Virtual machines

As part of CS5-173, you will be expected to simulate and analyse circuits, such as those
of a CPU.

All required software is preinstalled on INF 3 computers and the virtual desktop
infrastructure (VDI) virtual machines (VMs) that you can access remotely.

To ensure that all students have access to the required software, and to minimise
platform- and user-specific issues, you are expected and encouraged to work in INF 3 or
VDI. You may of course also work on your own machines, but there is no guarantee that
the teaching staff will be able to help you resolve issues specific to your setup.

Accessing physical machines

1. Make your way to computer lab INF 3.
2. Log into any available desktop using your GASPAR credentials.
3. That's it!

Accessing VDI remotely

EPFL's VDI uses the VMware Horizon service, which can be accessed via either the
browser or a locally installed client.

Note that the browser version is more limited than the VMware Horizon Client.

VMware Horizon Client

1. Navigate to https://vdi.epfl.ch.
2. Select and run the most appropriate installer for your system:

o either click on Install VMware Horizon Client to download the default
installer:

v

Install VMware
Horizon Client

o orclickon full list of VMware Horizon Clients to view alternative
options:

To see the full list of VMware Horizon Clients, click here.
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3. Launch VMware Horizon Client (also named vmware-view on some platforms).
4. Add https://vdi.epfl.ch as a New Server.

5. Connect to it using your GASPAR credentials.

6. Select the IC-CO-IN-SC-INJ-2025-Spring machine.

7. You should now be faced with the same Ubuntu desktop as you would see in INF
3.

Browser

1. Navigate to https://vdi.epfl.ch.

2. Select VMware Horizon HTML Access:
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VMware Horizon
HTML Access
3. Log in with your GASPAR credentials.
4. Click on the IC-C0-IN-SC-INJ-2025-Spring machine.

5. You should now be faced with the same Ubuntu desktop as you would see in INF
3.

Persisting files across sessions and
machines
Under the hood, the physical computers in INF 3 are actually connecting to the same

VMs as you would via VDI. This means that your files and sessions can be shared, to an
extent, across logins and machines.

N.B.: As the default VDI wallpaper warns, not all files are persisted across sessions or
reboots. To avoid losing data, always place important files under the
~/Desktop/myfiles/ directory!

Logisim-evolution

During the first part of the course, we will start simulating simple circuits in Logisim-
evolution.

You can open it by either launching the /opt/logisim-evolution/bin/logisim-
evolution executable, or via the following steps:
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1. Open the menu by pressing the Super/Windows/Opt key on your keyboard, or by
clicking on Ubuntu's Show Applications button in the bottom-left corner:

2. Search for and select the logisim-evolution application:

Q logisl

logisim-evolution

N.B.: Remember to save your work under the ~/Desktop/myfiles/ directory often,
to avoid losing your data if the network disconnects or something else goes wrong!

VSCode

You are most welcome to use your preferred editor or development environment, but
the standard setup for this course will involve the use of the Visual Studio Code
(VSCode) IDE.

Here is how you can set it up on VDI:

1. Open Visual Studio Code by either launching the code executable, or via the same
steps as above, replacing logisim-evolution with Visual Studio Code:

Ty visuall

Visual Studio C...

2. Click on Extensions in the left sidebar (or type Ctrl+Shift+x):
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3. Search for and install the following extensions:
1. Markdown All in One by Yu Zhang
yzhang.markdown-all-in-one
2. Verilog-HDL/SystemVerilog/Bluespec SystemVerilog by Masahiro Hiramori
mshr-h.VerilogHDL
3. RISC-V Support by zhwu95
zhwu95.riscv

4. RISC-V Venus Simulator by hm

hm.riscv-venus

Icarus Verilog

Designing logic circuits manually, as we have done in Logisim-evolution, ceases to be
practical when dealing with large, real-world circuits. Instead, we use hardware
description languages (HDLs) to describe circuits and how they compose at a high level.
From this textual description, a compiler can generate the corresponding schematic,
and an interpreter can simulate and test the circuit's behaviour.

