarantees correct operation.

a) Consider Program

A In the provided templates, show the complete execution of this program on
Pipeline A and on Pipeline B. Mark with x the stalls resulting from data hazards
and indicate which forwarding paths are used.

B For both executions from the previous question, compute the achieved CPI
and the total execution time in ns. Keep in mind that the pipelines operate at
different frequencies.

After a first generation of the code, compilers often try to reorder instructions to make
the best possible use of the pipeline, i.e., to eliminate as many stalls as possible. Here
is a possible way to compute a good instruction reordering.

Firstly, a directed graph of all RAW, WAW, and WAR dependencies is construc-
ted as follows:

* Nodes represent instructions and directed edges represent dependencies (point-
ing to the instruction which needs to be executed last among the two). All self-
dependencies are ignored.

e Edges corresponding to WAW and WAR dependencies are annotated with
weight 0.

* Edges corresponding to RAW dependencies are annotated with a weight corres-
ponding to the minimum number of cycles necessary in the target microarchitec-
ture to use the result of the instruction at the source of the edge. For instance,
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any edge out of the node of an add instruction of Pipeline B is annotated with a
weight equal to 3 because the earliest that the result of an addition can be used for
another operation is three cycles after its decode stage (through the forwarding

path E3 — E1).

If two instructions have multiple dependencies among them, they are connected
with a single edge. The edge is annotated with the largest of the related weights.
For instance, if there is a RAW and a WAW dependency between two instruc-
tions, the corresponding edge will have the weight of the RAW dependency (as
the weight of the WAW dependency is always 0).

Figure[196|shows the dependency graph of Program [4.2|for Pipeline B.

01
02
03
04

addi X3,
mul x4,
sub X2,
div X6,

X2,
X3,
x5,
x4,

x1
x1
x5
X7

Listing 4.2

Figure 196: Dependency graph of Program for Pipeline B.
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Secondly, one creates the optimized program by building progressively the execution
schedule and deciding which is the next instruction to add to the program. Initially,
the schedule and the program are empty. One proceeds as follows:

¢ All instructions without predecessors (i.e., with no incoming edges in the de-
pendency graph) are considered.

* One tries to place each of these instructions as the next one in the program and
checks whether it would fit the schedule without stalls. Only the instructions that
would not incur a stall are still considered.

¢ For each of those instructions, one looks at the longest weighted path in the dir-
ected graph to arrive to a node without successors (i.e., a node with no outgoing
edges). For instance, instruction 1 in Figure 3 has a longest weighted path of 6 to
instruction 4.

¢ The instruction with the longest weighted path among those considered is added
to the program, the corresponding node is deleted from the dependency graph,
and its execution is simulated in the schedule. If there is a tie, the instruction that
comes earlier in program order (in the original program) is chosen. If there is no
instruction that would not incur stalls, the instruction that comes earliest in the
original program among those without predecessors is chosen.

* The process is repeated until all instructions are in the optimized program.

If one applies this to Program 4.2| with the dependency graph of Figure one starts
the program with instruction 1 (the only instruction without predecessors), then one
selects instruction 3 (because both 2 and 3 have no predecessor but instruction 2 would
cause two stalls), then instruction 2 (the only instruction without predecessors), and
then instruction 4 (because it is the only remaining instruction). In this extremely
simple case, the lengths of the paths never play a role.

b) Apply the above procedure to Program 4.1} targeting Pipeline A and Pipeline B:

A For each pipeline, show the annotated dependency graph before starting the re-
ordering process. Reorder the instructions and show the resulting program for
each pipeline.

B In the provided templates, show the complete execution of the restructured
program for Pipeline A and for Pipeline B. Mark with x the stalls resulting from
data hazards and indicate which forwarding paths are used.

C For both executions, compute the achieved CPI and the total execution time (in
ns).

c¢) Concisely answer the following questions (1-2 sentences per answer).
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A Does the compiler optimization from the previous question need to be aware of
the underlying processor microarchitecture? Justify your answer.

B The above algorithm does not guarantee an optimal result. Are the results ob-
tained in the previous question optimal? Answer clearly with yes or no and
elaborate your answer.

C What is the effect of inserting additional pipeline stages on overall pipeline per-
formance? Discuss the tradeoff between pipeline latency (i.e., number of pipeline
stages) and achievable frequency.
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[Solution 19]

a)
A The executions of the program are given in the filled templates below.

B The achieved CPI for the executions from the previous question are CPI = 20/10 = 2
for Pipeline A and CPI = 26/10 = 2.6 for Pipeline B.

With T4 = 10 ns, the execution time of Pipeline A is 20 - Ty4 = 200 ns and the
execution time of Pipeline B is 26 - 0.8 - T34 = 208 ns.

b)
A The dependency graphs are given in the figure below.
B The executions of the program are given in the filled templates below.

C The achieved CPI for the executions from the previous question are CPI = 15/10 =
1.5 for Pipeline A and CPI = 18/10 = 1.8 for Pipeline B.

With x4 = 10 ns, the execution time of Pipeline A is 15 - Ti;54 = 150 ns and the
execution time of Pipeline Bis 18 - 0.8 - T,y 4 = 144 ns.

c)

A The compiler must be aware of the architecture to appropriately compute the
weights of the edges between instructions.

B The result is optimal for Pipeline A. Pipeline B incurs a stall and the result is not
optimal.

C Inserting pipeline stages increases frequency but also increases pipeline latency. In
our exercise, Pipeline B has more stages and a higher frequency (125 MHz) than
Pipeline A (100 MHz), but also higher latency—in the first question, the latency
difference is dominant and Pipeline A outperforms Pipeline B; in the second case,
due to higher frequency, Pipeline B outperforms Pipeline A.

Figure 197: Dependency graph for Pipeline A.
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Figure 198: Dependency graph for Pipeline B.

Version 1.0 of 1st October 2024, EPFL ©2024 461 of@



Exercise Book Exercise 20
Computer Architecture Instruction-Level Parallelism

[Exercise 20]

Consider a simple pipelined processor whose microarchitecture is shown in Fig-
ure The pipeline is made of a register file (RF) and 5 stages: Fetch (F), Decode (D),
Execute (E), Memory (M), and Writeback (W). The pipeline has no forwarding paths. The
result of all arithmetic and branch operations is available after the E stage. The result
of all memory operations is available after the M stage. The pipeline detects data haz-
ards automatically and stalls instructions whose operands are not ready in the D stage.

The processor handles control hazards by initially assuming that every branch is not
taken; after fetching a branch, the processor continues fetching and decoding instruc-
tions in program order until the outcome of the branch is known at the end of the
branch instruction’s E stage. At this point, if the real branch outcome is not taken, then
the processor fetched the correct instructions and can continue pushing them through
the pipeline. However, if the real branch outcome is taken, then the processor squashes
the incorrectly fetched instructions by discarding them from the pipeline and starts
fetching from the branch target address. You do not need to know how the squashing
process is implemented in hardware, as such it is not represented in Figure [199

Figure 199: Simple pipelined processor architecture.

Consider the following RISC-V program. The sum function adds up all words located
in a memory region specified by the two function arguments a0 and al, and updates
the value stored at the memory location specified in a2 by adding the computed sum
to it. a0 is the starting address of the memory region, and al is its size (in number of
4-byte words).

sum:
add t0, zero, zero # initialize the accumulator
loop:
lw t1, 0(a0) # load value from memory
add t0, tO, t1l # accumulate the value
addi al, al, -1 # decrement word count
addi a0, a0, 4 # increment memory address
bne al, zero, loop # end of the region?
end:
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lw tl1, a2 (zero) # load value from destination address
add t1, tl, tO # add computed sum to value

sw tl, a2(zero) # store back on destination address
addi v0, =zero, tO # save t0 in vO

a) On the first provided template, show the complete execution of the sum function
on the processor shown in Figure Assume that al (i.e., the number of words) is
4. Clearly mark squashed instructions by putting a cross (x) in the dedicated column
(named Squashed) of the template. You should still show the execution of squashed
instructions through the pipeline stages up until the moment they are discarded.

b) What is the IPC achieved by this execution? You should only account for instruc-
tions that went through the W stage (i.e., ignore instructions that ended up squashed
from the pipeline).

¢) How many times will the static branch assumption not taken be correct during one
execution of the sum function? Give your answer in terms of al and briefly justify it.
You can assume that a1 is strictly greater than 0.

Consider now a dynamically scheduled out-of-order speculative processor whose mi-
croarchitecture is shown in Figure The processor fetches and decodes one RISC-V
instruction per cycle. Once an instruction is decoded, it is dispatched to one of the
functional units, depending on the instruction’s type, via Reservation Stations (RS).
Decoded instructions, including branches, are inserted at the bottom of the Reorder
Buffer (ROB), which can commit one instruction per cycle. The processor has the fol-
lowing functional units with the corresponding latencies:

¢ Branch (B) — 1 cycle;
¢ Arithmetic (A) —1 cycle; and
* Memory (M1 and M2) — 2 cycles.

