
ICC/Programmation — Semaine 9, Miniprojet 1 CGC/SIE, 14 avril 2025

Le miniprojet est à faire par groupes de deux ou individuellement. Les groupes peuvent s’échanger des idées ou des
approches générales, mais pas du code directement.

Préparation

Ouvrez Visual Studio Code et depuis le menu Terminal, choisissez New Terminal. Tapez-y ces lignes l’une
après l’autre pour installer si nécessaire les modules de traitement d’image:
test -d venv && source venv/bin/activate

python3 -m pip install numpy Pillow types-Pillow

(Si la première ligne ne fonctionne pas mais que la seconde fonctionne, partez du principe que c’est OK.)
Téléchargez depuis Moodle le fichier miniproject-start.zip et décompressez-le. Déplacez ensuite à la
racine de votre workspace les deux fichiers miniprojectutils.py et miniproject.py, ainsi que le dossier
imgs, qui contient quelques images exemples.

• miniprojectutils.py contient les fonctions que vous pouvez appeler sans avoir besoin de forcément
tout comprendre. Vous pouvez consulter leur implémentation et voir comment elles utilisent les
bibliothèques numpy et Pillow pour faire leur travail. Merci de ne pas modifier ce fichier.

• miniproject.py est le fichier que vous devrez petit à petit compléter. Il contient déjà le code de base,
partiellement commenté, décrit au cours.

Lancez le fichier miniproject.py. Il devrait afficher deux lignes sur la console en disant qu’il commence
le travail et qu’il charge une image, puis s’arrêter juste après. Si cela ne fonctionne pas, appelez un·e
assistant·e.

Partie 1. Conversion en niveaux de gris

(a) Commencez par implémenter la fonction rgb_to_gray, dont le but est de convertir une couleur RGB
en un niveau de gris. Cette fonction reçoit donc trois arguments, r, g et b, tous entre 0 et 255 (com-
pris), et doit retourner un int entre 0 et 255 aussi.
On pourrait se dire qu’une bonneméthode de conversion en niveau de gris serait de faire lamoyenne
entre les trois composantes RGB. Mais cela fonctionne mal: notre œil perçoit les contributions des
composantes à la clarté d’une couleur de manière différente. Basez-vous plutôt sur cette formule
pour faire une somme pondérée, dont vous voyez qu’elle donne une importance prépondérante à la
composante verte:

gray = 0.2126 · r + 0.7152 · g + 0.0722 · b

Rajoutez en bas du fichier (mais dans la condition if __name__ == "__main__") quelques lignes pour
vérifier que votre fonction retourne toujours bien un int entre 0 et 255.

(b) Implémentez la fonction to_grayscale. Elle reçoit en paramètre une image couleur et doit retourner
une nouvelle image en niveaux de gris de la même taille, obtenue en convertissant chaque pixel avec
la fonction rgb_to_gray.
Pour tester votre code, décommentez dans la fonction highlight_rectangle_test le code lié à l’étape
1. Si tout se passe bien, unfichier image est généré ici dans votreworkspace: imgs/sunrise/1_gray.jpg.
Ouvrez-le et vérifiez que l’image obtenue est celle en haut de la page suivante.

Si vous avez des difficultés, essayez avec une petite image de 10×10pixels que vous générez aléatoirement
(avec la fonction new_random_rgb_image de miniprojectutils.py par exemple) plutôt que directement
avec la grande image. C’est plus simple de voir les valeurs intermédiaires (en faisant print ou via le
débuggeur) sur de petites images.

