
Virtual machines

As part of CS-173, you will be expected to simulate and analyse circuits, such as those

of a CPU.

All required software is preinstalled on INF 3 computers and the virtual desktop

infrastructure (VDI) virtual machines (VMs) that you can access remotely.

To ensure that all students have access to the required software, and to minimise

platform- and user-specific issues, you are expected and encouraged to work in INF 3 or

VDI. You may of course also work on your own machines, but there is no guarantee that

the teaching staff will be able to help you resolve issues specific to your setup.

Accessing physical machines

1. Make your way to computer lab INF 3.

2. Log into any available desktop using your GASPAR credentials.

3. That's it!

Accessing VDI remotely

EPFL's VDI uses the VMware Horizon service, which can be accessed via either the

browser or a locally installed client.

Note that the browser version is more limited than the VMware Horizon Client.

VMware Horizon Client

1. Navigate to https://vdi.epfl.ch.

2. Select and run the most appropriate installer for your system:

either click on Install VMware Horizon Client to download the default

installer:

or click on full list of VMware Horizon Clients to view alternative

options:

https://plan.epfl.ch/?room==INF%203
https://vdi.epfl.ch/
https://vdi.epfl.ch/
https://plan.epfl.ch/?room==INF%203
https://www.vmware.com/products/horizon.html
https://vdi.epfl.ch/

3. Launch VMware Horizon Client (also named vmware-view on some platforms).

4. Add https://vdi.epfl.ch as a New Server.

5. Connect to it using your GASPAR credentials.

6. Select the IC-CO-IN-SC-INJ-2025-Spring machine.

7. You should now be faced with the same Ubuntu desktop as you would see in INF

3.

Browser

1. Navigate to https://vdi.epfl.ch.

2. Select VMware Horizon HTML Access:

3. Log in with your GASPAR credentials.

4. Click on the IC-CO-IN-SC-INJ-2025-Spring machine.

5. You should now be faced with the same Ubuntu desktop as you would see in INF

3.

Persisting files across sessions and

machines

Under the hood, the physical computers in INF 3 are actually connecting to the same

VMs as you would via VDI. This means that your files and sessions can be shared, to an

extent, across logins and machines.

N.B.: As the default VDI wallpaper warns, not all files are persisted across sessions or

reboots. To avoid losing data, always place important files under the

~/Desktop/myfiles/ directory!

Logisim-evolution

During the first part of the course, we will start simulating simple circuits in Logisim-

evolution.

You can open it by either launching the /opt/logisim-evolution/bin/logisim-
evolution executable, or via the following steps:

https://vdi.epfl.ch/
https://vdi.epfl.ch/

1. Open the menu by pressing the Super/Windows/Opt key on your keyboard, or by

clicking on Ubuntu's Show Applications button in the bottom-left corner:

2. Search for and select the logisim-evolution application:

N.B.: Remember to save your work under the ~/Desktop/myfiles/ directory often,

to avoid losing your data if the network disconnects or something else goes wrong!

VSCode

You are most welcome to use your preferred editor or development environment, but

the standard setup for this course will involve the use of the Visual Studio Code

(VSCode) IDE.

Here is how you can set it up on VDI:

1. Open Visual Studio Code by either launching the code executable, or via the same

steps as above, replacing logisim-evolution with Visual Studio Code:

2. Click on Extensions in the left sidebar (or type Ctrl+Shift+x):

https://code.visualstudio.com/
https://code.visualstudio.com/

3. Search for and install the following extensions:

1. Markdown All in One by Yu Zhang

yzhang.markdown-all-in-one

2. Verilog-HDL/SystemVerilog/Bluespec SystemVerilog by Masahiro Hiramori

mshr-h.VerilogHDL

3. RISC-V Support by zhwu95

zhwu95.riscv

4. RISC-V Venus Simulator by hm

hm.riscv-venus

Icarus Verilog

Designing logic circuits manually, as we have done in Logisim-evolution, ceases to be

practical when dealing with large, real-world circuits. Instead, we use hardware

description languages (HDLs) to describe circuits and how they compose at a high level.

From this textual description, a compiler can generate the corresponding schematic,

and an interpreter can simulate and test the circuit's behaviour.

In this course, we will write HDL descriptions in Verilog, and use the Icarus Verilog

compiler for simulation.