The processor is speculative in the sense that it executes speculatively the instructions
after a branch before the branch decision is actually known. For this, it uses branch
prediction, which is a strategy for reducing the negative impact of control hazards
by guessing the outcome of a branch instruction, even before decoding it. The
PREDICTOR component in Figure implements the logic of branch prediction. If
the actual outcome of a branch instruction proves to be opposite to the prediction, the
speculatively executed instructions should be squashed—that is, the processor must
act as if these instructions had never been executed.

The PREDICTOR uses the PC of the currently fetched instruction (currentAddr) to
decide if the next instruction to fetch is not the next instruction in the program order.
It has two outputs: (1) predTaken which is 1 if the PREDICTOR suggests that the
branch is taken, and 0 if the PREDICTOR suggests that the branch is not taken or if the
fetched instruction is not a branch; (2) predaddr which represents the address of the
next instruction to fetch depending on the PREDICTOR's decision. If predTakenis 1,
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branchTarget
branchTaken
PREDICTOR nextAddrReg
currentAddrReg isBranchInstr
branchTarget
BLACKBOX branchTaken

nextAddrReg
currentAddrReg

corrTarget

mispred

predAddr
predTaken

mispred

corrTarget

nextAddr|

isBranchInstr
branchTarget

branchTaken
nextAddrReg
currentAddrReg

4
4

Figure 200: Dynamically scheduled out-of-order speculative processor architecture.

predAddr is the address of the branch destination, and if predTaken is 0, the value
of predAddr is undefined. These two signals are used to decide what instruction to
fetch next. The resulting instruction address nextAddr signal is transferred through
the pipeline to the ROB, along with the currAddr signal. Figure omits the trans-
mission of the currentAddr and the nextAddr signals along the pipeline and only
shows that they are propagated and output from the W stage (i.e., currentAddrReg
and nextAddrReg).

The PREDICTOR “learns” to make better predictions with time thanks to the inform-
ation provided to it by the W stage, which got the information, in the first place,
from the ROB. This information informs the PREDICTOR of all committed branches.
Whenever an instruction commits, the W stage provides the following signals: (1)
isBranchInstr is 1 if the instruction corresponding to the currAddrReqg address
is a branch instruction, and is 0 otherwise; (2) branchTarget is the target address
of the branch; (3) branchTaken is 1 if the actual decision of the branch (from the B
stage) suggests that it should have been taken, and is 0 otherwise; (4) next AddrReg is
the nextAddr signal when the instruction was fetched; (5) curraddrReq is the value
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of the PC when the instruction was fetched. Whenever the PREDICTOR encounters
a new branch, it starts by assuming that the outcome is not taken, and then predicts
the next branch outcome based on the actual outcome of the last execution of that
same branch; that is, if the last execution of the branch was actually taken, the next
execution is predicted to be taken too and vice versa.

The BLACKBOX is a circuit that uses the signals output from the W stage to provide
information about how to fix a branch misprediction. To do so, it computes two
signals: (1) mispred is 1 if the prediction of the branch ended up being wrong and
is 0 if the prediction of the branch ended up being correct or if the instruction is not a
branch; (2) corrTarget is the address of the correct instruction to execute after the
branch in case of a misprediction. The signal mispred has essentially four functions:
(i) loading the PC with corrTarget so that execution restarts from the place where
the wrong prediction happened; (ii) cancelling the last incorrectly fetched and decoded
instructions; (iii) resetting all execution units to cancel any ongoing instruction being
executed; and (iv) removing any pending instruction from the RSs and from the ROB.
The idea is that when a branch is committed and it turns out that we mispredicted
its outcome, any subsequent instruction is removed from the processor and execution
restarts from the correct instruction.

For arithmetic and memory instructions the ROB sets the isBranchInstr signal
to 0 and the BLACKBOX should set the mispred to 0. The branchTarget and
branchTaken signals have undefined values with arithmetic and memory instruc-
tions.

d) Draw the circuit of the BLACKBOX (see Figure for the inputs and outputs)
which produces the signals described above. You may only use basic logic gates
(AND, OR, XOR, NOT), adders, multiplexers, and equality tests in your design.

Here are some functional details on the RSs and the ROB. RSs operate as follows:

* Results of the Decode stage are loaded into the relevant RS at the end of the
decoding cycle, together with the ready operands.

¢ The result of each functional unit is available at the end of the last cycle of execu-
tion. At the end of that cycle, all RS entries are updated (so that the result can be
used on the following cycle).

¢ If multiple entries are waiting to execute, the oldest instruction, in program order,
has priority over newer ones. An instruction can be sent to the functional unit,
at the earliest, the cycle after it gets loaded to the RS (i.e., one cycle after the
decoding cycle).
The ROB operates as follows:

¢ Results of the Decode stage are loaded into the ROB at the end of the decod-
ing cycle, to prepare the placeholder for the result. The ROB gets the avail-
able information needed at commit time, including the PC of the instruction
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(the currentAddr signal) and the address of the next instruction fetched (the
nextAddr signal).

e The results from all functional units are written into the ROB at the end of the last
cycle of execution.

* An instruction can be committed, at the earliest, the cycle after it has completed
execution.

Assume all RSs and the ROB are large enough so that they never fill up in practice,
and that the PREDICTOR is large enough to predict all branches encountered in the
program.

e) On the second provided template, show the complete execution of the sum function
on the processor shown in Figure Again, assume that al (i.e., the number of
words) is 4. Clearly mark squashed instructions by putting a cross (x) in the dedic-
ated column (named Squashed) of the template. You should still show the execution
of squashed instructions through the architecture up until the moment they are dis-
carded. Mark with x the stalls resulting from data hazards, with i the stalls resulting
from structural hazards in the functional units and with o the stalls resulting from
structural hazards in the ROB and writeback stage.

f) What is the IPC achieved by this execution? You should only account for instructions
that went through the W stage (i.e., ignore instructions that ended up squashed from
the pipeline).

g) What is the exact accuracy of the PREDICTOR on this particular sum function? Give
your answer in terms of al and briefly justify it. As before, you should assume that
the branch is predicted not taken the first time it is encountered. You can also assume
that a1 is strictly greater than 0.

h) In the context of the sum function, do you see any benefit in the dynamic branch pre-
diction scheme implemented by the PREDICTOR over the static scheme (i.e., always
assume not taken) exhibited by the first architecture? Briefly but clearly explain your
reasoning.
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[Solution 20]

a)
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b)

¢) Once in the end.
d)

IPC = 25/61 = 0.41
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e)
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f)

IPC = 25/38 = 0.66

0) Accuracy of the predictor = correct predictions / total number of predictions

Total number of predictions = al

Total number of correct predictions =al - 2

Accuracy of the predictor = (al -2) / al

h) The sum function has a single branch that is responsible for managing the iterations
of a loop. Since loops are repetitive by nature, the decision of the branch is going to
be repetitive as well, therefore, the function greatly benefits from the dynamic branch
prediction scheme that adjusts the predicted decision of the branch at runtime and
thus gets plenty of correct predictions. On the contrary, the static scheme has a fixed
prediction that assumes that a branch is always not taken which is opposite to the
execution pattern of loops.
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Part V: Multiprocessors

[Exercise 1]

Consider the multiprocessor system shown in Figure This system has two 32-
bit RISC-V processors, P1 and P2, with a 5-stage pipeline and all forwarding paths en-
abled (E—E, M—E, and W—D). The two processors have separate instruction memor-
ies from which a new instruction can be fetched every cycle, but they share the same
data memory over a 256-bit shared data bus. When a processor needs to access the
shared memory, it needs exclusive access to the shared bus. Hence, if the bus is busy,
the processor stalls until it gets exclusive access to perform the bus transaction. Since
accessing the shared memory can be a bottleneck, each processor has a private 128KB,
direct-mapped, write-back data cache. The data caches can be accessed in a single cycle
and each cache line holds 32 bytes of data.

P1 P2
Instruction Instruction
memory memory
l v
RISC-V RISC-V
Core Core
P1 P2
A
32 32
v v
128KB P1 128KB P2
Data cache Data cache
256 ‘ 256
Shared Data Memory
BusRd / --
BusRdX / --

Figure 201: System Architecture Figure 202: State transition diagram of MSI
cache-coherency protocol

To keep the two caches coherent, we use the MSI cache-coherency protocol, shown in
Figure The code execution on the processors is similar to a normal RISC-V pro-
cessor with a 5-stage pipeline (Fetch, Decode, Execute, Memory, and WriteBack). During
code execution, a load/store instruction might cause a change in the state of a cache
line. If this happens, the cache line’s state is updated only when that load/store in-
struction enters the Write-back state.