1



Partie 2. Recherche d’un motif

(a) Essayons d’abord de dessiner par dessus une image pour mettre en avant une zone donnée. Nous
allons pour cela utiliser et implémenter la fonction highlight_rectangle. Cette fonction prend en
paramètre une image en niveau de gris, les coordonnées d’un point, une taille, une valeur int entre
0 et 255 (inclus), et une largeur de ligne. L’idée de cette fonction et qu’elle doit créer une nouvelle
image (c’est important !) dont les pixels sont identiques à celle passée en paramètre, à l’exceptions
de ceux présents sur les contours d’un rectangle. Ce rectangle est défini par les coordonnées du coin
supérieur gauche, et la taille du rectangle, tout deux passé en paramètres. Les contours doivent être
dessinés à l’extérieur du rectangle avec une ligne dont la largeur et la valeur des pixel est donné en
paramètres.
Faites bien attention à ne pas dessiner à l’intérieur du rectangle mais bien à l’extérieur. Par exem-
ple, si on appelle highlight_rectangle(img, (1,2), (4,2), 255, 3) sur une image de taille 10x10,
alors sur l’image retourné, les pixels (1, 2) et (4, 3) doivent être inchangés car ils sont à l’intérieur
du rectangle, mais les pixel (0, 3) et (3, 4) seront blanc car ils sont tout les deux sur les contours
du rectangle. Faites aussi attention à ne pas dessiner en dehors de l’image: Si le rectangle ou ses
contours dépassent de l’image, dessinez seulement la partie visible (La méthode clamp disponible
dans miniprojectutils.py peut vous aider).
Testez votre fonction en l’appelant avec quelques valeurs, et en décommentant le code lié à cette
étape de la fonction highlight_rectangle_test.

2



(b) Vous allez maintenant implémenter la fonction pattern_difference. Cette fonction prend en argu-
ment une grande image ”source”, une petite image ”pattern” (oumotif en français), et une position,
et retourne un float. La source et le pattern doivent être en niveau de gris. Le but de cette fonction
et de calculer un score de différence entre le pattern et un morceau (de même taille) de la deuxième
image. Plus le score est faible, plus le pattern est similaire au morceau de la deuxième image, avec
un score de 0 indiquant qu’ils sont identiques. Ce morceau est un rectangle de même taille que le
pattern et dont le coin supérieur gauche (coordonnée minimales) est défini par la position donnée
en argument. Cette position doit être de telle sorte que le rectangle ainsi formé soit compris entière-
ment dans l’image source, sinon la fonction doit retourner 1. Pour calculer le score de similarité, on
commence par calculer la différence absolue entre la valeur des pixels du pattern et la valeur des
pixels dans le morceau de la deuxième images. On fait ensuite la moyenne des différences et on
obtiens ainsi une valeur entre 0 et 255 (inclus). On divise enfin par 255 pour obtenir un score de
différence entre 0 et 1.
Pour cette fonction, il est très important que vous n’utilisiez PAS de boucle (for ou while) car sinon
l’exécution de la prochaine étape sera trop longue et vous n’aurez pas tout les points. À la place,
vous devez utiliser les opérateurs numpy, permettant de faire vos calculs plus rapidement.
Vous pouvez à nouveau ajouter en bas du fichier (mais dans la condition if __name__ == "__main__")
quelques lignes pour tester votre programme. (Par exemple, que se passe t’il si l’on passe 2x lamême
image et les coordonnées (0,0) ?) Vous pouvez aussi créer vos propres images de tests (en rognant
et modifiant des images pour créer un pattern similaire) avec des outils libres et gratuits comme
GIMP, ou simplement en définissant vos propres arrays numpy.

(c) Vous allezmaintenant implémenter la fonction find_similar_pattern_position. Cette fonctionprend
en argument une image source et un pattern (tout deux en niveaux de gris), et retourne une position.
Le but et de trouver le morceau de l’image source qui ressemble le plus au pattern. Pour cela, vous
devez utiliser la fonction pattern_difference que vous venez d’implémenter pour trouver la posi-
tion qui donne la plus faible différence, et retourner cette position. Si la taille du pattern ne rentre
pas dans l’image source, retournez (0,0).
Attention: Cette fonction peut prendre quelques secondes à s’exécuter, même avec un petit pattern,
et potentiellement beaucoup plus si le pattern est grand.

(d) Pour finir, vous allez maintenant implémenter la fonction highlight_similar_pattern. Cette fonc-
tion prend en argument une image source et une image pattern (tout deux en niveaux de gris), une
valeur de gris (entre 0 et 255 inclus), et une largeur de ligne, et doit retourner une copie de l’image
source dont la seule différence est que le morceau le plus similaire est entouré par une ligne de la
largeur et valeur donnée en argument. Cette fonction doit utiliser les fonctions précédentes.
Testez votre code en décommentant les étapes de la fonction highlight_similar_pattern_test.

Vous pouvez modifier l’appel à highlight_similar_pattern_test pour tester votre code avec les autres
images et patterns d’exemple.

3


	Conversion en niveaux de gris
	Recherche d'un motif

