
y +1/2/59+ y
Première partie, questions à choix unique

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures.

Question 1 Quelle est la sortie du programme Python suivant ?

1

2 l1 = [5, 2, 8, 3, 1, 7]
3 l2 = [2, 6, 3, 1, 7, 4]
4

5 path_map = {}
6 final_destinations = {}
7

8 for i in range(len(l1)):
9 start = l1[i]

10 end = l2[i]
11 path_map[start] = end
12

13 for key in path_map:
14 destination = path_map[key]
15 while destination in path_map:
16 destination = path_map[destination]
17 final_destinations[key] = destination
18

19 print(final_destinations[3])

8

1

4

6

Question 2 Quel est le principal défaut de la fonction suivante:

1 def f(n):
2 m = 1
3 if n==1:
4 return m
5 for i in range(1,n):
6 m = m + f(i)
7 return m

Elle ne s’arrête jamais.

Elle a une complexité exponentielle.

Elle est récursive.

Elle sort tout le temps la même chose.

y y

y +1/3/58+ y
Question 3 Un aventurier explore une grotte remplie de coffres pour trouver un trésor caché. Parmi 12
coffres, seuls 3 contiennent un trésor (les autres sont vides, sauf un qui contient une bombe déclenchant
un échec immédiat).
L’aventurier suit la stratégie suivante :

• Il examine les coffres dans un ordre aléatoire.

• Parmi les coffres contenant des pierres précieuses, l’un contient 3 kg, un autre 4 kg et le dernier
5 kg et l’aventurier doit cumuler au moins 8 kilogrammes de pierres précieuses en ouvrant
suffisamment de coffres avec des pierres précieuses.

• L’aventurier a 6 tentatives maximum avant que la grotte ne s’effondre.

On souhaite simuler cette situation par programme. Complétez le code suivant en remplaçant le bloc
A COMPLETER par l’option correcte.

1 import random
2

3 def simulate_one_trial ():
4 chests = [3, 4, 5] + [0] * 8 + [-1] # 3 coffres avec pierres precieuses
5 # et 1 bombe
6 random.shuffle(chests)
7

8 gem_count = 0
9 for attempt in range(6):

10 # A COMPLETER
11

12 return False

Quelle option est correcte ?

gem_count += 1
if chests[attempt] == -1:

return False
if gem_count >= 8:

return True

gem_count += chests[attempt]
if chests[attempt] < 0:

return False
if gem_count >= 8:

return True

gem_count += chests[attempt]
if gem_count >= 8:

return True
if chests[attempt] == -1:

return False

gem_count += chests[attempt]
if attempt == 5:

return False
if gem_count >= 8:

return True

y y

y +1/4/57+ y
Question 4 On souhaite déterminer le chemin de coût minimal pour atteindre la case en bas à droite
d’un tableau à deux dimensions contenant des entiers positifs. On ne peut se déplacer que vers le bas ou
vers la droite. Voici deux implémentations : une approche gloutonne et une approche dynamique.
Code 1 : Algorithme Glouton

1 def chemin_minimal_glouton(tab: list[list[int]]) -> int:
2 n, m = len(tab), len(tab[0])
3 i, j = 0, 0
4 cout = tab[0][0]
5

6 while i < n - 1 or j < m - 1:
7 if i == n - 1: # Derniere ligne , on ne peut aller qu’a droite
8 j += 1
9 elif j == m - 1: # Derniere colonne , on ne peut aller qu’en bas

10 i += 1
11 elif tab[i + 1][j] < tab[i][j + 1]:
12 i += 1
13 else:
14 j += 1
15 cout += tab[i][j]
16

17 return cout

Code 2 : Programmation Dynamique

1 def chemin_minimal_dynamique(tab: list[list[int]]) -> int:
2 n, m = len(tab), len(tab[0])
3 dp = [[0] * m for _ in range(n)] # Initialise tous les elements a zero
4

5 dp[0][0] = tab[0][0]
6

7 for i in range(1, n):
8 dp[i][0] = dp[i-1][0] + tab[i][0]
9 for j in range(1, m):

10 dp[0][j] = dp[0][j-1] + tab[0][j]
11

12 for i in range(1, n):
13 for j in range(1, m):
14 dp[i][j] = tab[i][j] + min(dp[i-1][j], dp[i][j-1])
15

16 return dp[-1][-1]

a) Laquelle des entrées suivantes produit une réponse non optimale avec l’algorithme glouton mais opti-
male avec l’algorithme dynamique ?

