
ICC/Programmation — Série 2 CGC/SIE, 24 février 2025

À faire individuellement ou par petits groupes de deux ou trois.

Exercice 1. I/O sur la console et conditions

I/O (ou IO) signifie Input/Output, soit «entrées/sorties». Pour cet exercice, nous allons lire et écrire des
lignes de texte sur la console, c’est-à-dire la «zone des résultats» où s’affiche le résultat des print().
Ouvrez VS Code, puis ouvrez votre workspace s’il ne se rouvre pas tout seul. Pour rappel, il s’agit
toujours du dossier dans lequel vous avez stocké vos fichiers Python. Si vous travaillez sur les machines
virtuelles de l’EPFL, il est dans ∼/Desktop/myfiles/ICCProgrammation_xyz. Créez-y ensuite des nouveaux
fichiers Python pour ces exercices, en prenant garde à ce que leurs noms se terminent bien toujours par
.py.

(a) Ajoutez ce code dans votre nouveau fichier (tel quel— sans écrire votre prénom ou nomdirectement
dans le code Python).
Examinez ce code. Repérez la fonction input(): ce qu’elle va faire, c’est arrêter l’exécution du code et
attendre que l’utilisateur de votre programme tape quelque chose sur le terminal, suivi de la touche
Retour ou Enter. C’est le texte tapé à ce moment-là qui sera retourné par la fonction. Ici, donc, ce
texte tapé sera stocké dans la variable full_name.
Faites tourner votre programme. Vous verrez qu’il s’arrête après la première ligne, car il attend
ensuite ce que vous tapez dans le terminal pour continuer. Tapez donc votre prénom et nom sur le
terminal dans la zone de résultats en bas de la fenêtre. Une fois que vous avez tapé Enter ou Retour,
les deux dernières lignes s’exécutent.
print("Bonjour, veuillez entrer votre prénom et nom:")
full_name: str = input()
print(f"Le nom que vous avez tapé est {full_name}.")

(b) En partant du principe que le prénom est séparé du nompar une1 espace (" "), créez deux nouvelles
variables first_name et last_name, et donnez-leur comme valeur le nom et le prénom en les extrayant
avec du code de votre variable full_name. Utilisez pour cela la méthode index() pour repérer la po-
sition de l’espace, puis le slicing pour extraire des sous-strings en fonction de la position de l’espace.

(c) Essayez de taper uniquement votre prénom (sans y inclure d’espace) et lancez votre programme.
Que se passe-t-il? Modifiez votre programme pour faire en sorte que si l’utilisateur ne tape que son
prénom (c’est-à-dire, si le string full_name ne contient pas d’espace), on affiche unmessage d’erreur,
en utilisant une condition — un if.

Exercice 2. Structures conditionnelles et opérateur «modulo»

Une année n est bissextile si elle respecte l’un ou l’autre des deux critères suivants :

• n est divisible par 4 sans être divisible par 100 ;
• n est divisible par 400.

a) Observez le code suivant, recopiez-le puis exécutez-le.
mod_1: int = 5 % 2
mod_2: int = 18 % 7
mod_3: int = 24 % 8
print(mod_1)
print(mod_2)
print(mod_3)

À votre avis, quel est le rôle de l’opérateur % (qui se lit «modulo») ? En cas de doute, demandez à
l’enseignant ou à un·e assistant·e.

1Le mot «espace» est bel et bien féminin dans ce contexte.

1



b) Reformulez la définition d’une année bissextile en mettant en évidence les mots SI, ALORS, ainsi que
d’éventuelles opérations conduisant à une valeur booléenne.

c) En utilisant l’opérateur modulo, écrivez un programme qui détermine puis affiche si les années 2024
et 2025 sont bissextiles ou non. Vous pourrez utiliser une seule variable et exécuter plusieurs fois le
programme avec des valeurs différentes pour cette variable.