In this system, the Memory stage accesses the data cache. So, in the best case, where the
required data is held exclusively in the processor’s data cache and no data exchanges
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between the caches are necessary, the Memory stage needs only one cycle. However,
if some signals and data need to be exchanged between the two caches or between the
cache and the shared memory over the shared bus, there are several possibilities. The
following diagrams illustrate these possibilities and how they execute on the processor:

A Reading data using the shared bus: ‘Mr’ is used to indicate reading from the
bus which takes 4 clock cycles after access to the shared bus is granted.

F D E M | Mr| Mr | Mr | Mr | W

B Reading data with intent to modify using the shared bus when the bus is free:
‘Mx’ is used to indicate reading with intent to modify from the bus which takes
4 clock cycles after access to the shared bus is granted.

F D E M Mx | Mx | Mx | Mx | W

C Writing data using the shared bus when the bus is free: ‘Mw’ is used to indicate
writing into the bus which takes 4 clock cycles after access to the shared bus is
granted.

D Accessing data (read) using the shared bus when the bus is currently busy:
Assume that the shared bus was busy until the point indicated by the arrow. The
X’ indicates pipeline stalls due to the non-availability of the shared bus when the
processor wants to access it. The cases of read with intent to modify and write
are similar with ‘Mx” and ‘Mw’ replacing the ‘Mr’.

F D E M X X X Mr | Mr | Mr | Mr | W

4

During a data read, standard, or with intent to modity, if the data requested by a
processor is available in the cache of another processor, the cache controller of the
cache containing the data will provide the data on the bus without affecting the
execution of the processor connected to it. For the processor that reads the data, this
case is exactly the same as reading data from the shared bus. If both the processors are
waiting to gain access (for read /write/read with intent to modify) to the shared bus,
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the one that initiates the requests first is always given priority. In the event that both
processors attempt to gain access at exactly the same execution cycle, the processor P1
is given priority.

a) According to the MSI protocol, what are the possible states a given cache line can
have in the two processor caches at any given point in time?

b) Assume that the code in the table below is executed on the two processors, with
each processor starting the execution of their respective first instructions on the first
clock cycle. Also, assume that the two data caches were flushed just before starting the
execution.

Code executed on Processor P1 Code executed on Processor P2

add x1, x3, x4
sSwW x1, 0x3180(zero)
add x1, x1, x8
slli x1, x1, 4
1w x2, 0x3008 (zero)
sSwW x1, 0x3180(zero)
sSwW x5, 0x3184 (zero)

lw x1, 0x3000(zero)
1w x2, 0x3004 (zero)
add x1, x1, x2

sw x1, 0x3000(zero)
sw x2, 0x3188(zero)
sw x2, 0x3004 (zero)

Draw an execution diagram showing the execution in each processor pipeline and the
states of the relevant cache lines. You can indicate the cache line states using the letters
M, S, and I for Modified, Shared, and Invalid.

c) Assume that we replaced the two data caches with direct mapped, write-through
caches. Modify the MSI cache-coherence protocol’s state diagram by only altering its
state transitions to adapt it for the new system.

d) In the modified state diagram for question c) are all the three states really essential?
If not, draw a simplified state diagram and explain your changes clearly.
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[Solution 1]

a) For two corresponding lines in two caches, say Cachel and Cache2, these are the
simultaneous states that can have:

Line in Cachel Line in Cache2
Invalid - Invalid
Invalid - Shared
Shared - Invalid
Shared - Shared

Modified - Invalid
Invalid - Modified

b) Solution is shown in Figure
¢) Solution is shown in Figure
d) Solution is shown in Figure
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Figure 203: Cache coherency based on the MSI protocol
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BusRd
BusRdX

Figure 204: Simplified MSI protocol for writethrough cache

BusRd
PrRd
PrWr (BusWr)

Figure 205: Simplified coherency state diagram for writethrough cache
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[Exercise 2]

Consider the multiprocessor system shown in Figure comprised of two super-
scalar processors, P1 and P2. Each processor has its own instruction memory and a
32 KB private, direct-mapped, write-back data cache with 32-byte cache lines. If the data
access can not be serviced by the private cache, the data must be fetched from the
shared data memory over the 256-bit shared bus. If the bus is busy, the processor stalls
until it attains exclusive access. While using the shared bus, data can be either read
directly from the memory or snooped from the bus while another cache performs a
write-back operation.

To keep the data caches coherent, the system uses the MSI protocol whose state
diagram is shown in Figure During any data access operation, first, the cache
is accessed, which takes one clock cycle. The operation completes if the access can
be handled from the local cache without a bus transaction. Any bus transaction
(BusRd, BusWr, BusRdX) adds exactly 3 clock cycles to the memory operation. If the
bus is busy, then the operation will wait until it gains exclusive access to the bus. If
there is contention between the processors for bus access or an operation requires
writing-back a cache line from another processor’s local cache, the processor that
requests the operation first gets higher priority. If the requests arrive simultaneously,
P1 has a higher priority over P2.

In this implementation, the cache line state is always updated at the beginning of the
data access operation. Changes to a cache-line state caused by another processor’s
data access are performed when that processor accesses the shared bus. During a
write-back operation, the cache line that is being written back is locked until the
operation completes; any access to that line will cause the processor to stall.

a) Table 29| shows the current status of the load/store queues in the two processors.
The order of the operations in the individual queues must be preserved during the
execution. Using the provided template, indicate the cache line involved in every
memory access, the initial and final states of the line before and after the access, and
illustrate in the timing diagram the system cycles when each operation would be
performed. In the execution diagram, indicate if the cache access results in a hit or
miss when the cache access occurs, the cycles lost waiting for exclusive access to the
shared bus, and the bus transaction performed. You must use M to indicate a cache
miss, H to indicate a cache hit; X to indicate the cycles lost waiting for bus access, and
BusRd, BusRdX, and BusWr to indicate the specific bus transaction performed. The
tirst two data access operations have already been completed in the template for your
reference. Show the execution of the rest of the operations by following the same
format. Assume that the caches are empty before execution.

b) Assume that we change the cache coherence protocol in our system to MESI. The
state diagram of the MESI protocol is shown in Figure In the MESI protocol,
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Processor Processor
P1 P2

A A
32 32
v v

P1 32KB 32KB P2

Instruction Instruction
memory Data cache Data cache memory

256 256

Shared Data Memory

BusRd / --
BusRdX / --

Figure 206: System Architecture Figure 207: State transition diagram of MSI
cache coherence protocol

instead of a single Shared state of the MSI protocol, we have Exclusive and Shared states.
In the Exclusive state, only one cache holds a copy of the data and it can change the
state of the data to Modified state without needing an extra bus transaction. In the
Shared state, multiple caches may own copies of the data. Hence, a bus transaction is
needed before the data can be modified by the local processor.

In the MESI protocol, when a processor reads a data item that was previously not in
the cache, the status of the cache line holding this data is set to the Shared state if the
data is already stored in another processor cache. If that data item is not being held in
any other cache, its state is set to Exclusive. To know if the data is already in another
cache or not, when one processor reads a data item with a BusRd transaction, the
other caches must indicate if they hold a copy of that data item by setting BusShr to
1’. If this signal is ‘0", we know that the particular data item is not held in any other
cache.

Now, considering the same initial load/store queue state shown in Table show
the execution of the memory operations by filling out the provided template. Use the
same representation scheme as used for question |l Assume again that the caches are
empty prior to the execution.

¢) According to the MESI protocol, what are the possible states a given cache line can
have in two different processor caches at any given time? Consider the cache line to
be "Invalid” if it does not exist in the cache, either because it has never been fetched or
because it was evicted.
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PrRd
Prwr/ --

A

Modified

Prwr/ --

PrWr /BusRdX \

PrWr /BusRdX

BusRd /BusWr+BusShr

BusRdX /BusWr

BusRd /BusShr

BusShr='0'

BusRdX/ --

BusShr="1"

BusRdX / --

PrRd / BusRd

PrRd / --
BusRd / BusShr

BusRd / --
BusRdX / --

Figure 208: State transition diagram of the MESI protocol.
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d) In the state diagram of the MESI protocol, does it make sense to have an edge from
the Shared state to the Exclusive state? If so, what will be the benefit of this transition
and why is it not already present in the general MESI protocol?

e) In the system described in question b), a read access to a memory location which
does not exist in the processor local cache, while already existing in Shared state in
one or more caches, is supplied from the memory. An alternative would be to supply
the data directly between the caches. Do you see any potential benefits in doing this?
Do you see any problems with implementing this scheme when considering larger
systems with many processors, each having their own private cache?
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Exercise Book

Computer Architecture

Exercise 2
Multiprocessors

Table 29: Initial state of the load/store queues on the two processors.