Toy example

Verilog files are usually given the .v file extension. Their contents define a module
(usually named like the file), its inputs and outputs, and its internal behaviour. For

example:

https://marketplace.visualstudio.com/items?itemName=yzhang.markdown-all-in-one
https://marketplace.visualstudio.com/items?itemName=mshr-h.VerilogHDL
https://marketplace.visualstudio.com/items?itemName=zhwu95.riscv
https://marketplace.visualstudio.com/items?itemName=hm.riscv-venus
https://en.wikipedia.org/wiki/Verilog
https://steveicarus.github.io/iverilog/index.html

// hello.v
module hello();

initial begin
 $display("Hello, World!");
 $finish;
end

endmodule

This defines a module called hello with an empty list () of inputs and outputs. All the

module does is display the specified greeting.

VSCode setup

If you are using the aforementioned Verilog extension, you might want to configure it to

use Icarus Verilog by default:

1. Open VSCode settings (File > Preferences > Settings or Ctrl+,).

2. Search for verilog linter.

3. Set Verilog > Linting: Linter to iverilog.

The command line examples that follow can all be run either within VSCode's terminal

emulator (View > Terminal or Ctrl+`), or in a separate terminal program.

CLI

Icarus Verilog is invoked via the iverilog executable. Calling it with no arguments

results in a brief synopsis of the command-line options it accepts:

$ iverilog
/opt/oss-cad-suite/libexec/iverilog: no source files.

Usage: iverilog [-EiRSuvV] [-B base] [-c cmdfile|-f cmdfile]
 [-g1995|-g2001|-g2005|-g2005-sv|-g2009|-g2012]
 [-g<feature>]
 [-D macro[=defn]] [-I includedir] [-L moduledir]
 [-M [mode=]depfile] [-m module]
 [-N file] [-o filename] [-p flag=value]
 [-s topmodule] [-t target] [-T min|typ|max]
 [-W class] [-y dir] [-Y suf] [-l file]
 source_file(s)

See the man page for details.

Its man (manual) page goes into further details, and can be found at:

$ man -l /opt/oss-cad-suite/share/man/man1/iverilog.1

Compilation

To compile the toy example above, simply pass its file name to iverilog:

$ iverilog hello.v

By default, this generates an executable file called a.out:

$./a.out
Hello, World!
hello.v:5: $finish called at 0 (1s)

You can specify an alternative output file name with the -o option:

$ iverilog -o hello hello.v
$./hello
Hello, World!
hello.v:5: $finish called at 0 (1s)

GTKWave

Icarus Verilog is able to generate waveform simulation models from circuit descriptions,

but we will use a separate tool for visualising and debugging simulation results: the

GTKWave analyser.

To demonstrate how it works, let's use a slightly more complicated Verilog example,

namely a 3-input XOR gate:

// my_xor.v
module my_xor (
 // One output signal.
 output f,
 // Three input signals.
 input a, b, c
);

// Assign f to be the xor of a, b, and c.
xor(f, a, b, c);

endmodule

This describes the circuit's functionality, but it does not provide any test inputs for

simulating it. We can script a simple simulation in a separate file as follows (the tb in

the file name stands for test bench):

https://en.wikipedia.org/wiki/A.out
https://gtkwave.sourceforge.net/

// my_xor_tb.v
module test_my_xor;

// Define three inputs that can store a value.
reg a, b, c;
// And one output that responds to them.
wire f;

// Connect them to an instance of my_xor that we name my_gate.
my_xor my_gate(f, a, b, c);

initial begin
 // Write this test's data to a .vcd file that GTKWave can read.
 $dumpfile("my_xor.vcd");
 $dumpvars(0, test_my_xor);

 // Print values whenever they change.
 $monitor("At time %2t, a=%b b=%b c=%b f=%b", $time, a, b, c, f);

 // Start with all inputs zero.
 a = 0; b = 0; c = 0;
 // Create a small time delay of 5 time units.
 #5

 // Toggle each input with small delays in-between.
 a = 1; #5 b = 1; #5 c = 1; #5

 // Done.
 $finish;
end

endmodule

Compile and run this as before, but specify both file names on the command line:

$ iverilog -o my_xor my_xor.v my_xor_tb.v
$./my_xor
VCD info: dumpfile my_xor.vcd opened for output.
At time 0, a=0 b=0 c=0 f=0
At time 5, a=1 b=0 c=0 f=1
At time 10, a=1 b=1 c=0 f=0
At time 15, a=1 b=1 c=1 f=1
my_xor_tb.v:28: $finish called at 20 (1s)

Looks good, but it would look even better as a waveform. First, launch GTKWave with

the generated .vcd file:

$ gtkwave my_xor.vcd

The initial display is empty until we specify which signals we are interested in:

In the top-left SST pane, click on test_my_xor. A table of signals should appear below

that:

Select them all and either click on the Insert button at the bottom, or drag them with

the mouse to the Signals pane in the middle. You should now be able to see a timing

diagram for our 3-input XOR gate:

RISC-V

During the final part of the course, we will start looking at and writing simple assembly

programs for the RISC-V ISA.