[[1, 3, 1],
[1, 5, 1],
[4, 2, 1]]

[[1, 2, 3],
[4, 8, 2],
[1, 5, 3]]

[[1, 10, 1],
[1, 1, 100],
[10, 1, 1]]

[[1, 1, 1],
[1, 100, 1],
[1, 1, 1]]

b) Quelle est respectivement la complexité temporelle de chaque algorithme, en fonction de n = len(tab)
et m = len(tab[0]) ?

Glouton: Θ(nm), Dynamique: Θ(nm log(nm))

Glouton: Θ(n+m), Dynamique: Θ(n+m)

Glouton: Θ(n+m), Dynamique: Θ(nm)

Glouton: Θ(nm), Dynamique: Θ(n+m)

y y

y +1/5/56+ y
Question 5
Quel sera le contenu de la variable a à la fin de l’exécution du programme ci-après ?

1 a = "10"
2 b = "6"
3 b = a
4 temp = a + b
5 a = temp

20

1010

106

12

Question 6
On considère l’extrait de code ci-dessous. Comment compléter ce programme pour que le contenu de la
variable ‘resultat‘ soit ‘oaaio‘ à la fin de son exécution ?

1 s = "programmation"
2 resultat = ""
3 for ...: # Completer ici
4 if loop_var in ("a", "e", "i", "o", "u", "y"):
5 resultat += loop_var

loop_var in range(s)

loop_var in len(s)

loop_var in s

loop_var in range(len(s))

Question 7
Quelle est la sortie du programme suivant après son exécution ?

1 mot = "Iteratif"
2 output = ""
3 for i in range(0, len(mot), 2):
4 output += mot[i]
5 print(output)

Iteratif

trtf

Ieai

Iter

Question 8
On considère l’extrait de code ci-dessous. Quelle expression sera toujours évaluée à True, en partant du
principe que a et b sont deux variables de type int strictement positives?

1 q = a // b
2 r = a % b

q * b + r == a

q // r * b == a

q * b == a + r

q * b == a

y y

y +1/6/55+ y
Question 9
Qu’affiche ce code ?

1 def is_adult(age: int) -> bool:
2 return age >= 18
3

4 def is_retired(age: int) -> bool:
5 return age >= 65
6

7 my_age: int = 21
8 if is_adult(my_age):
9 print("A")

10 elif not is_retired(my_age):
11 print("B")
12 else:
13 print("C")

A
B

C

B

A

Question 10
Laquelle de ces affirmations à propos du code ci-dessous est correcte ?

1 a = input("Entrez un nombre: ")
2 b = input("Entrez un autre nombre: ")
3 print(a + b)

Ce code ne fonctionne pas ainsi

Ce code effectue soit une addition soit une con-
caténation suivant ce que l’on tape

Ce code effectue toujours une addition

Ce code effectue toujours une concaténation de
strings

y y

y +1/7/54+ y
Deuxième partie, questions de type ouvert

Répondre dans l’espace dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre
raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher : elles sont réservées au
correcteur.

y y

y +1/8/53+ y
Question 11: Cette question est notée sur 4 points.

0 1 2 3 4

On souhaite implémenter une fonction récursive permettant de compter les occurrences d’un caractère
donné dans une chaîne de caractères.
a) (1 point) Implémentez une fonction récursive compte_caractere() qui prend en argument une chaîne
de caractères s et un caractère c, et retourne le nombre de fois que c apparaît dans s.

def compte_caractere(s: str, c: str) -> int:

y y

y +1/9/52+ y
b) (2 points) En utilisant la fonction précédente, implémentez la fonction suivante qui compte le nombre
total d’occurrences d’un caractère donné dans une liste de chaînes de caractères.

def compte_total(chaine_list: list[str], c: str) -> int:

c) (1 point) Écrivez du code qui utilise la fonction compte_total() pour afficher le nombre total de fois que
la lettre ’a’ apparaît dans la liste suivante :
texte = ["apple", "banana", "avocado", "grape", "orange"]

Vous pouvez utiliser cette page au cas où vous n’auriez pas assez de place pour répondre à une question.

y y

y +1/10/51+ y
Pour faciliter la correction, merci de bien indiquer à la question donnée qu’il faut venir lire la suite ici !

y y

y +1/11/50+ y
Question 12: Cette question est notée sur 5 points.