Load/Store Queue on P1
1 LOAD 0x2000
2 STORE 0x2008
3 LOAD 0x2204
4 STORE 0x200C
5 STORE 0x220C

Load/Store Queue on P2
1 LOAD 0x2204
2 LOAD 0x220C
3 STORE 0x2200
4 LOAD (0x2000
5 LOAD 0x2004
6 STORE 0x2204
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[Solution 2]

The given set of load/store operations only uses the cache lines 256 and 272. Hence,
we only need to track these two cache lines during the execution.

a) If the MSI cache coherence protocol was used, Figure shows the execution of
operation as the load/store operations are performed.

b) If the MESI cache coherence protocol was used, Figure shows the execution of
operation as the load/store operations are performed.

¢) MESI protocol permits the following combination of states:

A Shared - Shared
B Invalid - Modified
C Invalid - Exclusive
D Invalid - Shared
E Invalid - Invalid

d) Yes, it is sensible to have this edge. Having this edge implies that under certain
circumstances the cache line status can change from Shared state to the Exclusive state.
This means that if the cache controller identifies that a previously shared cache line is
no longer shared, it can promote it to an Exclusive. Hence, if the processor accessing
that cache needs to write to that cache line, the operation can be carried out without
any delays. However, to implement this feature, the cache controller would need to
keep the information of the data held by other caches in the system. This significantly
increases the controller’s complexity and the amount of state information it needs to
hold for each cache line.

e) One argument in favor of direct cache-to-cache sharing is that cache memory is faster
than DRAM and this mode of transfer could potentially be faster. However, disturbing
another cache to obtain the data might be more expensive (at a system level) than
obtaining the data from the memory. Additionally, since there are multiple candidates
who could supply the data, the coherency protocol also needs a selection algorithm to
decide which cache should supply the data.
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Exercise 3 Exercise Book
Multiprocessors Computer Architecture

[Exercise 3]

Consider the multiprocessor system of Figure consisting of three 8-bit processors
PO, P1, and P2 connected through a bus to the main memory. Each of the three pro-
cessors has a single private 32-byte direct-mapped cache with 4 bytes per cache line.
The memory is byte-addressed and starts at address 0x00.

Processor Processor Processor
PO P1 P2
18 18 18
Cache CO Cache C1 Cache C2

t 1 )

32

A 4

Memory

Figure 211: A multiprocessor architecture.

The caches are initialized with some data and each cache line has the initial state shown

in Figure

Cache CO Cache C1 Cache C2
Line State | Address Line State | Address Line State | Address

0 S 0x00 0 S 0x00 0 S 0x20
1 M 0x04 1 S 0x24 1 1 0x04
2 - 2 M 0x28 2 M 0x08
3 S 0x2C 3 1 0x0C 3 | 0x0C
4 | 0x70 4 M 0x70 4 | 0x70
5 - 5 - - 5 S 0x74
6 S 0x18 6 - - 6 -

7 - 7 - - 7 - -

Figure 212: The initialization of the three caches.

Two different cache coherence protocols will be tested on this system, using the follow-
ing sequences of load/store instructions. For simplicity, assume that the instructions
are executed in the order shown, even if issued on different processors.

Version 1.0 of 1st October 2024, EPFL ©2024 489 of



Exercise Book Exercise 3
Computer Architecture Multiprocessors

Setl

P2: load 0x04
Pl: load 0x08
PO: load 0x08

Set2

Pl: load 0x30
PO: load 0x30
Pl: store 0x19

Set3

PO: store 0x00
Pl: load 0x06
P2: load O0x1B

Executing each instruction can trigger several operations such as:
— Rmem: Read a cache line from memory.
— Rcacnhg: Read a cache line from a remote cache.
— Wuniem: Write a cache line back to memory.
— Wcacnhg: Write a cache line to a remote cache.

— INV: Invalidate a cache line locally.

a) Assume that the three caches use the MSI snooping coherence protocol whose dia-
gram is provided in Figure Execute the sets of load/store instructions provided
above. The first set is executed assuming that the cache is initialized as in Figure
while the remaining sets are executed without any cache re-initialization.

For each set (i.e., at the end of the third instruction of each set):

i) Show the contents and states of all three caches in the provided template. You may
leave the unchanged entries empty.

ii) For each processor, list all the operations incurred by each instruction, in the
provided template.

b) The MOSI protocol is an enhancement over the MSI protocol. It introduces an
Owned state (denoted by O) with the following features:

— One cache at most may have a line of data in the Owned state; if another cache
has the data as well, it would be in the Shared state.

490 ofm Version 1.0 of 1st October 2024, EPFL ©2024



Exercise 3 Exercise Book
Multiprocessors Computer Architecture

— When a read miss occurs on processor A and processor B has the data in the
Owned or Modified states, then B provides the requested line and transitions its
state to (or stays in) Owned.

— When a write miss occurs on processor A and processor B has the data in the
Owned or Modified states, then B provides the requested line and transitions its
state to Invalid.

— Main memory is updated when a line in the Modified state or Owned state is
replaced.

— Apart from the above differences, the MOSI protocol is identical to MSI.

Draw the MOSI protocol diagram.
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€) Assuming that the caches use the MOSI protocol, re-execute the previous sets
of instructions. The first set is executed assuming that the cache is initialized as in
Figure while the remaining sets are executed without any cache re-initialization.

For each set of instructions:

i) Show the contents and states of all three caches in the provided template. You may
leave the unchanged entries empty.

ii) For each processor, list all the operations incurred by each instruction, in the
provided template.

d) Compare the two protocols: What improvement does MOSI provide over MSI? Jus-
tify your answer.

PrRd /-
PrWr/ --

BusRd / --
BusRdX/ --

Figure 213: The MSI protocol diagram.
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Solution 3 Exercise Book
Multiprocessors Computer Architecture

[Solution 3]

a) Please refer to the MSI protocol template below.
b)

PrRd / --
Prwr/ --

Modified

PrWr / BusRdX
BusRd / BusWr

PrWr / BusRdX

BusRd / BusWr
PrRd / --

BusRd / --
BusRdX/ --

Figure 214: The MOSI protocol diagram.

c) Please refer to the MOSI protocol template below.

d) In the MOSI protocol, if cache X has a line in the Owned state, the other caches
can read that line directly from X instead of main memory. So having an Owned state
allows cache-to-cache transfer and reduces memory accesses.
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[Exercise 4]

Consider the multiprocessor system of Figure which consists of four 8-bit pro-
cessors P0 to P3 along with their caches C0 to C3. Each cache is a 16-byte direct-mapped
cache with one byte per cache line. Instead of having a centralized memory and a bus
to enable memory-to-cache and cache-to-cache communications, the memory is dis-
tributed uniformly among the memories MO to M3 and an interconnection network
is used. A directory is added to keep track of the state of each memory location. In
such a directory-based system, there is no bus snooping and all communications are
done between individual nodes. For simplicity we assume that the memory is byte-
addressed and that MO starts at address 0x0000, M1 at 0x1000, M2 at 0x2000 and M3 at
0x3000.

Processor Processor Processor Processor
PO P1 P2 P3
18 18 18 18
Cache CO Cache C1 Cache C2 Cache C3
Memory MO — Memory M1 — Memory M2 — Memory M3 —
Directory DO— Directory D1— Directory D2— Directory D3—

Interconnection Network

Figure 215: A multiprocessor architecture with distributed memory system.

A simple protocol, similar to the MSI protocol, is used to maintain the coherence
of the different caches. As shown in Figure the same states are used as in the
case of a snoopy protocol; however, all bus operations (read, write, readX) are now
network operations issued from/to the directory of the memory holding the data line
in question. A new network operation NetInv is introduced to invalidate the data. It
works similarly to NetRdX, except that the data is only invalidated without being read.

A second protocol, shown in Figure is needed to update the states of the director-
ies. Three states are used: Uncached meaning that the data exists only in memory and
has not been read by any cache yet, Shared when the data exists in different caches,
and Exclusive when the data has been modified in a certain cache and not written back
to memory (that is, it is dirty as sometimes it is called).
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Each directory keeps track, of every memory location, of the state of the data and
maintains a list (known as sharers) of the processors that have it in their caches. The
term home is used to indicate the processor responsible for the data (which happens
when the address of the data is in the range covered by its directory/memory), while
owner indicates the processor that has the most updated version (exclusive) of the
data in its cache. For example, in the transition from the Exclusive to the Shared state,
triggered by a read request from processor P, the directory sends a read request to the
owner and then waits until it receives the data from the owner before sending it back
to P and updating its list of sharers. This wait is represented using square brackets in

Figure 217|(in this case, [NetWr(from owner)]).

PrRd /-

Evict / --

PrRd / NetRd(to home)

Invalid
Netlnv / --
Evict / --

Shared

PrWr / NetRdX(to home)

Evict / NetWr(to home)
NetRdX / NetWr(to home)

Modified

PrRd /-
PrWr/ --

Figure 216: The protocol used to modify the states of the caches.
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NetRd(from P) / NetWr(to P), Sharers+=(P}

NetRd(from P) / NetWr(to P), Sharers={P}

Uncacﬁig/

=(P)

{}

NetWr / Sharers
NetRdX(from P) / NetWr(to P), Sharers

Exclusive

NetRdX(from P) / NetRdX(to owner), [NetWr(from owner)], NetWr(to P), Sharers={P}

Figure 217: The protocol used to update the states of the directories.