In this course, we will write HDL descriptions in Verilog, and use the Icarus Verilog
compiler for simulation.

Toy example

Verilog files are usually given the .v file extension. Their contents define a module
(usually named like the file), its inputs and outputs, and its internal behaviour. For

example:
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// hello.v

module hello();

initial begin
$display("Hello, World!");
$finish;

end

endmodule

This defines a module called hello with an empty list () of inputs and outputs. All the
module does is display the specified greeting.

VSCode setup

If you are using the aforementioned Verilog extension, you might want to configure it to
use Icarus Verilog by default:

1. Open VSCode settings (File > Preferences > Settings or Ctrl+,).
2. Search for verilog linter.
3. Set Verilog > Linting: Linter to iverilog.

The command line examples that follow can all be run either within VSCode's terminal
emulator (View > Terminal or Ctrl+"), or in a separate terminal program.

CLI

Icarus Verilog is invoked via the iverilog executable. Calling it with no arguments
results in a brief synopsis of the command-line options it accepts:

$ iverilog
/opt/oss-cad-suite/libexec/iverilog: no source files.

Usage: iverilog [-EiRSuvV] [-B base] [-c cmdfile|-f cmdfile]
[-91995]|-g2001|-g2005|-g2005-sv|-g2009|-g2012]
[ -g<feature>]
[-D macro[=defn]] [-I includedir] [-L moduledir]
[-M [mode=]depfile] [-m module]
[-N file] [-o filename] [-p flag=value]
[-s topmodule] [-t target] [-T min|typ|max]
[-W class] [-y dir] [-Y suf] [-1 file]
source_file(s)

See the man page for details.

Its man (manual) page goes into further details, and can be found at:

$ man -1 /opt/oss-cad-suite/share/man/manl/iverilog.1



Compilation

To compile the toy example above, simply pass its file name to iverilog:

$ iverilog hello.v
By default, this generates an executable file called a.out:

$ ./a.out
Hello, World!
hello.v:5: $finish called at 0 (1s)

You can specify an alternative output file name with the -o option:

$ iverilog -o hello hello.v

$ ./hello

Hello, World!

hello.v:5: $finish called at 0 (1s)

GTKWave

Icarus Verilog is able to generate waveform simulation models from circuit descriptions,
but we will use a separate tool for visualising and debugging simulation results: the
GTKWave analyser.

To demonstrate how it works, let's use a slightly more complicated Verilog example,
namely a 3-input XOR gate:

// my_xor.v

module my_xor (
// One output signal.
output f,
// Three input signals.
input a, b, ¢

),

// Assign f to be the xor of a, b, and c.
xor(f, a, b, c);

endmodule
This describes the circuit's functionality, but it does not provide any test inputs for

simulating it. We can script a simple simulation in a separate file as follows (the tb in
the file name stands for test bench):
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// my_xor_tb.v
module test_my_xor;

// Define three inputs that can store a value.
reg a, b, c;

// And one output that responds to them.

wire f;

// Connect them to an instance of my_xor that we name my_gate.
my_xor my_gate(f, a, b, c);

initial begin
// Write this test's data to a .vcd file that GTKwave can read.
$dumpfile("my_xor.vcd");
$dumpvars(0, test_my_xor);

// Print values whenever they change.
$monitor ("At time %2t, a=%b b=%b c=%b f=%b", $time, a, b, c, f);

// Start with all inputs zero.

a=@0; b=0; c=0;

// Create a small time delay of 5 time units.
#5

// Toggle each input with small delays in-between.
a=1;, #5 b = 1; #5 c = 1, #5

// Done.
$finish;
end

endmodule

Compile and run this as before, but specify both file names on the command line:

$ iverilog -0 my_xor my_xor.v my_xor_tb.v

$ ./my_xor

VCD info: dumpfile my_xor.vcd opened for output.
At time 0, a=0 b=0 c=0 f=0

At time 5, a=1 b=0 c=0 f=1

At time 10, a=1 b=1 c=0 f=0

At time 15, a=1 b=1 c=1 f=1

my_xor_tb.v:28: $finish called at 20 (1s)

Looks good, but it would look even better as a waveform. First, launch GTKWave with
the generated .vcd file:

$ gtkwave my_xor.vcd

The initial display is empty until we specify which signals we are interested in:
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Select them all and either click on the Insert button at the bottom, or drag them with
the mouse to the Signals pane in the middle. You should now be able to see a timing
diagram for our 3-input XOR gate:
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RISC-V

During the final part of the course, we will start looking at and writing simple assembly
programs for the RISC-V ISA.