Simulation

One of the simplest ways to get started with writing and running RISC-V programs is via

the two aforementioned VSCode extensions: RISC-V Support, which adds syntax

highlighting and snippets, and RISC-V Venus Simulator, which bundles the standalone

Venus simulator.

The latter extension is crucial because it allows easily executing and debugging RISC-V

assembly in a stepwise manner. Its page on the Visual Studio Marketplace further

provides a lot of useful information on its features and how to use them, alongside fun

examples.

You may also find the Venus simulator hosted online:

https://venus.cs61c.org

https://venus.kvakil.me

We will focus on the VSCode interface, but the online version shares many of the same

features.

Resources

You may find the following external resources useful while learning to program in RISC-V

assembly:

https://en.wikipedia.org/wiki/RISC-V
https://marketplace.visualstudio.com/items?itemName=hm.riscv-venus
https://venus.cs61c.org/
https://venus.kvakil.me/

The latest official manual for the RISC-V ISA can be found at

https://riscv.org/technical/specifications under the PDF link for Volume 1,

Unprivileged Specification.

The textbook An Introduction to Assembly Programming with RISC-V by Prof.

Edson Borin covers many topics of RISC-V programming in a more introductory

fashion. The free online version of the book can be found at https://riscv-

programming.org/book/riscv-book.html.

Toy example

RISC-V files are usually given the .s file extension, which is common to other assembly

languages as well.

Consider the following file contents, in this case written to a file named focaccia.s:

focaccia.s
 li t0, 0xF0CACC1A
 li t1, 0xE
 addi t2, t0, 0x4
 sub t2, t2, t1
 nop

This little program first writes a couple of integer literals (immediate values) to

temporary registers t0 and t1. It then performs a sequence of two arithmetic

operations, each time writing the result to a third temporary register, t2. Finally, the

program ends with an empty no-operation instruction, which will come in handy as a

placeholder later on.

We expect that the final result in t2 will be the value 0xF0CACC10:

1. The addition adds 0x4 to 0xF0CACC1A, yielding 0xF0CACC1E.

2. The subtraction subtracts 0xE from the previous result, and 0xE - 0xE = 0x0 in the

low nibble, yielding 0xF0CACC10.

Let's make sure the final and intermediate values are indeed as we expect, by entering

the program into VSCode:

https://riscv.org/technical/specifications
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view
https://www.ic.unicamp.br/~edson/riscv-book.html
https://riscv-programming.org/book/riscv-book.html
https://riscv-programming.org/book/riscv-book.html
https://en.wikipedia.org/wiki/Nibble#Low_and_high_nibbles

Now click on the Run and Debug option in the left sidebar, followed by the button of the

same name (if present):

This will start an interactive debugging session, where instructions are executed only on

request. Let's expand the VARIABLES > Integer subsection on the left, so that we can

track changes to register values as the program runs:

Now we can click the Step Over button (with the curved arrow) in the small ephemeral

panel at the top three times, until we reach the point right after the addi instruction

has been executed:

Indeed we see that the intermediate value in register t2 is the expected 0xF0CACC1E,

and we can terminate execution by clicking one of the buttons Continue or Stop in the

same panel as the Step Over button.

It may not always be practical to step over individual instructions, however. In this

example it would be nice to skip past the execution of sub, and inspect only the final

value in t2. To do this, we can set a breakpoint on the final nop instruction by hovering

the mouse to the left of the line number, and clicking on the red dot that appears:

Now we can restart the Run and Debug session, and subsequently click the Continue

button a single time. This should execute all instructions up to but not including the nop
instruction on which we set the breakpoint. At this point, the preceding sub instruction

has just been executed, and we can confirm that the final value of t2 is the expected

0xF0CACC10:

Memory view

RISC-V computations always involve registers, so it is useful to know how to manipulate

them and keep track of their values as a program runs. The limited number of registers

cannot, however, entirely fit a realistic program's data, so we also need to be able to

manipulate and inspect the system's memory. Luckily, the Venus simulator provides a

convenient memory view which displays the contents of memory at different addresses

in real time.