Consider the following accesses executed in the given order and on the specified
processors.

Pl Write 0x0006
PO Write 0x0010
P2 Read O0x300F
P3 Read 0x0006
Pl Write 0x300F
Pl Write O0x321F
PO Write O0x321F
P2 Write 0x0006

a) Using the cache protocol of Figure 216|and the directory protocol of Figure and
assuming that the caches are initially empty, trace each access and fill in the provided

template:

i) The state transitions of the affected cache lines.

ii) The state transitions of the affected directory addresses.

iii) The network operations performed.
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b) Assuming that each network operation takes a cycle to execute:

i) Which directory state transitions take the most cycles to execute (i.e., to deliver the
required data)?

ii) Is there a simple way to speed up the execution while ensuring correct functional-
ity?
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[Solution 4]

a) Please refer to the solution diagram of Figure
b) From the transition diagrams and the solution of question I}

i) When the directory transitions from Exclusive to Shared or from Exclusive to
Exclusive, 4 cycles are needed for the data to reach its destination. The processor
requests the data from the directory, but since the only valid value exists in the
cache of another processor, the directory has to request the line and wait for it to
be written back before sending it to the requesting processor.

ii) One way of speeding up the execution would be to enable processor-to-processor
communication. Instead of waiting for the value to be written back to the directory
before sending it to the requesting processor, the processor that has the exclusive
value can send the data directly to the requesting one. This way, the data is avail-
able after 3 cycles (and an additional cycle can still used to update the directory
but at least the processor has the data it needs and can proceed with its operation).
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[Exercise 5]

Consider a system of four processors F, to P, each having its own cache Cj to Cs
respectively. The MESI protocol is used to maintain coherence among the different
caches. With this protocol, a cache line can be in one of four states: Modified (M),
Exclusive (E), Shared (S), and Invalid (I). The diagram of Figure shows the states
of the MESI protocol and the transitions between the different states.

PrRd
Prwr/ --

BusRdX /BusWr
PrWr /BusRdX

BusShr='0"

\?sShr'

PrRd / BusRd

BusRdX / --

1

PrRd / --
BusRd / BusShr

BusRd / --
BusRdX/ --

Figure 220: The MESI protocol diagram.

In the MESI protocol, the following needs to be considered when a processor reads a
data item that was previously not in its own cache:

e [If the data is already stored in another processor cache, then the status of the
cache line holding this data is set to the Shared state.

¢ If the data is not already stored in any other cache, then the status of the cache
line which will hold this data is set to the Exclusive state.

To know if the data is already in another cache or not, when one processor reads a
data item with a BusRd transaction, the other caches must indicate if they hold a copy

Version 1.0 of 1st October 2024, EPFL ©2024 505 of@



of that data item by setting a special bus signal called BusShr to ‘1”. If this signal is
‘0", we know that the particular data item is not held in any other cache.

a) In the provided template, you are given the current state (labelled as Old) of a
specific cache line in the four caches Cj to Cs. For each cache, the address of the data
saved in that cache line, as well as its state, is specified. When one of the processors
(P to Ps) executes an instruction that requires a memory access, then a state change is
triggered in one or more of the caches (C to C3). This change is shown, for one cache,
under the label New.

You are required to fill the rest of the template as follows:

A Specify the new state/address of the remaining caches.

B Specify the memory access that caused these changes. Your answer should be in
the form:
P, : Load/Store Address

where P, is the processor that executed the memory operation, Load/Store
is the type of memory access and Address is the address of the data to be
loaded /stored.

If the New state cannot happen given the MESI protocol, or if no single instruction
can change the state from Old to New, then you should write “Impossible”.

The solution of the first case in the template is provided as an example. Note that there
might be up to 3 possible answers for each case (only 1 is possible in the example) and
that you are required to list all possible answers in the provided space.

b) Under the MESI protocol, all data transfers always happen via shared memory
(there is no direct cache-to-cache communication). Would enabling cache-to-cache
communication be beneficial? If your answer is yes, provide an example of a situation
where this would help; if your answer is no, justify your answer.



Cache CO Cache C1 Cache C2 Cache C3
Px: Load/Store Address
State Address State Address State Address State Address
Old | 0x1000 S 0x1000 S 0x2000 S 0x1000 -
S 0x1000 S 0x1000 S 0x2000 S 0x1000 PO: Load 0x1000
New S 0x1000 - - - - - - -
S 0x1000 - - - - - - -
Case 1:
Oold E 0x1000 | 0x1000 S 0x2000 [ 0x1000 -
S 0x1000
New S 0x1000
S 0x1000
Case 2:
Old | 0x1400 | 0x1200 | 0x1200 M 0x1200 -
| 0x1200
New | 0x1200
[ 0x1200
Case 3:
Old M 0x1300 | 0x1200 | 0x1100 E 0x1100 -
M 0x1100
New M 0x1100
M 0x1100
Case 4:
Old | 0x1200 M 0x1200 S 0x1000 S 0x1000 -
M 0x1000
New M 0x1000
M 0x1000
Case 5:
Oold S 0x2000 | 0x2000 M 0x1600 E 0x1200 -
| 0x2000
New | 0x2000
| 0x2000
Case 6:
Old E 0x1400 S 0x1000 S 0x1000 S 0x1000 -
S 0x1400
New S 0x1400
S 0x1400
Case 7:
(_)Id S 0x2200 M 0x2000 | 0x1600 S 0x2200 -
M 0x2200
New M 0x2200
M 0x2200
Case 8:
Old S 0x1200 | 0x1200 S 0x1200 | 0x2000 -
E 0x2000
New E 0x2000
E 0x2000
Case 9:
(_)Id S 0x1400 S 0x1400 | 0x1400 | 0x1000 -
E 0x1400
New E 0x1400
E 0x1400
Case 10:
Old | 0x1000 S 0x1000 S 0x1000 M 0x1200 -
S 0x1200
New S 0x1200
S 0x1200
Case 11:
old | 0x1000 s 0x2200 5 0x2200 M 0x1400 -
E 0x1400
New E 0x1400
E 0x1400
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[Solution 5]

a) The solution is given in the filled template on the next page.

b) In the MESI protocol, modified data needs to be written into the main memory
before it is shared, which can be time-consuming (for instance, it causes a delay when
the modified data line needs to be fetched by another processor). Enabling cache-to-
cache communication would help circumvent this issue.
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Cache CO Cache C1 Cache C2 Cache C3
Px: Load/Store Address
State Address State Address State Address State Address
Old | 0x1000 S 0x1000 S 0x2000 S 0x1000 -
S 0x1000 S 0x1000 S 0x2000 S 0x1000 PO: Load 0x1000
New S 0x1000 - - - - - - -
S 0x1000 - - - - - - -
Case 1:
old E 0x1000 | 0x1000 S 0x2000 | 0x1000 -
S 0x1000 S 0x1000 S 0x2000 | 0x1000 P1: Load 0x1000
New S 0x1000 | 0x1000 S 0x1000 | 0x1000 P2: Load 0x1000
S 0x1000 | 0x1000 S 0x2000 S 0x1000 P3: Load 0x1000
Case 2:
Old | 0x1400 | 0x1200 | 0x1200 M 0x1200 -
M 0x1200 | 0x1200 | 0x1200 | 0x1200 PO: Store 0x1200
New | 0x1400 M 0x1200 | 0x1200 | 0x1200 P1: Store 0x1200
| 0x1400 | 0x1200 M 0x1200 | 0x1200 P2: Store 0x1200
Case 3:
Old M 0x1300 | 0x1200 | 0x1100 E 0x1100 -
M 0x1300 | 0x1200 | 0x1100 M 0x1100 P3: Store 0x1100
New - - - - - - M 0x1100 -
- - - - - - M 0x1100 -
Case 4:
Old | 0x1200 M 0x1200 S 0x1000 S 0x1000 -
| 0x1200 M 0x1200 M 0x1000 I 0x1000 P2: Store 0x1000
New - - - - M 0x1000 - - -
- - - - M 0x1000 - - -
Case 5:
Oold S 0x2000 | 0x2000 M 0x1600 E 0x1200 -
| 0x2000 M 0x2000 M 0x1600 E 0x1200 P1: Store 0x2000
New | 0x2000 | 0x2000 M 0x2000 E 0x1200 P2: Store 0x2000
| 0x2000 | 0x2000 M 0x1600 M 0x2000 P3: Store 0x2000
Case 6:
Old 0x1400 S 0x1000 S 0x1000 S 0x1000 -
0x1400 S 0x1400 S 0x1000 S 0x1000 P1: Load 0x1400
New - - S 0x1400 - - - - -
- - S 0x1400 - - - - -
Case 7:
(_)Id S 0x2200 M 0x2000 | 0x1600 S 0x2200 -
| 0x2200 M 0x2000 M 0x2200 | 0x2200 P2: Store 0x2200
New - - - - M 0x2200 - - :
- - - - M 0x2200 - - -
Case 8:
Old 0x1200 | 0x1200 S 0x1200 | 0x2000 -
0x1200 E 0x2000 S 0x1200 I 0x2000 P1: Load 0x2000
New - - E 0x2000 - - - - -
- - E 0x2000 - - - - -
Case 9:
(_)Id S 0x1400 S 0x1400 | 0x1400 | 0x1000 -
- - E 0x1400 - - - - Impossible
New - - E 0x1400 - - - - -
- - E 0x1400 - - - - -
Case 10:
Old | 0x1000 S 0x1000 S 0x1000 M 0x1200 -
S 0x1200 S 0x1000 S 0x1000 S 0x1200 PO: Load 0x1200
New | 0x1000 S 0x1200 S 0x1000 S 0x1200 P1: Load 0x1200
| 0x1000 S 0x1000 S 0x1200 S 0x1200 P2: Load 0x1200
Case 11:
old | 0x1000 0 0x2200 5 0x2200 M 0x1400 -
- - - - - - E 0x1400 Impossible
New - - - - - - E 0x1400 -
- - - - - - E 0x1400 -
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[Exercise 6] Cache Coherence