Simulation

One of the simplest ways to get started with writing and running RISC-V programs is via
the two aforementioned VSCode extensions: RISC-V Support, which adds syntax
highlighting and snippets, and RISC-V Venus Simulator, which bundles the standalone
Venus simulator.

The latter extension is crucial because it allows easily executing and debugging RISC-V
assembly in a stepwise manner. Its page on the Visual Studio Marketplace further
provides a lot of useful information on its features and how to use them, alongside fun
examples.

You may also find the Venus simulator hosted online:

« https://venus.cs61lc.org
» https://venus.kvakil.me

We will focus on the VSCode interface, but the online version shares many of the same
features.

Resources

You may find the following external resources useful while learning to program in RISC-V
assembly:
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» The latest official manual for the RISC-V ISA can be found at
https://riscv.org/technical/specifications under the PDF link for Volume 1,
Unprivileged Specification.

e The textbook An Introduction to Assembly Programming with RISC-V by Prof.
Edson Borin covers many topics of RISC-V programming in a more introductory
fashion. The free online version of the book can be found at https://riscv-
programming.org/book/riscv-book.html.

Toy example

RISC-V files are usually given the . s file extension, which is common to other assembly
languages as well.

Consider the following file contents, in this case written to a file named focaccia.s:

# focaccia.s
1i tO, OXFOCACC1A
1li  t1, OxE
addi t2, to, ox4
sub t2, t2, t1
nop

This little program first writes a couple of integer literals (immediate values) to
temporary registers t0 and ti. It then performs a sequence of two arithmetic
operations, each time writing the result to a third temporary register, t2. Finally, the
program ends with an empty no-operation instruction, which will come in handy as a
placeholder later on.

We expect that the final result in t2 will be the value 6xFOCACC10:

1. The addition adds 0x4 to OxFOCACC1A, yielding OxFOCACC1E.
2. The subtraction subtracts 6xE from the previous result, and 0xE - OXE = 0x0 in the
low nibble, yielding @xFOCACC10.

Let's make sure the final and intermediate values are indeed as we expect, by entering
the program into VSCode:
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Now click on the Run and Debug option in the left sidebar, followed by the button of the
same name (if present):
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This will start an interactive debugging session, where instructions are executed only on
request. Let's expand the VARIABLES > Integer subsection on the left, so that we can
track changes to register values as the program runs:
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Now we can click the Step Over button (with the curved arrow) in the small ephemeral
panel at the top three times, until we reach the point right after the addi instruction
has been executed:
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Indeed we see that the intermediate value in register t2 is the expected 6xFOCACC1E,
and we can terminate execution by clicking one of the buttons Continue or Stop in the
same panel as the Step Over button.



It may not always be practical to step over individual instructions, however. In this
example it would be nice to skip past the execution of sub, and inspect only the final
value in t2. To do this, we can set a breakpoint on the final nop instruction by hovering
the mouse to the left of the line number, and clicking on the red dot that appears:
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Now we can restart the Run and Debug session, and subsequently click the Continue
button a single time. This should execute all instructions up to but not including the nop
instruction on which we set the breakpoint. At this point, the preceding sub instruction
has just been executed, and we can confirm that the final value of t2 is the expected
OXFOCACC10:
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Memory view

RISC-V computations always involve registers, so it is useful to know how to manipulate
them and keep track of their values as a program runs. The limited number of registers
cannot, however, entirely fit a realistic program's data, so we also need to be able to
manipulate and inspect the system's memory. Luckily, the Venus simulator provides a
convenient memory view which displays the contents of memory at different addresses
in real time.