0 1 2 3 4 5

Dans cet exercice, nous souhaitons implémenter une version simplifiée et incomplète du jeu Mastermind. Le

jeu consiste à deviner une séquence secrète de 4 chiffres (entre 0 et 9) générée aléatoirement par l’ordinateur.
À chaque tentative, le joueur propose une séquence de 4 chiffres et reçoit en retour :

• Le nombre de chiffres bien placés (c’est-à-dire ayant la bonne valeur et à la bonne position) ;
• Le nombre de chiffres corrects mais mal placés (ayant la bonne valeur mais à la mauvaise position).

Par exemple, supposons que la séquence secrète soit 1234 :
• Si le joueur propose 1256, la réponse est : 2 bien placés (1 et 2) et 0 mal placés.
• Si le joueur propose 4321, la réponse est : 0 bien placé et 4 mal placés.
• Si le joueur propose 1234, la réponse est : 4 bien placés (le joueur a gagné !).

a) (2 points) Écrivez une fonction generate_secret_code() -> str qui génère et retourne une séquence
secrète de 4 chiffres aléatoires.

def generate_secret_code() -> str:

y y

y +1/12/49+ y
b) (2 points) Écrivez une fonction evaluate_guess(secret: str, guess: str) -> tuple[int, int] qui prend
en paramètre la séquence secrète secret et une proposition guess, et qui retourne une liste contenant :

• Le nombre de chiffres bien placés à l’indice 0
• Le nombre de chiffres corrects mais mal placés à l’indice 1

def evaluate_guess(secret: str, guess: str) -> list[int]:

y y

y +1/13/48+ y
c) (1 point) Analysez la complexité de votre fonction evaluate_guess. Justifiez votre réponse.

y y

y +1/8/53+ y
Question 12: Cette question est notée sur 4 points.

0 1 2 3 4

On construit un petit système de gestion de notes d’élèves. Un élève a une liste de notes pour chaque matière.

a) (1 point) La classe suivante stocke le nom d’un cours et une liste de notes associées. Ajoutez-y (de
manière correctement indentée) une méthode avg_grade() qui retourne la moyenne des notes. Si la liste de
notes est vide, la méthode doit retourner -1.

@dataclass
class GradeRecord:

course_name: str
grades: list[float]

Pour le reste de la question, considérez que nous avons en plus le code suivant:
@dataclass
class Student:

id: str
first_name: str
last_name: str
grade_records: list[GradeRecord]

student1 = Student(id="S001", first_name="Jane", last_name="Doe", grade_records=[
GradeRecord("Math", grades=[6.0, 6.0, 6.0]),
GradeRecord("English", grades=[4.5, 5.0, 6.0]),
GradeRecord("History", grades=[6.0, 6.0, 6.0]),
GradeRecord("Physics", grades=[5.0, 5.5, 5.0]),

])

student2 = Student(id="S002", first_name="John", last_name="Smith", grade_records=[
GradeRecord("Math", grades=[5.5, 6.0, 4.5]),
GradeRecord("English", grades=[5.5, 5.5, 5.5]),
GradeRecord("History", grades=[4.5, 5.0, 5.5]),
GradeRecord("Physics", grades=[5.0, 5.5, 5.0]),

])

all_students: list[Student] = [student1, student2]

y y

y +1/9/52+ y
b) (2 points) Implémentez la fonction suivante, qui doit, à partir de la liste de tous les élèves, retourner
la moyenne des notes d’un élève (identifié par son ID) pour un cours donné (identifié par son nom). Votre
code doit faire appel à la méthode avg_grade() de la classe GradeRecord de la partie a). Si l’élève ou le cours
n’est pas trouvé, la fonction doit retourner -1.

def get_average_grade(all_students: list[Student], student_id: str, course_name: str) -> float:

c) (1 point) Sous la ligne suivante, écrivez du code qui, en parcourant la liste all_students et ses sous-
structures, remplit le dictionnaire indexed_avgs de manière à ce qu’il relie chaque identifiant élève à un
dictionnaire qui, lui, relie chaque nom de cours à la moyenne des notes de l’élève pour ce cours. Comme
avant, faites appel à la méthode avg_grade().
Après l’exécution de votre code, par exemple, print(indexed_avgs["S001"]["Math"]) devra afficher 6.0.

indexed_avgs: dict[str, dict[str, float]] =

y y

y +1/10/51+ y
Vous pouvez utiliser cette page au cas où vous n’auriez pas assez de place pour répondre à une question.
Pour faciliter la correction, merci de bien indiquer à la question donnée qu’il faut venir lire la suite ici !

y y