Exercice 3. Boucles dans les strings

(a) Créez un nouveau fichier Python et insérez-y cette ligne telle quelle sans la modifier:
line: str = input("Veuillez taper quelque chose: ")

Complétez ensuite le code: à l’aide d’une boucle for-in et en utilisant les fonctions len() et range(),
affichez chaque caractère du string line individuellement avec la fonction print(). Utilisez pour
cela le fait que, si my_string est un string, alors my_string[i] est le caractère à la position i de ce
string.

(b) Modifiez votre code en simplifiant la boucle: utilisez pour cela le fait que le for-in peut aussi
marcher directement sur une valeur de type string plutôt que sur une valeur retournée par la fonc-
tion range(). Par exemple: for c in my_string va itérer sur tous les caractères du string my_string.

(c) Écrivez une boucle qui compte le nombre de caractères en majuscule et en minuscule du string line

et qui affiche ces deux nombres.
Pour cela, vous pouvez utiliser les méthodes isupper() et islower(). Elles vous renvoient un bool
qui indique si le string sur lequel elles sont appelées est en majuscule ou minuscule, respectivement.

(d) Modifiez votre programme pour qu’il affiche aussi le nombre de caractères qui ne sont ni en majus-
cule, ni en minuscule (par exemple, des chiffres ou autres symboles).

Exercice 4. Boucles et manipulation de chaînes de caractères, suite

Considérez le programme suivant :
course_title: str = "information, calcul, communication"
for idx, character in enumerate(course_title):

print(f"course_title[{idx}] = {character}")

(a) Anticipez le résultat de ce programme sans l’exécuter. Puis vérifiez votre réponse en exécutant ce
programme.

(b) Créez une variable capitalized_course_title qui contient, pour le moment, la chaîne de carac-
tères vide "". Nous souhaitons que cette nouvelle variable contienne, à la fin de l’exécution du
programme, la chaîne de caractères "Information, Calcul, Communication".

(i) Comment construire, lettre après lettre, le contenu de la variable capitalized_course_title

pour que celui-ci soit identique au contenu de la variable course_title ?
(ii) Quelles conditions permettraient de ne capitaliser que les premières lettres de chaque mot ?

Vous pouvez prendre en compte l’indice des lettres (en particulier pour la première lettre) ou
les caractères précédant ceux devant être écrits en majuscule.

(iii) Implémentez ces conditions pour construire, lettre après lettre, le contenu souhaité de la vari-
able capitalized_course_title. Vous pourrez utiliser la méthode .upper() vue dans la Série
1.

(c) Affichez, après la dernière itération de la boucle, le contenu de la variable capitalized_course_title.

2



Exercice 5. Un petit interpréteur interactif

(a) Depuis la page Moodle du cours, copiez et collez ce code dans un nouveau fichier Python.
Que fait chaque ligne de ce programme?
Comment est-ce que la boucle fonctionne? Quelle est la condition? Quand et comment la variable
de boucle est-elle modifiée?
should_continue: bool = True

while should_continue:
print("Je vais évaluer un calcul pour vous.")

number1_string: str = input("Tapez le premier nombre: ")
number1: float = float(number1_string)

number2_string: str = input("Tapez le second nombre: ")
number2: float = float(number2_string)

operation: str = input("Tapez l'opération: ")
if operation == "+":

result = number1 + number2
print(f"{number1} + {number2} = {result}")

else:
print(f"Désolé, je ne connais pas ’lopération '{operation}'")

maybe_quit: str = input("Tapez 'q' pour quitter, ou autre chose pour recommencer: ")
if maybe_quit == "q":

print("Bye!")
should_continue = False

(b) Modifiez le programme pour qu’il effectue aussi une addition si on tape "plus" plutôt que "+"
comme opération.

(c) Modifiez le programme pour qu’il puisse aussi évaluer des soustractions, multiplications et divi-
sions.

3


	I/O sur la console et conditions
	Structures conditionnelles et opérateur «modulo»
	Boucles dans les strings
	Boucles et manipulation de chaînes de caractères, suite
	Un petit interpréteur interactif