Memory is modelled as one large contiguous array of bytes, which is a uniform (and
thus convenient) representation when writing programs. But we would like to store in it
data of different natures: for example, to keep program instructions separate from the
data that they consume. Thus it is convenient, especially for the system, to partition
the memory into different segments or sections.

In the following example, we will use two common sections: one for holding program
instructions (identified by the assembler directive . text), and another for holding static
data that we know ahead of time, i.e. before the program is even run (identified by the
assembler directive .data). Venus places these sections at different locations in
memory: program instructions in . text start at address 6x00000000, whereas .data
starts at 0x10000000.

Let's now see how it looks in practice. Consider the following simple program:



### Data section: pre-initialized global variables.
.data
array:
## Zero-terminated array of eight 32-bit values.
.word 2, -1, 42, 8, 9, 9, 3, -4, 0

### Text section: program instructions.
.text

la to, array # tO = array;
loop: # do {

w t1, 0(tO) #  tl = *to;

addi to, to, 4 # to += 4;

bnez ti1, Tloop # } while (t1),

nop # ;

First, it reserves a contiguous block of nine 32-bit words in the .data section, and
initialises the block with the given numbers. Then, when the program in the . text
section is executed, it finds the start of the static array, and keeps advancing over its
elements until it encounters a zero.

Let's enter this program into VSCode, and add a breakpoint as before on the final line
with the nop instruction. Again, click on Run and Debug and expand the VARIABLES >
Integer subsection. But before continuing execution, let's open the memory view. At the
bottom of the left sidebar is a subsection calling VENUS OPTIONS. Find the VENUS
OPTIONS > Views > Memory suboption:
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Open Settings

This should pop up a new tab showing the contents of memory and their addresses:
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x04 (tp) : 0x00000000 1 lw Tl 0(te) # tl=2te;
12 addi te, te, 4 # 10 += 4,
B ([EY) 8 ESEHelg 13 bnez t1, loop # } while (tn); T
> WATCH o 14 nop #.
> CALL STACK Pausedonentry T
~ BREAKPOINTS Address: -
mem.s | Hﬂ” Down |
s VENUS OPTIONS Jump to:
~ Views
Assembly Display Format:
Led Matrix Hex hd
4 v
Seven Segme Memory
‘:‘3} Robot UI
Open Settings
®oAD Wo & Q

By default the view starts at address 0x00000000, where our program instructions are
stored. You should see six word-size instructions at addresses 0x00000000 through
0x00000014, after which the contents of memory become zero. In ascending address
order, and reading bytes from right to left to account for little-endianness, we see the
following instructions:

. OXx100600297
. Ox00028293
. OXO0002A303
. Ox00428293
. OXFEO31CE3
. OXx00000013

SO U~ WINBRP

The first instruction in our program, la t®, array, is actually a higher-level
pseudoinstruction which the assembler converts into two lower-level instructions:
auipc x5 0x10000 and addi x5 x5 0 (temporary register t0 is an alias for x5). auipc
adds a 20-bit immediate value to the most significant bits of the program counter (PC),
storing the result in a register. This is followed by an addition of the remaining lower 12
bits, which in this case are all zero. Taken together, the result is that t® now contains
0x10000 concatenated with zeros to form 0x10000000, the start address of the .data
section, and by extension the start address of our array.

The instruction 06x10000297 is encoded as follows: the 20 most significant bits
correspond to the immediate value 0x10000; these are followed by the five bits 00101
identifying the destination register as x5; and the last seven bits 8010111 correspond to
the instruction auipc.

Similarly, 9x00028293 breaks down as an immediate zero in the 12 most significant
bits; followed by the five bits 00101 identifying the source register x5; then three zero
bits; then the destination register 00101 again; and finally the addi opcode, 0010011.



The rest of the instructions are encoded similarly, and you are encouraged to work
through them together with the RISC-V ISA manual.