Memory is modelled as one large contiguous array of bytes, which is a uniform (and

thus convenient) representation when writing programs. But we would like to store in it

data of different natures: for example, to keep program instructions separate from the

data that they consume. Thus it is convenient, especially for the system, to partition

the memory into different segments or sections.

In the following example, we will use two common sections: one for holding program

instructions (identified by the assembler directive .text), and another for holding static

data that we know ahead of time, i.e. before the program is even run (identified by the

assembler directive .data). Venus places these sections at different locations in

memory: program instructions in .text start at address 0x00000000, whereas .data

starts at 0x10000000.

Let's now see how it looks in practice. Consider the following simple program:

Data section: pre-initialized global variables.
.data
array:
 ## Zero-terminated array of eight 32-bit values.
 .word 2, -1, 42, 8, 9, 9, 3, -4, 0

Text section: program instructions.
.text
 la t0, array # t0 = array;
loop: # do {
 lw t1, 0(t0) # t1 = *t0;
 addi t0, t0, 4 # t0 += 4;
 bnez t1, loop # } while (t1);
 nop # ;

First, it reserves a contiguous block of nine 32-bit words in the .data section, and

initialises the block with the given numbers. Then, when the program in the .text
section is executed, it finds the start of the static array, and keeps advancing over its

elements until it encounters a zero.

Let's enter this program into VSCode, and add a breakpoint as before on the final line

with the nop instruction. Again, click on Run and Debug and expand the VARIABLES >

Integer subsection. But before continuing execution, let's open the memory view. At the

bottom of the left sidebar is a subsection calling VENUS OPTIONS. Find the VENUS

OPTIONS > Views > Memory suboption:

This should pop up a new tab showing the contents of memory and their addresses:

By default the view starts at address 0x00000000, where our program instructions are

stored. You should see six word-size instructions at addresses 0x00000000 through

0x00000014, after which the contents of memory become zero. In ascending address

order, and reading bytes from right to left to account for little-endianness, we see the

following instructions:

1. 0x10000297
2. 0x00028293
3. 0x0002A303

4. 0x00428293
5. 0xFE031CE3

6. 0x00000013

The first instruction in our program, la t0, array, is actually a higher-level

pseudoinstruction which the assembler converts into two lower-level instructions:

auipc x5 0x10000 and addi x5 x5 0 (temporary register t0 is an alias for x5). auipc
adds a 20-bit immediate value to the most significant bits of the program counter (PC),

storing the result in a register. This is followed by an addition of the remaining lower 12

bits, which in this case are all zero. Taken together, the result is that t0 now contains

0x10000 concatenated with zeros to form 0x10000000, the start address of the .data
section, and by extension the start address of our array.

The instruction 0x10000297 is encoded as follows: the 20 most significant bits

correspond to the immediate value 0x10000; these are followed by the five bits 00101

identifying the destination register as x5; and the last seven bits 0010111 correspond to

the instruction auipc.

Similarly, 0x00028293 breaks down as an immediate zero in the 12 most significant

bits; followed by the five bits 00101 identifying the source register x5; then three zero

bits; then the destination register 00101 again; and finally the addi opcode, 0010011.

The rest of the instructions are encoded similarly, and you are encouraged to work

through them together with the RISC-V ISA manual.

Now let's look at the contents of array in the .data section. In the memory view on the

right, click on the Jump to dropdown menu and select Data:

Once again, in ascending order, and reading bytes from right to left, we see the

following values starting at address 0x10000000:

1. 0x00000002
2. 0xFFFFFFFF

3. 0x0000002A
4. 0x00000008
5. …

and so on, ending with 0x00000000 at address 0x10000020. This is, of course, our array

of 32-bit numbers: 2, -1 (in two's complement), 42, etc.

Now let's run the program by clicking the Continue button in the debugging panel at

the top:

At this point, the loop has iterated over all elements in array, and stopped at the

trailing zero. We can see the results in the two temporary registers used: t0 contains

the address 0x10000024 which, as we just saw, is 4 bytes past the end of array; and t1

contains 0x00000000, the last value in array.