Consider a system of four processors Fy, to P, each having its own cache Cj to Cs
respectively. The MOSI protocol is used to maintain coherence among the different
caches. With this protocol, a cache line can be in one of four states: Modified (M),
Owned (O), Shared (S), and Invalid (I). The diagram of Figure shows the states of
the MOSI protocol and the transitions between the different states.

PrRd / --
Prwr / --

Modified

PrWr/ BusRdX
BusRd / BusWr

PrWr / BusRdX

BusRd / BusWr

BusRd / --
BusRdX / --

Figure 221: The MOSI protocol diagram.

a) In the provided template, you are given the current state, labeled as Old, of a spe-
cific cache line in the four caches C, to (5. For each cache, the address of the data
saved in that cache line, as well as its state, is specified. One of the processors F; to Ps
executes an instruction that requires a memory access and causes a change in one or
more of these caches. This change is shown, for one cache, under the label New. You
are required to fill the rest of the template as follows:

i) Specify the new state/address of the remaining caches.
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ii) Specify the memory access that caused these changes. Your answer should be in
the form:
P, : Load/Store Address (1)

where P, is the processor that executed the memory operation, Load /Store is the
type of memory access and Address is the address of the data to be loaded /stored.

The solution of the first case in the template is provided as an example. Note that there
might be more than one possible answer for each case and that you are required to list
all possible answers in the provided space (each answer should be listed in a separate
row of the table; if there are fewer answers than provided rows, the extra rows should
be left empty).

b) According to the state diagram, are the caches:
i) write-through or write-back?

ii) write-allocate or not write-allocate (i.e., in case of write miss, is the data placed in the
cache or only in memory)?

Justify your answers.

¢) What is the maximum number of caches which can have the same line of data in
the Owned state? Justify your answer with an example.

d) The diagram in Figure 222|shows the MSI protocol. What is the benefit of the MOSI
protocol over MSI? Justify your answer with an example.



Exercise 2 - Template

Cache CO Cache C1 Cache C2 Cache C3
Px: Load/Store Address
State Address State Address State Address State Address
Old | 0x1000 S 0x1000 S 0x2000 S 0x1000 -
S 0x1000 S 0x1000 S 0x2000 S 0x1000 PO: Load 0x1000
New S 0x1000 - - - - - - -
S 0x1000 - - - - - - -
Old | 0x1400 S 0x1000 S 0x1000 M 0x1400 -
M 0x1400
New M 0x1400
M 0x1400
Old M 0x1000 0 0x2000 S 0x2000 | 0x1300 -
| 0x2000
New | 0x2000
[ 0x2000
Old | 0x1200 (] 0x1300 | 0x1100 M 0x1100 -
M 0x1200
New M 0x1200
M 0x1200
Old S 0x1000 | 0x1400 (0] 0x1000 | 0x1000 -
M 0x1000
New M 0x1000
M 0x1000
(o] [¢] S 0x1000 | 0x1000 (6] 0x1400 M 0x1600 -
M 0x1000
New M 0x1000
M 0x1000
Old | 0x1400 | 0x1200 | 0x1200 M 0x1200 -
S 0x1200
New S 0x1200
S 0x1200
old S 0x3000 M 0x2000 S 0x3000 (0] 0x3000 -
| 0x3000
New | 0x3000
| 0x3000
Old S 0x2000 (0] 0x4000 S 0x2000 (0] 0x2000 -
S 0x4000
New S 0x4000
S 0x4000
Old S 0x1000 | 0x1000 (0] 0x2000 S 0x4000 -
M 0x1000
New M 0x1000
M 0x1000
Oold | 0x1000 (] 0x1000 S 0x1000 M 0x1200 -
M 0x1200
New M 0x1200
M 0x1200
Old S 0x1400 S 0x1400 | 0x1400 (0] 0x1400 -
M 0x1400
New M 0x1400
M 0x1400
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PrRd / --
Prwr/ --

BusRd / --
BusRdX / --

Figure 222: The MSI protocol diagram.
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[Solution 6]

a) The solution is shown in the filled template below.

b) The caches are write-back—a write to the cache does not always imply a write to
memory (e.g., | to M does not have a BusWr). The caches are write-allocate, as the data
placed in the cache in case of a write miss.

€) One cache at most may have a line of data in the Owned state; if another cache has
the data as well, it would be in the Shared state.

d) In the MOSI protocol, if cache X has a line in the Owned state, the other caches can
read that line directly from X instead of main memory. Therefore, having an Owned
state allows cache-to-cache transfer and reduces the number of memory accesses.



Cache CO Cache C1 Cache C2 Cache C3
Px: Load/Store Address
State Address State Address State Address State Address
Old | 0x1000 S 0x1000 S 0x2000 S 0x1000 -
S 0x1000 S 0x1000 S 0x2000 S 0x1000 PO: Load 0x1000
New S 0x1000 - - - - - - -
S 0x1000 - - - - - - -
Case 1:
(o] [¢] | 0x1400 S 0x1000 S 0x1000 M 0x1400 -
| 0x1400 ) 0x1000 M 0x1400 | 0x1400 P2: Store 0x1400
New - - - - M 0x1400 - - -
- - - - M 0x1400 - - -
Case 2:
old M 0x1000 (0] 0x2000 S 0x2000 | 0x1300 -
M 0x2000 | 0x2000 | 0x2000 | 0x1300 PO: Store 0x2000
New M 0x1000 | 0x2000 M 0x2000 | 0x1300 P2: Store 0x2000
M 0x1000 | 0x2000 | 0x2000 M 0x2000 P3: Store 0x2000
Case 3:
old | 0x1200 (0] 0x1300 | 0x1100 M 0x1100 -
M 0x1200 (o} 0x1300 | 0x1100 M 0x1100 PO: Store 0x1200
New M 0x1200 - - - - - - -
M 0x1200 - - - - - - -
Case 4:
Old S 0x1100 | 0x1400 (0] 0x1000 | 0x1000 -
1 0x1000 M 0x1000 | 0x1000 | 0x1000 P1: Store 0x1000
New - - M 0x1000 - - - - -
- - M 0x1000 - - - - -
Case 5:
Old S 0x1000 | 0x1000 (0] 0x1400 M 0x1600 -
1 0x1000 | 0x1000 (o) 0x1400 M 0x1000 P3: Store 0x1000
New - - - - - - M 0x1000 -
- - - - - - M 0x1000 -
Case 6:
Old | 0x1400 | 0x1200 | 0x1200 M 0x1200 -
I 0x1400 S 0x1200 | 0x1200 (o} 0x1200 P1: Load 0x1200
New - - S 0x1200 - - - - -
- - S 0x1200 - - - - -
Case 7:
Old S 0x3000 M 0x2000 S 0x3000 (0] 0x3000 -
M 0x3000 M 0x2000 | 0x3000 | 0x3000 PO: Store 0x3000
New I 0x3000 M 0x3000 | 0x3000 | 0x3000 P1: Store 0x3000
I 0x3000 M 0x2000 [ 0x3000 M 0x3000 P3: Store 0x3000
Case 8:
Old S 0x2000 0 0x4000 0x2000 (0] 0x2000 -
S 0x4000 (0] 0x4000 0x2000 (0] 0x2000 PO: Load 0x4000
New S 0x4000 - - - - - - -
S 0x4000 - - - - - - -
Case 9:
Old S 0x1000 | 0x1000 (0] 0x2000 S 0x4000 -
| 0x1000 M 0x1000 (0] 0x2000 S 0x4000 P1: Store 0x1000
New - - M 0x1000 - - - - -
- - M 0x1000 - - - - -
Case 10:
(o] [¢] | 0x1000 (0] 0x1000 0x1000 M 0x1200 -
| 0x1000 M 0x1200 0x1000 | 0x1200 P1: Store 0x1200
New - - M 0x1200 - - - - -
- - M 0x1200 - - - - -
Case 11:
Old S 0x1400 S 0x1400 | 0x1400 (6] 0x1400 -
| 0x1400 | 0x1400 | 0x1400 M 0x1400 P3: Store 0x1400
New - - - - - - M 0x1400 -
- - - - - - M 0x1400 -




Exercise Book Exercise 7
Computer Architecture Multiprocessors

[Exercise 7] Cache Coherence

MSI is a simple invalidation cache-coherence protocol. With this protocol, a cache line
can be in one of three states: Modified (dirty) where the data in the cache line has been
modified and thus is inconsistent with the data in the main memory, Shared where the
cache line is not modified and is present in at least one cache, and Invalid where the
cache line does not hold a valid copy of the data, and valid copies of data can be either
in main memory or in another cache. Figure shows the states of the MSI protocol
along with the transitions between the states, and the transactions on the bus.