Now let's look at the contents of array in the .data section. In the memory view on the
right, click on the Jump to dropdown menu and select Data:
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> CSR 5 word-2, -1,.42,8,.9,.9,.3, -4,.0 0x1000000C 08 00 00 00
~ Integer 6 0x10000008 2A 00 00 00
‘ f% %09 (zero): ©x00000000 7  ### Text section: program instructions. 0x10000004 FF FF FF FF
= X001 (ra) : OxPEPEEE0R 8 .text 0x10000000 02 00 0O 00
% x02 (sp) : Ox7FFFFFFO O 9 la 1@, array # 10 =-array; —  OxOFFFFFFC 00 00 00 00
x@3 (gp) : ©x10000000 1o loop: #:do-{ : OxOFFFFFFE 00 00 00 00
xB4 (tp) : ©x00060008 ]]:; :;di E; iéfai : :E; ;= :?" OxOFFFFFF4 00 00 00 00
x@5 (t0) : ©x0E000000 13 bnez - t1, -Loop # }ouhile (t1): OXOFFFFFFO 00 00 00 00
x06 (tl) : Ox0EEEEEED L 14 nop #:; 0x0FFFFFEC 00 00 00 00
> WATCH OXOFFFFFES 00D 00 00 00
» CALL STACK Faused on entry Address:
*~ BREAKPOINTS | |["up |[ Down |
M mem.s Jtmp/tmp.Se Jump to:
“ VENUS OPTIONS
~ Views Display Format:
Assembly
Led Matrix Bytes per Row:
Memory 4 ~
@ Seven Segment Board
Robot UI

{‘é} Open Settings

Set Variable Format

Once again, in ascending order, and reading bytes from right to left, we see the
following values starting at address 0x10000000:

1. ©x00000002
2. OXFFFFFFFF
3. OXx0000002A
4. 0x00000008
5...

and so on, ending with 6x00000000 at address 0x10000020. This is, of course, our array
of 32-bit numbers: 2, -1 (in two's complement), 42, etc.

Now let's run the program by clicking the Continue button in the debugging panel at
the top:
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RUN AND DEBUG

~ VARIABLES

p ~ PC
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tmp > tmp.SeUgvkznEB > s« mem.s

1  ### Data section: pre-initialized global variables.

Memory X

Address +0 +1 +2 +3
0x10000030 00 00 0O OO

PC: Ox00008014 § ::?;3 0x1000002C 00 00 00 00
E—" o v 4 :‘# Zero-terminated array of eight 32-bit values. 0x10000028 00 00 00 00
> CSR 5 word 2, -1, 42, 8, 9, 9, 3, -4, 0 0x10000024 00 00 0D 00
v Integer 6 0x10000020 00 00 00 00
‘ & x0@ (zero): Bx00000000 7 ### Text section: program instructions. 0x1000001C  FC FF FF FF
a X@1 (ra) : Ox0000000Q 8 Ltext 0x10000018 03 00 00 0O
25 x02 (sp) @ OXTFFFFFFO 9 la  to, array # 10 = array; —  0x10000014 09 00 00 00
x63 (gp) : Ox10066000 1o loop: #do { e 0x10000010 09 00 00 00
x04 (tp) : ©x00000000 E ;gdi E;' 2:):(9; ﬁ E; ;= :?’ 0x1000000C 08 00 00 00
05 (t0) - 13 bnez t1, loop # } while (t1); 0x10000008 24 00 00 0O
xD6 (tl) : 9x00000000 [~ 14 nop # ; 0x10000004 FF FF FF FF
» WATCH 0x10000000 02 00 00 0O
> CALLSTACK Paused on entry Address:
 BREAKPOINTS ‘ || Down |
o @mem.s /tmp/tmp.Se.. 14 Jump to:
 VENUS OPTIONS
~ Views Display Format:
Assembly
Led Matrix Bytes per Row:
Memory 4 hd
@ Seven Segment Board
Robot UL

€§§ Open Settings

Set Variable Format

At this point, the loop has iterated over all elements in array, and stopped at the
trailing zero. We can see the results in the two temporary registers used: t0 contains
the address 0x10000024 which, as we just saw, is 4 bytes past the end of array; and t1
contains Ox00000000, the last value in array.