Modified

BusRd /
BusWrMem

Prwr / BusRdX

Prwr / BusRdX BusRdX / BusWrMem

PrRd / BusRd BusRdX / --

Invalid

BusRd / --
BusRdX / --

Figure 223: MSI protocol state transition diagram.

a) The typical MSI protocol as shown above follows a write-back and write-allocate
policy (i.e., in case of a miss on write, data is written both to the cache and main
memory). Perform the necessary modifications to make it follow a write-back and
no-write-allocate policy (i.e., in case of a miss on write, data is written only to main
memory). You can either redraw the protocol from scratch or apply your changes on
the provided template (add missing edges and clearly mark removed edges).
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MSI has a couple of shortcomings resulting in redundant traffic on the bus and creating
extra unnecessary memory requests:

i If a processor requests to write a cache line, the corresponding cache creates a
broadcasting transaction over the bus to signal all other caches to invalidate this
cache line, if present. Yet, if the cache line that is about to be modified is not present
in other caches, there is no point in such a broadcasting transaction.

ii. Whenever a cache encounters a miss on read for a cache line that is dirty in another
cache (i.e., in the Modified state), the cache line with the dirty data always writes
the data to memory; instead, it could simply pass the data to the requesting cache.

The MOESI protocol addresses the two shortcomings by introducing two addi-
tional states Owned and Exclusive. MOESI replaces, in some cases, the transaction
BusWrMem (which writes back a value to memory and whose write-back value can
be snooped by other caches) with BusWrCache where the value being written can
be snooped by other caches but is not actually written back to memory. MOESI also
introduces a BusShr signal which is used by all caches to indicate whether they have
a specific piece of data or not; it acts as a wired-OR signal, that is, if more than one
cache asserts BusShr at once, then BusShr is active. Figure 224|(given in the next page)
illustrates the MOESI protocol.

b) One could classify states in coherence protocols as dirty or clean depending on
whether the value of the cache line they correspond to is different (i.e., more recent)
from the value in the main memory or is it identical to it. One could also classify them
as exclusive or nonexclusive depending on whether the state guarantees that the cache
line is definitely not present in any other cache or if it does not give such a guarantee.
Specity for the four non-invalid states of MOESI whether they are dirty or clean and
exclusive or nonexclusive. Explain clearly each of your eight choices. If convenient,
use the provided template.

c) For the states that you have classified as nonexclusive in the previous question,
give the simplest sequence of memory accesses that explains your choice. Specify the
memory accesses in the following format.

Pn: LD addr or Pn: ST addr
where n is the number of the processor (e.g., 1 or 2) and addr is replaced by a particular
address. Assume that all caches are empty in the beginning.

Version 1.0 of 1st October 2024, EPFL ©2024 517 of@



Exercise Book Exercise 7
Computer Architecture Multiprocessors

Prwr / --
PrRd/ --

"Modified

Prwr / BusRdX

BusRd / BusWrCache +
BusShr

BusRdX /
BusWriMem

Prwr / BusRdX

Exclusive

BusRdX /
BusWriMem

Prwr / BusRdX

BusRd / BusShr

BusRdX / --

BusShr="1"

BusRd / BusShr
BusRdX / --

PrRd / BusRd

BusRd / --
BusRdX / --

Figure 224: MOESI protocol state transition diagram.
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d) Ilustrate how MOESI avoids the first MSI shortcoming that is described above
in (i) with a simple sequence of accesses where the cost in terms of transactions is
smaller for MOESI compared to MSI. For simplicity, assume that only transactions
involving memory have cost (i.e., BusRd, BusRdX and BusWrMem) and that all other
transactions cost nothing. Use the provided template to write all the transactions
demonstrating the difference.

e) lllustrate how MOESI avoids the second MSI shortcoming that is described above
in (ii) with a simple sequence of accesses where the cost in terms of transactions is
smaller for MOESI compared to MSI. Use the same template and same assumptions as
in question 4).
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Reason for Choice
Dirty Clean
O O
M - ©
Exclusive [Non-Exclusive
a O
Dirty Clean
O O
(o] . -
Exclusive |[Non-Exclusive
a O
Dirty Clean
O O
E Exclusive |[Non-Exclusive
O (]
Dirty Clean
O O
S Exclusive |[Non-Exclusive
O O
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[Solution 7]

a) No-write-allocate means that upon a miss on write, the data needs to be written
directly to memory without writing it to the cache. This means that the state of the
cache line will remain Invalid and that there will be two output transactions: BusRdX
to invalidate other caches and BusWrMem to do the write to memory. In the follow-
ing diagram, given in blue transition is the new transactions that need to be present
whenever a PrWr comes at an Invalid state. Following this, the transition denoted in
red needs to be removed.

Prwr / --
PrBd/ --

BusRd /
BusWrMem

/" PrWr/BusRdX

BusRdX / BusWrMem

BusRdX / --
Prwr / BusRdX + BusWrMem

Figure 225: MSI with no-write-allocate state transition diagram.
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b) Classification is as follows:

Reason for Choice
Dirty Clean § .
A cache line moves to this state when the processor writes new data to the cache and it doesn't get written to memory.
O
M
Exclusive | Non-Exclusive
Acache line is in this state after the processor writes data to this cache and no other cache contains this data. And it exits the state if another cache issues a BusRd or BusRdX on this cache line.
0
Dirty Clean " " . " . P .
A cache line moves to this state when a processor requests to read a cache line that is in the modified state in another cache (i.e. data is not in memory).
O
o
Exclusive | Non-Exclusive ) . ) . . ;
A cache line moves to this state when a processor requests to read a cache line that is in the modified state in another cache, which means that the data will be present in two caches.
[m]
Dirty Clean § . . .
A cache line moves to this state at a miss on read; when the processor requests to read data that is not yet present in any cache and is read from memory.
[m]
E
Exclusive | Non-Exclusive o . . . o )
A cache line is in this state only if BusShr is 0 which means that no other cache contains this cache line. And it exits the state if another cache issues a BusRd or BusRdX on this cache line.
O
Dirty Clean
Acache line is in this state if more than one cache requested to read this data from memory, so it's clean data.
O
s
Exclusive | Non-Exclusive ) o . . . .
Acache line is in this state when BusShr is 1 which means that other caches contain this cache line.
O

Figure 226: Classification of MSI states.
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c) S: Two different processors requesting to read from the same memory address.

P1: LD 0x1000

P2: LD 0x1000

The first read by P1 will move C1’s cache line from Invalid to Exclusive and the read
by P2 will move C2’s cache line from Invalid to Shared and C1’s cache line from
Exclusive to Shared. Both caches now contain the same cache line.

O: One processor writes to a memory address and the second processor reads from
the same memory address.

P1: ST 0x1000

P2: LD 0x1000

The write will move C1’s cache line from Invalid to Modified. The read will move
C2’s cache line from Invalid to Shared and C1’s cache line from Modified to Owned.
Both caches now contain the same cache line.

d) Solution must involve a transition from Exclusive to Modified. See the template at
the end.

e) Solution must involve a transition from Modified to Owned. See the template at the
end.
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[Exercise 8] Cache Coherence

Consider a four-processor (F to P;) system where each processor has its own cache
(Cy to (s, respectively). The Dragon coherence protocol is used, such that each cache
line can be in one of the four states: Exclusive (E), Modified (M), Shared Modified (SM),
and Shared Clean (SC). The transition diagram in Figure 227|shows the transitions from
each state depending on the operations performed by the processor (Pr«) or induced
by the bus (Bus ).

PrRd/BusRd
PrRd/--
BusRd/--
PrRd/-- BusUpd/--
(//\\\ BusShr=0 BusShr=1 (//“\\
BusRd/-- -

PrWr/BusUpd

BusShr=1 BusShr=0 BusUpd/

Prir/ BusShr=1
BusUpd l =
:\ BusRd/-- /
K\\—//y BusShr=1 BusShr=0 K\\_//)
PrRd/-- PrRd/--
BusRd/-- PriWr/--
PrWr/BusUpd

Figure 227: Dragon Cache Coherence Protocol

A cache line in the Exclusive state means that this cache has the only copy of the line
and that the data present in main memory is correct. A line in the Modified state means
that the cache has the only copy of the data and that the value stored in main memory
is incorrect. The two shared states (Shared Modified and Shared Clean) indicate that the
cache has the correct copy of the line and that the line also exists in other caches. The
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last processor to modify the cache line is in the Shared Modified state, whereas all the
other processors are in the Shared Clean state.

Below is a short description of each operation appearing on the transition diagram:
* PrRd indicates that the processor reads a cache line.
e Prir indicates that the processor writes to a cache line.

* BusRd happens when a processor requests the bus to fetch the latest value of the
cache line, whether it’s from main memory or another processor’s cache.

* BusUpd happens when a processor intends to modify a cache line. This allows
other processors that also have the line in their cache to update it with the new
value. This operation does not update main memory, only other caches. As such
it does not generate any memory traffic and is faster than updating main memory:.

¢ ——indicates that an incoming operation does not produce a bus response in that
state.

Additionally, a special bus line (referred to as BusShr in the transition diagram) is
introduced to detect if a cache line is shared among several caches. For instance, when
a cache line is in the Shared Clean state, a processor-write (PrWr) operation results in a
bus update (BusUpd). Once the value is written on the bus, the other caches respond
by asserting BusShr if they have a copy of the same cache line. Then, depending on
the value of BussShr, the state transition is decided (Shared Modified or Modified).

The state of a line that is being read /written for the first time into a cache (or the first
time after eviction) is defined according to the diagram of Figure 227 by the transitions
that have no source state.

a) According to the state transition diagram, are the caches:

¢ write-through or write-back?

¢ write-allocate (i.e., in case of write miss, the data is placed in the cache) or
write-no-allocate (i.e., in case of write miss, the data is written only to memory)?

Briefly justify both of your answers.

b) Consider the following cache accesses executed in the given order and on the
specified processors. Each access is expressed in terms of the cache line such that, for
example, PO: Read 01 means that processor F, reads the line 1 of its cache Cj.
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Pl: Write 02
PO: Read 01
PO: Write 01
P3: Read 03
Pl: Read 02
P2: Write 02
P3: Write 02
P3: Write 03
Pl: Write 03
Pl: Read 01
P2: Read 01
P2: Read 03
PO: Write 02
P3: Read 01
P2: Write 03

In the provided template, write the state transitions of each cache line in each cache.
Assume that all the caches are direct-mapped and initially empty. Make sure that

* Each state is indexed by the instruction that caused the transition. For example,
if instruction 7 causes a transition to the Modified state and the cache line was
previously not present in the cache, it should be represented as — M.

* A transition from Exclusive to Modified to Shared Modified on instructions 4, j, and
k, respectively, is represented as E; — M; — SM;,.

e [f a cache line is in the Exclusive state due to instruction 7, and then instruction j
causes a transition to the same state, the transition is represented as £; — E;.

c) When a cache line is present in more than one cache, the respective coherence
state (among E, M, SM, and SC) in which it can be in each processor’s cache can
only take some specific combinations. In the provided template, mark such possible
combinations with a checkmark (v'), and all others with a cross (x).

In this protocol, the processor with the cache line in the Shared Modified state (or Mod-
ified state, in the situation where only a single cache has the cache line) is responsible
for updating main memory when the cache line is evicted. Conversely, when a cache
line in the state Shared Clean is evicted, the corresponding processor does not update
main memory.

It’s possible to simplify the Dragon protocol by merging the Shared Modified and Shared
Clean states into a single Shared state that becomes responsible for updating main
memory when a cache line shared among multiple caches is evicted. The resulting
coherence protocol is called Firefly. In this new 3-state protocol, a cache line present
in multiple caches at the same time is necessarily in the Shared state in all caches that
contain it.
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d) What is the main benefit of the Dragon protocol over Firefly with respect to CPU per-
formance? Support your answer by providing a minimal sequence of cache accesses
(in the same format as in question 2) that showcases this performance advantage and
explains why it leads to higher performance using the Dragon protocol.

Dragon is said to be a write-update protocol. In such protocols, when a cache line is
modified, the other values of the same line in other caches are updated directly. On
the other hand, write-invalidate protocols such as MSI exhibit a significantly different
behaviour. In those protocols, when a cache line is modified, the other values of the
same line in other caches are not updated, but invalidated. These invalidated lines
may cause coherence cache misses down the road if processors whose cache line got
invalidated need to access the line again later.

e) The two protocol classes (write-update and write-invalidate) described above have
different performance trade-offs. In particular, some memory access patterns are more
efficient—in terms of bus and memory traffic—on one protocol than the other. For
each of the two classes, describe a memory access pattern (i.e., a sequence of reads and
writes to memory performed by a set of processors) that leads to a significantly higher
efficiency than on the other class. Explain qualitatively what makes each pattern more
efficient on its corresponding protocol class.
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Cache Line

Cache CO

Cache C1

Cache C2

Cache C3

01

02

03

Figure 228: Cache transitions

SM

SC

M

SM

SC

Figure 229: Cache combinations
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[Solution 8]

a)

* On a PrWr, the protocol either generates no operation or a BusUpd operation
that does not update main memory, therefore the caches are write-back. In this
protocol, main memory only gets updated on cache line evictions.

* When a Priir occurs on a cache line that is not present in the cache (i.e., on a
write miss, represented by the PrWr transition with no source state in the dia-
gram), the cache stores the incoming cache line and transitions the line’s state to
Modified or Shared Modified without updating main memory, therefore the caches
are write-allocate.

b) See Figure
Cache Line Cache CO Cache C1 Cache C2 Cache C3
— E2 — M3
01 — SMl() — SMH — SCIO — SCH — SCH — 5014 — 5014
— 5014
— SM14
— My — M;
M,
02 s SMys 80— 50y | Mo S0 e o,
— SC13
— 5013
— Fy — Mg
03 — SK9£5M12 — 5012 — SM15 — SCQ — 5012
15 — 5015
Figure 230: Cache transitions
C) See Figure

E | M|[SM|SC
E | X | X[ XX
M | X XXX
sM| X | XXV
SC| XX |V

Figure 231: Cache combinations
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d) Having two separate shared states allows Dragon to designate and keep track of a
cache line’s unique “owner”. Dragon does this by ensuring that, in case a cache line
has been modified and is shared across multiple caches, the latest processor to modify
is necessarily in the Shared Modified state (assuming the line was not evicted yet).
Furthermore, the protocol ensures that for any cache line, and at any time, at most one
cache is in the Shared Modified state. Therefore, the responsibility of updating main
memory with a modified line is given solely to the cache in the Shared Modified state
(i.e., the line’s “owner”), which reduces the number of expensive memory updates
the system has to perform. On the other hand, Firefly, with its single Shared state,
cannot keep track of a cache line’s “owner”, and is forced to have every cache in the
Shared state update main memory when a line gets evicted, generating more memory
updates overall.

Consider a two-processors system (F, and P;) along with their respective caches (Cj
and (). Consider the following sequence of cache accesses.

PO: Write 01
Pl: Write 01

With Firefly, by the end of this sequence, both caches will be in the Shared state for
cache line 01. On eviction, both caches will update main memory. With Dragon, how-
ever, P, will be in state Shared Clean and P, will be in state Shared Modified. On eviction,
only P; will update main memory. Therefore, even in this minimal example, Dragon
performs better than Firefly.

e) Write-update protocols are generally more efficient when a Prwr to a cache line
shared across multiple caches is followed by multiple PrRd to the same line from
different processors. In such a situation, write-update protocols update all caches
that have the line in response to the PriWwr. When corresponding processors attempt
to read that line (PrRd) later, they do not experience a coherence miss or initiate any
bus transaction, as the line is already available in their cache. On the other hand, a
write-invalidate protocol invalidates the line in all other caches in response to the
PrWr. Processors attempting to subsequently read the line then need to initiate a bus
transaction to get the new value from another cache or main memory, causing more
bus/memory traffic than with a write-update protocol.

Write-invalidate protocols are generally more efficient when multiple subsequent
PriWr to the same cache line by the same processor happen on a line initially shared
across multiple processors. In those cases, write-invalidate protocols perform the line
invalidation (including the bus transaction it incurs) only on the first Prwr and further
bus transactions by other processors are avoided. On the contrary, a write-update pro-
tocol updates all caches possessing the line on every Prir, even if those caches never
read the line again, generating a lot more bus traffic than a write-invalidate protocol
would.
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